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Abstract—Rendering realistic lips movements in avatar with 

camera captured human’s facial features is desirable in many 

applications, e.g. telepresence, video gaming, social networking, 

etc. We have proposed to use Gaussian Mixture Model (GMM) 

to generate lips trajectory and successfully tested in speech-to-

lips conversion experiments, where only audio signal (speech) is 

used as input. In this paper real-time user’s facial features called 

the Action Units (AUs) well tracked by Microsoft Kinect SDK 

with a consumer-grade RGB camera, are combined with speech 

to form joint A/V input for lips animation. We test the lips ani-

mation performance and show that the new combined A/V input 

can improve the conversion error rate by 22% in a speaker de-

pendent test, compared with a baseline system.  

I. INTRODUCTION 

Lips animation retargeting can transfer lips movement of a person 

captured by a camera to an avatar in real-time, which offers a wide 

range of useful applications and generating such lips animation is 

useful for human computer interaction in video games or other aug-

mented reality scenarios. As audio and visual information co-occur 

in human communications, animated avatar can also benefit human-

human interactions, e.g. internet videophones in low bandwidth. 

Other applications include an avatar based video conference where 

actual captured video will not be shown due to some privacy concern. 

Previous work e.g. [1][2], used facial feature point provided by a 

video tracker or a motion capture system to retarget user’s facial 

animation to a cartoon-like avatar. However, as avatar becomes more 

human-like and photo-realistic, retargeting mouth area animation 

becomes quite a technical challenge. This is because mouth is a 

combination of delicate tissues of different types, including: lips, 

tongue, and teeth. Moreover, lips movement is quicker than any 

other facial muscles when speaking, and sometime with occlusions 

of tongue and teeth. Using tracked feature point (usually lips con-

tours) cannot provide enough information for animation of lips, 

tongue, and teeth. 

A different approach, called speech-to-lips conversion, uses 

speech as the source signal and converts it directly into visual lips 

movement,. In speech-to-lips conversion, we establish a mapping 

between acoustic speech space and visual mouth space. In other 

words, given the acoustic parameters of speech, one needs to esti-

mate the corresponding mouth parameters and/or vice versa. The 

conversion is to find the best mapping, for given dual training sets.  

Numerous attempts to model the relationship between audio 

(speech) and visual (usually lips, sometimes also upper face) signals 

and many are generative probabilistic model based, where the under-

lying probability distributions of audio-visual data is estimated. Typ-

ical model assumptions are Gaussian Mixture model (GMM), Hid-

den Markov Model (HMM) [3], Dynamical Bayesian Network 

(DBN) [4] and Switching Linear Dynamical System (SLDS) [5], in 

increasing model complexity. In our previous work [8], we proposed 

Minimum Converted Trajectory Error training which, unlike maxi-

mum likelihood criteria, minimizes the converted trajectory error 

over training data so as to improve the quality conversion.  

The drawback of speech-to-lips conversion is that it is not robust 

against environmental noises, difference across microphone channels, 

and speaker change, etc. All the above acoustic uncertainties have no 

effect on tracked facial features. On the other hand, illumination 

variation, which is highly sensitive in facial feature tracking, will not 

affect speech-to-lips conversion. Therefore, it is desirable if we can 

combine speech and captured (tracked) facial features as joint A/V 

input and use them for lips animation retargeting. In this paper, we 

propose to use facial action units estimated from face video com-

bined with audio feature to improve conversion performance. Exper-

imented results show that facial animation unit can reduce the con-

version error by 22% in a speaker dependent task.  

The rest of the paper is organized as follows. In Section II we 

propose the whole system and application scenarios. In Section III 

we introduce facial action units and how to estimate AUs from face 

video. In Section IV we introduce Maximum Likelihood (ML) and 

Minimum Converted Trajectory Error (MCET) criteria for training. 

Section V presents the experimental results. Section VI is the con-

clusion. 

II. SYSTEM OVERVIEW 

The conversion system has two, model training and conversion, 

stages, as shown in Fig.2. First of all, a parallel audio-video database 

is recorded and serves as training data. Acoustic feature MFCC is 

extracted from the audio stream. Video face tracking is carried out 

on the video stream, after that facial action units can be estimated for 

every image frame describing the simplified animation pattern of lips 

motion. PCA Eigen lips are also extracted from the video image 

sequence, representing the detailed appearance features. The three 

features: MFCCs, AUs, and PCAs are augmented into a super feature 

vector sequence. With these features, a statistical GMM is automati-

cally trained to characterize the joint feature space.  

Fig. 1: Retargeting user’s facial animation to a photo-realistic avatar. 



In the conversion stage, with a normal RGB camera setup, user’s 

face video and audio speech can be captured synchronously. After 

applying acoustic feature extraction and video face tracking, MFCCs 

and AUs can be obtained and combined as source input to generate 

the most likely PCAs parameter trajectories representing the model 

estimated lips animation. The converted PCA trajectories are used in 

rendering photo-realistic lips movement for an avatar.  

III. FACE ACTION UNIT (AU) 

A. Facial Action Coding System 

Rapid facial movements formed when facial muscles pull the skin, 

causing a temporary distortion of the shape of the facial features and 

of the appearance of folds, furrows, and bulges of skin. The common 

terminology for describing rapid facial movement signal refers to 

either culturally dependent linguistic terms indicating a specific ap-

pearance change of a particular facial feature (e.g., smile, smirk, 

frown, sneer) or the linguistic universals describing the activity of 

specific facial muscles that caused the observed facial appearance 

changes. There are several methods for linguistically universal 

recognition of facial changes based on the facial muscular activity. 

From those, the facial action coding system (FACS) proposed by 

Ekman et al. [12] is the best known and most commonly used system. 

It is a system designed for human observers to describe changes in 

the facial expression in terms of visually observable activation of 

facial muscles. The changes in the facial expression are described 

with FACS in terms of 44 different Action Units (AUs), each of 

which is anatomically related to the contraction of either a specific 

facial muscle or a set of facial muscles. Examples of different AUs 

are shown in Fig.3. 

B. Facial Action Units 

We adopt the face tracking library Microsoft released as part of Ki-

nect for Windows SDK. The SDK can be used with a normal RGB 

camera or Kinect sensor. The real-time face tracking engine can 

output the 2D feature points and 3D head pose about a tracked user, 

as shown in Fig.4. The Face Tracking Library’s results are also ex-

pressed in terms of weights of six Action Units (AUs) and eleven 

Shape Units (SUs), which are a subset of what are defined in the 

Candide3 model [13].  The Shape Units estimate the particular shape 

of the user’s head: the neutral position of their mouth, brows, eyes, 

etc.  The shape units, i.e. the neutral shape of a specific tracked user, 

are estimated from the first few frames and then keep unchanged in 

the rest frames. The action units are changes from the neutral shape 

which can drive morph targets in avatar models to produce corre-

sponding animations. Among all facial action units, four AUs relat-

ing to lips motion (shown in Fig.5) are chosen as source visual input 

in conversion. Although AUs are invariant to pose and face shape 

difference, the animation pattern can still be quite different between 

two speakers. The normalized histograms of four AUs over same 

200 utterances of two speakers are plotted in Fig.6. Different distri-

Fig. 2: Lips rendering with speech and AUs as A/V input. 

Fig. 4: Face tracking results on two speakers’ face video. 

Fig. 3: Some examples of Facial Action Units. 

Fig. 5: Four AUs (Facial Action Units) for describing lips motion. 



butions suggest speakers may choose different lips action units in 

articulating same sentences. 

IV. GMM-BASED X-TO-Y CONVERSION 

We generalize the problem as X-to-Y conversion. The best estimate 

of Y for given X is derived directly from the joint statistics of X and 

Y. With the joint probability distribution of {X,Y} vectors, estimated 

as a Gaussian mixture model, we can derive the optimal estimate of 

Y given X analytically. The X-to-Y conversion consists of two,  

training and conversion, stages. In training, X and Y features are 

extracted as parallel training vectors in two corresponding feature 

spaces. A GMM is automatically trained to characterize the joint 

distribution. In conversion, for any given sequences in X space can 

be mapped to Y space. 

A. GMM-based conversion under ML criterion 

We denote the X and Y sequence, and their time derivative as, 
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where    and   can be acoustic, AU, and visual feature sequence of 

an utterance. We further augment the feature vector with its time 

derivative (or dynamic features [9])     and    , so that, 

          

In the GMM based approach, every    and    are assumed to be 

independently drawn from a mixture of Gaussian distributions, 
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where m is the index of Gaussian mixture component,    and    

denote the mean and covariance of the      Gaussian. 

With a trained GMM, X-to-Y conversion of a sequence is formu-

lated as, 
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In practice, we make several approximations to reduce the com-

plexity in solving Eq. 3. First, the summation in Eq. 3 is approximat-

ed by the Maximum A Posterior (MAP) mixture component,  
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With this approximation, Eq. 4 can be solved in a closed form, 
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Second, to have a robust estimation of covariance matrix  , we 

assume the off-diagonal terms in   
    

 and   
    

 to be all null, and 

  
    

 and   
    

to be diagonal. In other words, correlations between 

different dimensions in the joint X-Y feature space are ignored. 

Eventually, Eq. 8 and Eq. 9 are simplified to, 
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B. MCTE-based conversion 

MCTE aims to minimize the error of the converted trajectory, i.e., 

Euclidean distance between the converted trajectory and the ground 

truth over all training data. 
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Note that in GMM conversion with MAP approximation Eq. 4, 

the conversion is actually accomplished in two steps. First, a se-

quence of Gaussian mixtures is estimated from observation   by 

MAP:  ̂           |    . Then, visual trajectory,  ̂  is gener-

ated from the mixture component sequence  ̂  by maximizing 

    | ̂   , leading to the closed form solution in Eq. 5. Thus, the 

MCTE loss function Eq. 12 becomes a function of      for given 

mixture sequence  ̂. We minimize it by probabilistic descend (PD) 

algorithm. 

The probabilistic descend (PD) algorithm update model parame-

ters at each training utterance. For the     utterance, 
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By Eq. 5, 
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where   ̂   
   

 is the dth dimension of the mean vector of the tth mixture 

in the MAP mixture sequence,                               

and    is the dimension of Y. 

For convenience we denote            
 ,        
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 is the variance corresponding of   ̂   
   

. The updating rule for 

covariance is, 

Fig. 6: Distribution difference of AUs between two speakers. 
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V. EXPERIMENTAL RESULTS 

A. Experimental Setup 

The database used in LIPS 2008 Visual Speech Synthesis Challenge 

[11] was used in our experiments. It consists of 278 video clips, each 

is an English sentence recorded neutrally by a female, native speaker 

of British English. Videos were recorded in 50 FPS. The acoustic 

features are Mel-frequency Cepstral Coefficient (MFCC) extracted 

from speech in a 20ms window, shifted every 5ms. From the first 

few frames, the neutral shape of the speaker is estimated and the 

shape units are fixed for all the frames in the database. The AUs are 

estimated for every frame and the four AUs relevant to lips motion 

are used as complementary input for both training and testing. For 

visual feature we perform Principal Component Analysis (PCA) on 

the automatically detected and aligned mouth image, keep the first 

20 principal components. Fig. 7 shows the four AUs and the first 

PCA parameters of a training sentence video, from which we can see 

the correlation between AUs and PCA parameters. Both AUs and 

PCA visual feature vectors are interpolated to the same frame rate as 

audio speech MFCCs. 

The objective evaluations are performed with two metrics. First, 

we use all data for both training and conversion in evaluating the 

“training” performance. For the “testing” performance, we perform a 

leave-20-out cross validation, and the results of all folds are aver-

aged as the “testing” performance. The conversion performances are 

evaluated using Mean Square Error (MSE), defined as follows, 
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B. Speaker dependent experimental results 

While two source signals, speech and AUs, were used in  conversion, 

three different conversion modes, speech, AU, and combined, are 

investigated. In each mode, training and testing are the same, but 

different signal are used as input in the conversion. In speech mode, 

the conversion is between 39-dimension speech features 

(MFCC+∆MFCC +∆∆MFCC) and visual PCA parameters. In AU 

mode, the conversion source signal is 12-dimension 

(AUs+∆AUs+∆∆AUs) and AU owns all the stream weights in ML-

based GMM training. In combined mode, the speech MFCC feature 

is augmented by the 12-dimensional AU feature. In ML-based GMM 

training, the AU and MFCC are equally weights. Table 1 shows the 

mean square errors between the converted PCA trajectory and the 

ground truth trajectory. It shows that by combining facial action 

units with speech can further reduce the conversion errors by 22%. 

 

Table 1: MSE of the conversion error in three modes: speech, AUs, 

and their combination. 

Mode 
ML 

closed 

MCTE 

closed 

ML 

open 

MCTE 

open 

Speech 8.93E5 5.21E5 9.36E5 7.62E5 

AUs 6.03E5 4.47E5 7.23E5 6.45E5 

AUs + Speech 6.95E5 4.47E5 7.08E5 5.96E5 

 

VI. CONCLUSIONS 

We propose to use speech and facial action unit captured from face 

video as A/V input to synthesize high quality, realistic lips move-

ment in a photo-realistic avatar. Experimental results show that the 

new approach can reduce the conversion error by 22% on a speaker 

dependent task.  
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Fig. 7: Trajectories of AUs and the first PCA for an utterance. 
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