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Abstract—Iterative thresholding methods have been extensively
studied as faster alternatives to convex optimization methods
for solving large-sized problems in compressed sensing MRI. A
novel iterative thresholding method, called LCAMP (Location
Constrained Approximate Message Passing), is presented for
reducing computational complexity and improving reconstruc-
tion accuracy when a non-zero location (or sparse support)
constraint can be obtained from view shared images in dy-
namic contrast-enhanced MRI (DCE-MRI). LCAMP modifies
the existing approximate message passing algorithm by replacing
the thresholding stage with a location constraint, which avoids
adjusting regularization parameters or thresholding levels. This
work is applied to breast DCE-MRI to demonstrate the excellent
reconstruction accuracy and low computation time with highly
undersampled data.

I. INTRODUCTION

Cancer is the second most common cause of death in
the United States. In 2012, about 577,190 Americans are
expected to die of cancer, more than 1,500 people a day [1].
Non-invasive detection of cancer continues to be one of the
primary goals of medical imaging, and magnetic resonance
imaging (MRI) has great potential to become a major imaging
modality for cancer imaging as it is non-invasive, non-toxic,
and involves no ionizing radiation [2]. Compared to other
imaging modalities such as X-ray, computed tomography or
ultrasound, MRI has the unique ability to achieve several
different types of soft tissue image contrast and can provide
a means of resolving blood flow alterations associated with
tumoral, vascular, and infectious diseases.

Dynamic contrast-enhanced MRI (DCE-MRI) is a widely
used method in the diagnosis of cancer in abdominal, pelvic,
and breast imaging [3], [4]. A common approach is to acquire
T1-weighted reference images, inject a low molecular-weight
paramagnetic contrast agent, and acquire a time series of T1-
weighted images as the contrast agent circulates through the
tissue microvasculature. We can extract quantitative microvas-
cular properties by either fitting the uptake of contrast to a
pharmacokinetic model [5] or computing the initial area under
the gadolinium concentration curve [6]. Both high spatial and
high temporal resolution are required to accurately estimate
these microvascular properties, which can provide not only a
non-invasive method for tumor detection but also predictive
and prognostic biomarkers for cancers [7]–[9].

MRI remains limited by tradeoffs between spatial reso-
lution, temporal resolution, and signal-to-noise ratio (SNR).

Multiple rapid MRI techniques have been developed for
accelerating MR imaging, including non-Cartesian sampling
(e.g., spiral [10] and radial [11]), spatio-temporal undersam-
pling [12] and parallel imaging [13], [14]. In addition, com-
pressed sensing (CS) is an emerging technique that can allow
accurate reconstruction of images from a reduced amount
of acquired data [15], [16], and its promise to improve
the speed of MRI has been successfully demonstrated [17],
[18]. However, depending on implementation and application,
conventional CS-MRI is limited in some cases by practical
and fundamental issues, depending on implementation and
application.

One of the major issues in CS-MRI is high computational
complexity for the reconstruction [19], [20]. The CS recon-
struction typically finds an optimal sparse solution among all
possible candidates by minimizing the L1-norm, defined by a
sum of absolute values of sparse coefficients [15], [16]. Since
the L1-norm is convex, many standard convex optimization
techniques [21] can be directly applied to solve the problem.
However, solving the L1 problem using convex optimization
is substantially more computationally expensive than using
traditional gradient-based algorithms [19], [22]. This high
computational complexity often precludes the further use of
CS in many MR applications where the problems are consid-
erably larger scale such as DCE-MRI.

Fast iterative thresholding methods have been widely stud-
ied as alternatives to convex optimization due to their low
computational complexity [19], [23]–[26]. We have devel-
oped a variation of the iterative thresholding algorithm that
incorporates both an approximate message passing (AMP)
term and a non-zero location (or sparse support) constraint,
called Location Constrained Approximate Message Passing
(LCAMP) [27]. The AMP term was recently developed to cor-
rect a residual bias in the iterative thresholding methods, and
the AMP algorithm has been shown to improve reconstruction
performance over iterative thresholding methods [20]. We have
expanded the AMP algorithm by replacing the thresholding
operation with the location constraint, masking out insignifi-
cant sparse coefficients based on the sparse support. This can
further increase reconstruction accuracy while retaining low
computational complexity.

The overall purpose of this work is to offer high spatio-
temporal resolution of 3D volumetric DCE-MRI. We hypoth-
esize that the spatial and temporal resolution of DCE-MRI can



be substantially increased by our proposed LCAMP algorithm
and expect that the enhanced spatial and temporal resolution
can improve quantitative features of DCE-MRI, which can
enable identification and characterization of smaller tumors.

II. THEORY

We first explain the standard convex optimization method
that is most commonly used in CS-MRI and later describe
three faster alternatives to the convex optimization (iterative
thresholding methods, AMP and LCAMP), which have equiv-
alent computational complexity at each iteration.

A. L1-Regularized Least Squares Program (L1 LSP)

Assuming an N -point image x is sufficiently sparse (or
compressible) and the undersampled Fourier transform Φ (n
× N ; n � N ) possesses incoherence, CS can allow accurate
reconstruction of x from a reduced set of measurements
[15], [16]. The reconstruction can be achieved by solving the
following L1 minimization:

min
x
‖y − Φx‖22 + λ‖Ψx‖1, (1)

where y consists of the acquired k-space samples Φx, Ψ
is a sparse transformation, and λ > 0 is the regularization
parameter. This unconstrained minimization problem, called
an L1-regularized least-squares program (LSP), has been used
in many ways and yields a sparse solution due to the L1 norm
when λ is chosen appropriately.

The optimal solution to the L1-regularized LSP must be
computed numerically due to its non-differentiable (or non-
smooth) objective function. One common way is to transform
Eq. 1 to a convex quadratic program or a second-order cone
program with linear inequality constraints and to use a stan-
dard interior point method. The interior point method has high
computational complexity, approximately O(N3), and various
methods have been proposed to reduce the computation time
using a truncated Newton method [22], [28], [29]. However,
the general computation time is still not practical for large-
sized problems, and the ability to choose the regularization
parameter (λ) sometimes limits the reconstruction reliability.

B. Iterative Soft/Hard Thresholding (IST/IHT)

Fast iterative thresholding methods have been extensively
studied as alternatives to solve Eq. 1 [23]–[26], [30] and
mostly fall into two groups: iterative soft thresholding (IST)
and iterative hard thresholding (IHT), depending on the choice
of the non-linear thresholding operators. These approaches are
known to be extremely fast, especially if they use efficient
algorithms for the matrix-vector operations, such as the fast
Fourier transform. [23], [25], [30]. The generic form of the
iterative thresholding methods can be simply written as:

zk = y − ΦΨ∗wk,
wk+1 = η(wk + ΨΦ∗zk; θk),

(2)

where zk is the residual of the estimate in k-space at the kth

iteration, wk is the current estimate of the sparse vector and
η(x; θk) is either the soft- or hard-thresholding function. Φ∗
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Fig. 1. Illustration of three iterative thresholding-based methods (IST/IHT,
AMP and LCAMP) for one iteration. Note that all three methods share
the same matrix-vector operations (ΦΨ∗ and ΨΦ∗), which are the main
computational load, and the differences between each methods are highlighted
in the gray box.

and Ψ∗ denote the transpose of Φ and Ψ, and the solution x
can finally be found as x = Ψ∗w.

Although there are many extensions to IST/IHT, the selec-
tion of θk is the major challenge in achieving high reconstruc-
tion accuracy and stability and is very difficult to optimize
since it can vary iteration-by-iteration. In practice, the thresh-
olding levels can be sub-optimally tuned by using precomputed
values based on a comprehensive study of parameter variations
and options [31]. More importantly, non-linear thresholding
creates a bias in noise contribution, potentially making the
reconstruction unstable. Iterative thresholding methods are
known to perform worse than conventional L1 minimization
methods [20], [31].

C. Approximate Message Passing (AMP)

Donoho et al. recently presented an algorithm, called first-
order approximate message passing (AMP) [20], that extends
IST by adding a new term. The main idea of AMP is to fix the
bias in the residual zk, making the thresholding operation more
effective. Due to its improved residual, the overall reconstruc-
tion accuracy is equivalent to conventional L1 minimization
and better than iterative thresholding methods [20]. The idea is
inspired by belief propagation in graphical models and a more
detailed derivation of the extra term can be found here [32].

The general iteration steps of the AMP algorithm can be



written as:

bk = 1
n

∑N
i=1 η

′(wk−1 + ΨΦ∗zk−1; θk),
zk = y − ΦΨ∗wk + bkzk−1,
wk+1 = η(wk + ΨΦ∗zk; θk),

(3)

where η(x; θk) is the soft-thresholding function and η′(s; θk)
is defined as ∂

∂sη(s; θk). The only difference between the
iterative thresholding methods and AMP is the extra term
bkzk−1 in the calculation of zk. This extra term, often called an
“Onsager term,” has a significant impact on the reconstruction
by correcting the noise component of wk + ΨΦ∗zk to follow
a Gaussian distribution at every iteration.

Figure 1 illustrates a simplified diagram of IST/IHT and
AMP for one iteration. Both methods share the same main
computational load, the matrix-vector operations (ΦΨ∗ and
ΨΦ∗), and the main difference between two is the AMP term
(dotted box, labeled C in Fig 1). The AMP term typically
adds minimal computational effort, and the computational
complexity of AMP remains similar to that of IST/IHT. The
computation time is proportional to the number of iterations
required to achieve convergence, and the AMP algorithm has
been extensively tested by both simulation and mathematical
analysis to show equivalent reconstruction accuracy to the
conventional L1 minimization but with lower computation
time [20]. Therefore, the AMP algorithm is a suitable choice
for CS MRI, especially when the problem size is large.

D. Location Constrained Approximate Message Passing
(LCAMP)

An important operation for both AMP and IST/IHT is the
thresholding step, where sparsity is enforced by choosing only
significant sparse coefficients. Careful choice of θk is essential
but difficult in practice, especially when measurements are
noisy. In our new method, we replace thresholding with a
location (or sparse support) constraint, which forces some
sparse coefficients to be zero at every iteration. This selection
operation completely removes the need for a threshold and is
guaranteed to be near-optimal since the decision between sig-
nificant and insignificant coefficients is not made by a current
proxy (wk + ΨΦ∗zk) but instead by the location constraint.
Note that the operation becomes similar if the thresholding
level is near-optimal and the proxy is good enough (e.g.,
measurements ΦΨ∗ satisfy the restricted isometry property
condition [33]).

The location constraint can be performed by multiplying a
non-zero location mask M (one for non-zeros and zero for
zeros), and bk in Eq. 3 becomes simply supp(M)/n where
supp(M) is the sparsity of M . By introducing a reduction
factor r = N/n and a sparsity level c = supp(M)/N ,
LCAMP has simpler iteration steps than AMP:

zk = y − ΦΨ∗wk + r · c · zk−1,
wk+1 = M · (wk + ΨΦ∗zk).

(4)

We assume M is available prior to the reconstruction and
will discuss how to obtain this information later. Figure 1 de-
scribes the differences among all three iterative thresholding-
based methods. LCAMP is implemented by replacing soft/hard
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Fig. 2. Pseudorandom undersampling pattern used for LCAMP. View-shared
(time-averaged) composite images are used as a sparse location constraint to
reconstruct each individual frame with LCAMP.

thresholding, labeled A, with the location constraint, labeled
B in Fig 1. All three methods share the same core operations
(ΦΨ∗ and ΨΦ∗), and the computational complexity for one
iteration is similar.

III. METHODS AND MATERIALS

In DCE-MRI, a set of images is repeatedly acquired on a
same object to capture dynamic signal uptake, and the location
constraint M can be estimated using the fact the underly-
ing sparsity may not be changed across the measurements.
Figure 2 describes the generation of k-space undersampling
patterns (ky - kz - t) for LCAMP. The undersampling patterns
contained four sampling densities: a fully sampled region and
three randomly sampled regions with different acceleration
factors. The pseudo random sampling is generated by ran-
domly selecting k-space locations among all unselected ones
so that each region becomes fully sampled when combined
over R frames (e.g., the smallest region becomes fully sampled
when combined over 3 frames, and the largest region becomes
fully sampled when combined over 12 frames). Note that many
other methods including different random undersampling can
be explored to generate composite images, depending on
implementation and applications.

We used the wavelet transform Ψ as the sparse transforma-
tion due to its ability to sparsely represent natural images,
and the non-zero location mask M for each time frame
was estimated by thresholding the wavelet coefficients of
the composite image, constructed from a time-averaged full
data set. Any wavelet coefficients above the threshold were
considered to be significant, and a binary image (non-zero
location mask M ) was set to be one at locations that contained
significant wavelet coefficients. An outline of the LCAMP
algorithm is in Algorithm 1.



Algorithm 1: LCAMP Algorithm

Input :
y - measured k-space data (n × 1)
Φ - undersampled Fourier transform (n × N )
Ψ - wavelet transform (N × N )
M - non-zero location mask

Initial Estimate: w0 - initial estimation (N × 1)

Initialization
r = N/n;
c = supp(M)/N
wk = w0;
zk−1 = y − ΦΨ∗w0;
k = 0;

while halting criterion false do
zk ← y − ΦΨ∗wk + r · c · zk−1;
wk+1 ←M · (wk + ΨΦ∗zk);
k ← k + 1;

w ← wk;

Output : w - wavelet coefficients (N × 1)

As a stopping criterion, the algorithm employed the dif-
ference in the data fidelity term (y − ΦΨ∗wk) divided by
the norm of measured data. The data fidelity becomes more
relaxed when the measurements are noisier and/or the un-
derlying signal is more sparse because the contribution from
insignificant coefficients (masked-out components) becomes
more prominent, but the amount of relaxation tends to become
stable (i.e., difference in the data fidelity term per iteration
becomes small) when approaching to the solution. Here, we
monitored the data fidelity at each iteration and stopped the
reconstruction when it does not change considerably:

‖y − ΦΨ∗wk‖2 − ‖y − ΦΨ∗wk−1‖2
‖y‖2

< ε, (5)

where ε is a tolerance factor, which must be set by the user. In
general, small values (10−2 to 10−4) are sufficient to generate
stable results.

All reconstructions were implemented in Matlab (R2010b;
The MathWorks Inc., USA) and run on a Linux PC equipped
with a dual six-core 2.66 GHz CPU (Intel Xeon) and 64 GB
of memory. The matrix size for DCE-MRI data was 244 ×
128 × 48 (Nx × Ny × Nz) with 20 time frames, and we used
a 3D dual-tree wavelet transform. We used the DCE analysis
software (OsiriX Plug-in) to calculate the kinetic behavior of
the contrast uptake, which can be analyzed on user-defined
regions or a per-pixel basis. The plug-in can generate pixel-
by-pixel quantitative maps such as an initial slope of the signal
enhancement.
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Fig. 3. DCE breast images at selected slice locations: (a) original, (b) LCAMP
and (c) the absolute difference between original and LCAMP. The absolute
difference is scaled to be 10% of the maximum signal and was typically less
than 2% of the maximum.

IV. RESULTS

Figure 3 shows representative volumetric images recon-
structed with a high acceleration factor (Rnet = 10). Magnitude
images at the eighth time frame (23 seconds after contrast
injection) are shown at different slice locations. The absolute
difference images are also shown on the right to accentuate the
differences. Compared with the original images, the LCAMP
reconstruction is able to recover almost all the features and
the absolute difference remains small. The absolute difference
images are scaled to be 10% of the maximum signal and the
average over the largest 5% of errors is 1.2 - 1.8% of the
maximum signal over the breast.

Figure 4 shows an example of reconstructed images at
different time frames (t = 2, 6, 10 and 14). The original
and LCAMP images are qualitatively similar and the absolute
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Fig. 4. DCE breast images at selected time frames: (a) original, (b) LCAMP
and (c) the absolute difference between original and LCAMP. The absolute
difference is scaled to be 10% of the maximum signal, and the absolute
difference was typically less than 2% of the maximum.
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Fig. 5. Maps of initial slope of contrast enhancement generated using (a)
original, (b) view sharing and (c) LCAMP. Magnitude images are shown
for the anatomical reference, and a region containing a tumor, indicated by
the arrows, is zoomed-in to show the difference between view sharing and
LCAMP. Different colors in the initial slope map indicate various degrees of
line slope, computed by a linear regression of initial enhancement signals in
arbitrary units and typically expresses the steepness of initial signal uptake.

difference images confirm the excellent reconstruction perfor-
mance (the average over the largest 5% of errors is 1.7 - 2.4%
of the maximum signal over the breast). Note that the absolute
differences are relatively large in the heart because the location
constraint is inaccurate due to the heart motion, resulting in
a loss of spatial resolution. Note that by acquiring the data
with a high undersampling factor, the temporal resolution can
be significantly reduced. For example, the data shown was
acquired with an 11-second temporal resolution, which could
be reduced to 1 second with Rnet=10 undersampling.

Figure 5 shows initial slope maps computed by recon-
structed DCE images using view sharing and LCAMP. The ini-
tial slope maps, computed using a linear regression from three
time frames, show the slopes of initial signal enhancement
(red: highest and blue: lowest). Selected initial slope maps
containing tumor regions (arrows) are overlaid on the magni-
tude images for anatomical references. When the view sharing
method is used, signal dynamics are temporally blurred, which
results in underestimation of the initial slopes. In contrast,
the LCAMP method maintains similar signal enhancement
information on a per-pixel basis.

V. DISCUSSION

We have presented a novel CS reconstruction method that
quickly and accurately finds a sparse solution when a location
(or sparse support) constraint is provided as prior knowledge.
The LCAMP algorithm fundamentally shares similar opera-
tions with other iterative thresholding methods and therefore
retains their extremely low computational complexity. More
importantly, the AMP term corrects the residual bias, while the
location constraint assures a near-optimal selection of sparse
coefficients at every iteration, which collectively improve the
accuracy of the reconstruction.

A location constraint is stronger prior knowledge on the
signal than conventional sparsity as the sparsity assumes no

knowledge of the non-zero locations in a sparse representation
of a signal. The existence of the location constraint can
create a reduced sparse transform consisting of only a vector
of non-zero locations. The problem then can become an
overdetermined system using the reduced sparse transform
(i.e., more measurements than unknowns), and least-squares
can be applied to find a solution. In our numerical simulation,
the least-squares with the reduced sparse transform worked
perfectly when the measurements have no or very little noise
but diverged quickly when the measurements are noisy or any
incorrect location constraints are included. This has suggested
to use an iterative approach with the location constraint for
more stable reconstruction results.

Accurate estimation of the location constraint is important
for enforcing the correct constraint. When there is motion
between dynamic images or measurements are too noisy, the
time-averaged composite images may not represent correct
sparsity locations, which mainly result in a loss of spatial
resolution. We may be able to make the location constraint
more immune to small motion by performing soft thresholding
within only the known support, while forcing the signal outside
the support to be zero. Low SNR composite images tend to
underestimate the underlying sparsity level because any small
wavelet coefficients less than the background noise level will
be ignored. We may be able to overcome this SNR issue by
averaging more temporal images.

LCAMP replaces the thresholding operation with a location
constraint. This removes the ambiguity of manually selecting
the threshold levels, enables faster convergence and makes
the reconstruction more stable. This was shown as a more
consistent reconstruction performance with different reduction
factors while other reconstruction methods rapidly degraded
as the reduction factors increased. In addition, the LCAMP
reconstruction is free of many user-defined values (regulariza-
tion/relaxation parameters and threshold levels), and only the
stopping criterion remains to be determined. This may make
the reconstruction more reproducible in practice.

VI. CONCLUSIONS

We have presented a novel CS reconstruction method
called LCAMP (Location Constrained Approximate Message
Passing) to achieve both accurate and fast reconstruction.
The location constraint was estimated from the temporally
averaged composite image in DCE-MRI and used to replace
conventional thresholding. LCAMP was shown to preserve
qualitative and quantitative features in DCE MRI. This fast
reconstruction can also be easily implemented as an automated
reconstruction since there are no regularization parameters that
need to be manually selected.

REFERENCES

[1] “Cancer Facts and Figures 2012”. American Cancer Society.
[2] Shellock FG, “Magnetic Resonance Procedures: Health Effects and

Safety”. Lewis, 2000.
[3] Kuhl C. MRI of breast tumors. European radiology 2000; 10:46–58.
[4] Hayes C, Padhani A, Leach M. Assessing changes in tumour vascular

function using dynamic contrast-enhanced magnetic resonance imaging.
NMR in Biomedicine 2002; 15:154–163.



[5] Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV,
Larsson HBW, Lee TY, Mayr NA, Parker GJM. Estimating kinetic
parameters from dynamic contrast-enhanced T1-Weighted MRI of a
diffusable tracer: Standardized quantities and symbols. J. Magn. Reson.
Imaging 1999; 10:223–232.

[6] Evelhoch JL. Key factors in the acquisition of contrast kinetic data for
oncology. J. Magn. Reson. Imaging 1999; 10:254–259.

[7] Esserman L, Hylton N, Yassa L, Barclay J, Frankel S, Sickles E. Utility
of magnetic resonance imaging in the management of breast cancer:
evidence for improved preoperative staging. Journal of clinical oncology
1999; 17:110–110.

[8] Hawighorst H, Weikel W, Knapstein P, Knopp M, Zuna I, Schönberg S,
Vaupel P, van Kaick G. Angiogenic activity of cervical carcinoma:
assessment by functional magnetic resonance imaging-based parameters
and a histomorphological approach in correlation with disease outcome.
Clinical cancer research 1998; 4:2305–2312.

[9] Zahra M, Hollingsworth K, Sala E, Lomas D, Tan L. Dynamic contrast-
enhanced MRI as a predictor of tumour response to radiotherapy. The
Lancet Oncology 2007; 8:63–74.

[10] Meyer CH, Hu BS, Nishimura DG, Macovski A. Fast spiral coronary
artery imaging. Magn. Reson. Med. 1992; 28:202–213.

[11] Jackson JI, Nishimura DG, Macovski A. Twisting radial lines with
application to robust magnetic resonance imaging of irregular flow.
Magn. Reson. Med. 1992; 25:128–139.

[12] Hansen MS, Tsao J, Kozerke S, Eggers H. k-T BLAST reconstruc-
tion from arbitrary k-T space sampling: application to dynamic radial
imaging. In: Proc., ISMRM, 13th Annual Meeting, Miami, 2005. p.
684.

[13] Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE:
Sensitivity encoding for fast MRI. Magn. Reson. Med. 1999; 42:952–
962.

[14] Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J,
Kiefer B, Haase A. Generalized autocalibrating partially parallel
acquisitions (GRAPPA). Magn. Reson. Med. 2002; 47:1202–1210.

[15] Candès EJ, Romberg J, Tao T. Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information.
IEEE Transactions on Information Theory 2006; 52:489–509.

[16] Donoho DL. Compressed sensing. IEEE Transactions on Information
Theory 2006; 52:1289–1306.

[17] Lustig M, Donoho DL, Pauly JM. Sparse MRI: The application of
compressed sensing for rapid MR imaging. Magn. Reson. Med. 2007;
58:1182–1195.

[18] Jung H, Sung K, Nayak KS, Kim EY, Ye JC. k-t FOCUSS: A general
compressed sensing framework for high resolution dynamic MRI. Magn.
Reson. Med. 2009; 61:103–116.

[19] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM Journal on Imaging Sciences 2009;
2:183–202.

[20] Donoho DL, Maleki A, Montanari A. Message-passing algorithms for
compressed sensing. Proceedings of the National Academy of Sciences
2009; 106:18914–18919.

[21] Boyd SP, Vandenberghe L, “Convex optimization”. Cambridge, UK:
Cambridge University Press, 2004.

[22] Kim SJ, Koh K, Lustig M, Boyd S, Gorinevsky D. An interior-point
method for large-scale l1-regularized least squares. IEEE Journal of
Selected Topics in Signal Processing 2007; 1:606–617.

[23] Daubechies I, Defrise M, DeMol C. An iterative thresholding algorithm
for linear inverse problems with a sparsity constraint. Communications
on pure and applied mathematics 2004; 57:1413–1457.

[24] Fornasier M, Rauhut H. Iterative thresholding algorithms. Applied and
Computational Harmonic Analysis 2008; 25:187–208.

[25] Blumensath T, Davies ME. Iterative hard thresholding for compressed
sensing. Applied and Computational Harmonic Analysis 2009; 27:265–
274.

[26] Needell D, Tropp JA. CoSaMP: Iterative signal recovery from incom-
plete and inaccurate samples. Applied and Computational Harmonic
Analysis 2009; 26:301–321.

[27] Sung K, Daniel BL, Hargreaves BA. Location constrained approximate
message passing (LCAMP) algorithm for compressed sensing. In: Proc.,
ISMRM, 19th Annual Meeting, Montreal, 2011. p. 72.

[28] Portugal LF, Resende MGC, Veiga G, Júdice JJ. A truncated primal-
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