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Abstract—There have been several contributions on theoretical

modeling of FxLMS-based active noise control systems; however,

when it is intended to derive elegant closed-form expressions

for formulating dynamical behaviors of these systems, a number

of simplifying assumptions regarding the acoustic noise, the

actual secondary path and its model have to be used. This

paper develops a dynamic model for FxLMS-based ANC systems,

considering a general stochastic acoustic noise and a general

secondary path. Also, an arbitrary secondary path model, which

is not necessarily a perfect model, is considered. The main

distinction of this model is that previously-derived dynamic

models can be resulted in from it as special cases.

I. INTRODUCTION

Several mathematical models for the dynamics of the
FxLMS-based Active Noise Control (ANC) have been pro-
posed so far [1]–[10]; however, only a few have intended
to find closed-form mathematical expressions to model this
process. Even if such expressions were derived, simplified
cases had to be considered. This is mainly because of the
mathematical complexity associated with the modeling of the
FxLMS adaptation process. Long summarized early work on
this subject in [3], while deriving closed-form expressions
for the stability bound (µ

max

) and steady state performance
(J

ss

) of this process. However, the derivation was based
on pure delay secondary paths assumptions. In [5], Elliott
derived another expression for µ

max

, which has become more
popular than Long’s expression. In [6], Bjarnason conducted
a comprehensive analysis of the FxLMS adaptation process.
However, once he intended to derive closed-form expressions
for µ

max

and J

ss

, he had to simplify his formulations by
assuming a pure delay secondary path, a perfectly accurate
secondary path model, and a broad-band input signal. Also,
Vicente derived another expression for µ

max

when the acoustic
noise is assumed to be sum of deterministic sinusoids [11].
All the aforementioned closed-form expressions for µ

max

were derived for a pure delay secondary path, a perfectly
accurate secondary path model and a broad-band input signal.
These assumption are not very realistic in many applications
of the FxLMS algorithm. Also, practical results show that a
reliable µ

max

is different with those have been proposed in
available literature so far [12]. Xiao tried to compute µ

max

for a realistic secondary path but, as he reported in [13], his
theoretical results were not in a good agreement with the sim-
ulation results. The authors have investigated behaviors of the
FxLMS adaptation process in relatively general and realistic
conditions. This investigation has led to a set of closed-form
mathematical expressions for formulating behaviors of the
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Figure 1: Functional block diagram of FxLMS-based ANC

FxLMS adaptation process. The results have been published
in a series of research papers [7]–[10]. In [7], basic closed-
form expressions for formulating behaviors of the FxLMS
adaptation process with a general secondary path were derived.
In [8], these expressions were generalized by considering the
effects of the input signal band-width. Also, in [10] these
expressions were generalized further by taking the influences
of the imperfect secondary path models into account. The
relative drawback of the analysis conducted in [8] is that it is
simplified by assuming a perfect secondary path model. Also,
the relative drawback of the analysis conducted in [7] is that
it is simplified by assuming a broad-band input signal. In fact,
the most general case, in which all the available simplifying
assumptions are removed, have not been reported yet.

This paper intends to develop a theoretical framework for
stochastic modeling of FxLMS-based ANC dynamics based on
the unification of the different models which have previously
been developed by the authors. The model developed in this
paper is valid for a general case because it is obtained without
using any simplifying assumption regarding the secondary
path, its model and the acoustic noise bandwidth. The natural
extension of this paper will be the derivation of general closed
form expressions for the system behaviors. This extension
is left to the future work; however, this paper develops the
theoretical framework for this.

II. SINGLE CHANNEL FEED-FORWARD ANC

The general block diagram of FxLMS-based ANC is shown
in Figure 1. In this figure, d (n) is the noise signal at the
desired silence zone, x (n) is the reference signal, measured
by the reference microphone, y (n) is the anti-noise signal,
generated by the ANC controller, and e (n) is the residual
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acoustic noise, measured by the error microphone in the
silence zone. Also, the primary and secondary paths are shown
by linear systems p and s, respectively. According to Figure
1, d (n) is assumed to be the response of the primary path
p to the measured reference signal x (n). The acoustic signal
d (n) is combined with the anti-noise signal at the desired
silence zone. As shown, the anti-noise signal is the actual
response of the secondary path s to the control signal y (n). A
realistic secondary path can be represented by a Finite Impulse
Response (FIR) system of length Q with an unknown impulse
response in the form of

s (n) =

Q�1
X

q=0

s

q

� (n� q) (1)

where � (n) is Kronecker delta function and s

q

is the amplitude
of the impulse response at time index q. Alternatively, this
impulse response can be represented in the vector form of

s ,
⇥

s0 s1 . . . s

Q�1

⇤

T (2)

The realization of the FxLMS algorithm requires an estimate
of the secondary path to be uploaded into the electronic control
system. This estimate model, which is usually referred to as
the secondary path model, can be obtained by using off-line
secondary path identification techniques prior to the operation
of the ANC system [14], or by using on-line techniques
during the operation of the ANC system. Since the actual
secondary path is a FIR system, the secondary path model
can be assumed to be another FIR system with the impulse
response given by

ŝ (n) =

M�1
X

m=0

ŝ

m

� (n�m) (3)

where M is the length of the impulse response (M < Q) and
scalar parameter ŝ

m

is the amplitude of the impulse response
at time index m. Similar to the actual secondary path impulse
response, ŝ (n) can be represented by

ˆ

s ,
⇥

ŝ0 ŝ1 . . . ŝ

M�1 0

Q

. . . 0

⇤

T (4)

The control signal is generated by an ANC controller w

which has a transversal digital filter structure. This digital
structure can be adjusted adaptively by using an adaptation
algorithm (such as the FxLMS algorithm). Assuming that the
ANC controller w has a transversal structure of length L, the
control signal y (n), can be expressed as

y (n) = w

T

(n)x (n) (5)

where x (n), called the tap reference vector, is given by

x (n) =

⇥

x (n) x (n� 1) . . . x (n� L+ 1)

⇤

T (6)

and w (n), called the (adaptive) weight vector, is formed by
filter parameters w0, w1, ...and w

L�1 as

w (n) =

⇥

w0 (n) w1 (n) . . . w

L�1 (n)
⇤

T (7)

The FxLMS algorithm performs an adaptation process on
w (n) in such a way that y (n) causes the power of e (n)

to be minimized. This algorithm is derived in the following.

Usually, the derivation of the FxLMS algorithm begins with
developing a mathematical expression for the residual acoustic
noise e (n). This expression is then optimized with respect to
w (n). For this purpose, by using Figure 1, e (n) is initially
expressed as

e (n) = d (n)�
Q�1
X

q=0

s

q

w

T

(n� q)x (n� q) (8)

Here, the cost function J (n) is defined as the power (or
variance) of e (n):

J(n) , E

�

e

2
(n)

 

(9)

where E {.} denotes the statistical expectation operator. This
cost function is usually referred to as the Mean Square
Error (MSE) function. The optimal weight vector of an ANC
controller, denoted by w

o

(n), is the weight vector for which
the MSE function is minimized. It can be shown that, for a
stationary acoustic noise, the optimal weight vector is time-
invariant [15]: 8n,w

o

(n) = w

o

. Accordingly, the optimal
residual acoustic noise, denoted by e

o

(n), can be expressed
by setting w (n) = w

o

in Eq. (8) as

e

o

(n) = d (n)�w

T

o

f (n) (10)

where f (n) is defined as

f (n) ,
Q�1
X

q=0

s

q

x (n� q) (11)

Finally, the minimal MSE, denoted by J

o

, can be obtained by
setting e (n) = e

o

(n) in Eq. (9) as

J

o

= �

2
d

� 2w

T

o

p

f

+w

T

o

R

f

w

o

(12)

where �

2
d

= E

�

d

2
(n)

 

is the power of the primary acoustic
noise d (n), p

f

, E {f(n)d(n)} is the cross-correlation vector
and R

f

, E

�

f(n)f

T

(n)

 

is the auto-correlation matrix. For
a stationary acoustic noise, where p

f

and R

f

are constants,
the minimal MSE is time-invariant, and, therefore, it can be
represented by J

o

. Also, since w

o

minimizes J

o

, it can be
shown that

w

o

= R

�1
f

p

f

(13)

Finally, combining Eqs. (12) and (13), the optimal MSE is
obtained as

J

o

= �

2
d

� p

T

f

R

�1
f

p

f

(14)

In signal processing, the optimal weight vector, given in Eq.
(13), is usually referred to as the Wiener-Hopf optimal filter.
Also, the value of J

o

is referred to as the minimum achievable
MSE function. In ANC literature, J

o

can be interpreted as the
minimum achievable residual acoustic noise power. Note that
J

o

is only a function of acoustic noise statistics and impulse
responses of primary and secondary paths. In other words, J

o

is independent of instantaneous values of the acoustic noise
and operational parameters of the FxLMS algorithms (e.g.
step-size and secondary path model).

The optimal weight vector, given in Eq. (13), can be directly
calculated from R

f

and p

f

; however, estimation of R

f

and
p

f

requires a considerable amount of computation. Another



3

approach to determining the optimal weight vector is based
on using the steepest-descent method [16]. According to this
method, if the weight vector w (n) is updated by the following
equation, then it is bound to move towards the optimal solution
given in Eq. (13).

w (n+ 1) = w (n)� 1

2

µrJ (n) (15)

It can be shown that [14]

rJ (n) = �2e (n) f (n) (16)

Now, the FxLMS update equation can be obtained by substi-
tuting Eq. (16) into (15) as

w (n+ 1) = w (n) + µe (n) f (n) (17)

In practice, f (n) is not physically available, therefore, the
implementation of Eq. (17) requires an estimate of f (n). This
estimate can be obtained by filtering x (n) using the available
estimate of the secondary path, given in Eq. (3). Therefore,
the estimate of f (n), denoted by ˆ

f (n), can be obtained by

ˆ

f (n) =

M�1
X

m=0

ŝ

m

x (n�m) (18)

Usually, ˆf (n) is called the filtered reference vector. Now, by
replacing f (n) with ˆ

f (n) in Eq. (16), rJ (n) is approximated
by

rJ (n) ⇡ �2e (n)

ˆ

f (n) (19)

Also, the updating equation, given in Eq. (15), becomes

w (n+ 1) = w (n) + µe (n)

ˆ

f (n) (20)

Eq. (20) can be implemented using available signals and
parameters. ˆf (n) can be obtained by filtering the reference
signal and buffering the obtained values as

ˆ

f (n) =

⇥

ˆ

f (n)

ˆ

f (n� 1) . . .

ˆ

f (n� L+ 1)

⇤

T

(21)

where ˆ

f (n) is the filtered-reference signal given by

ˆ

f (n) =

M�1
X

m=0

ŝ

m

x (n�m) (22)

Eqs. (20)-(22) give a formulation for the FxLMS algorithm,
which can be implemented practically.

A. Rotated Vectors

In the analysis of a gradient-based adaptation algorithm, it
is more convenient to use the rotated reference vector and
rotated weight misalignment vector, instead of the original
reference and weight vectors [16]. This is because the auto-
correlation matrix of the rotated reference vector is diagonal,
and the equilibrium point of the rotated weight misalignment
vector is the origin, rather than the Wiener-Hopf solution. In
the following, these rotated vectors are introduced. The Auto-
Correlation Matrix (ACM) of the reference vector is defined
as

R , E

�

x (n)x

T

(n)

 

(23)

Since R is a Toeplitz matrix, it can be diagonalized as

R = F⇤F

T (24)

where square matrix F is the modal matrix, formed by the
Eigenvectors F0, F1,... , F

L�1 and diagonal matrix ⇤ is
formed by the Eigenvalues �0, �1, ... ,�

L�1:

⇤ = diag (�0,�1, . . . ,�L�1) (25)

The inverse of any modal matrix is equal to its transpose; thus:
F

T

F = I. In this case, it can be shown that

F

T

RF = ⇤ (26)

Using the modal matrix F as a rotation matrix, the rotated
reference vector is defined as:

z (n) , F

T

x (n) (27)

This vector can be expressed in the form of

z (n) =

⇥

z0 (n) z1 (n) . . . z

L�1 (n)
⇤

T (28)

From Eq. (27), it can be shown that the l-th element of z (n)
can be computed as

z

l

(n) = F

T

l

x (n) , l = 0, 1, . . . , L� 1 (29)

where vector F

l

is the l-th column of matrix F. The rotated
weight misalignment vector is defined as

c (n) , F

T

(w (n)�w

o

) . (30)

This vector can be also represented in the form of

c (n) =

⇥

c0 (n) c1 (n) . . . c

L�1 (n)
⇤

T

. (31)

where c

l

(n) is computed as

c

l

(n) = F

T

l

(w (n)�w

o

) , , l = 0, 1, . . . , L� 1. (32)

As can be seen in Eq. (32), when w (n) converges to w

o

, the
rotated weight misalignment vector converges to the origin.
Due to this property, the analysis of the FxLMS algorithm
using the rotated weight misalignment vector is more conve-
nient.

Now, In order to express the FxLMS update equation in
terms of the rotated variables, Eq. (20) must be added by �w

o

and then left multiplied by F

T . In this case, it can be shown
that

c (n+ 1) = c (n) + µe(n)F

T
ˆ

f (n) (33)

Now, the rotated filtered reference vector is defined as

ˆ

g (n) = F

T
ˆ

f (n) (34)

By using this definition, Eq. (33) can be re-expressed as

c (n+ 1) = c (n) + µe(n)

ˆ

g (n) (35)

According to Eqs. (18), (27) and (34), vector ˆ

g (n) can be
obtained by filtering z (n) using the available estimate of the
secondary path:

ˆ

g (n) =

M�1
X

m=0

ŝ

m

z (n�m) (36)



4

Alternatively, ˆg (n) can be also represented in the form of

ˆ

g (n) =

⇥

ĝ0 (n) ĝ1 (n) . . . ĝ

L�1 (n)
⇤

T (37)

ĝ

l

(n) =

M�1
X

m=0

ŝ

m

z

l

(n�m) (38)

Eqs. (35)-(38) describe the FxLMS update equation in terms
of the rotated variables. Using the same logic, Eq. (8) can be
expressed in terms of the rotated variables as [8]

e(n) = e

o

(n)�
Q�1
X

q=0

s

q

z

T

(n� q) c (n� q) (39)

B. Independence Assumptions

The analysis of gradient-based adaptation algorithms with
stochastic reference signals is usually performed based on a
set of simplifying assumptions, called the independence as-
sumptions. These assumptions were proposed by Gardener in a
signal processing context [17]; however, they have been widely
used in analyzing adaptive ANC systems. As Gardener stated
in [17], “the independence assumptions apparently cannot be
analytically justified for practical cases, but this is perhaps the
best that can be done from the pragmatic point of view of
obtaining a good trade-off between model realism and model
tractability”. In the following, these assumptions are discussed
and formulated in detail. Later, the validity of the theoretical
results obtained by using these assumptions are verified in
computer simulation and practice.

The primary independence assumption: this assumption
states that, for a Gaussian reference signal, the sequence
of reference vectors can be considered as an independent
identically distributed (i.i.d) sequence with zero mean [17].
Accordingly, consecutive reference vectors are statistically
independent. Based on this assumption, it can be shown that

E

�

x (n�m)x

T

(n� p)

 

= �

m,p

R 8n,m, p 2 N (40)

Also, by using Eqs. (27) and (40), it can be shown that

E

�

z (n�m) z

T

(n� p)

 

= �

m,p

⇤ 8n,m, p 2 N, (41)

The secondary independence assumption: according to this
assumption, for the problem of adaptive identification of an
unknown system with finite impulse response, the optimal
error e

o

(n) is independent of both the reference and rotated
reference vectors. [17]. Since the reference vector has zero
mean, the following results can be obtained

E {e
o

(n1)x (n2)} = 0 (42)

and
E {e

o

(n1) z (n2)} = 0 (43)

Therefore, the optimal residual acoustic noise is uncorrelated
with both the reference and rotated reference vectors.

The third independence assumption: Usually it is assumed
that the weights of the ANC controller and samples of the
reference signal are statistically independent [15], [18]. Based
on this assumption, it can be shown that

E

�

w

T

(n1)x (n2)
 

= E

�

w

T

(n1)
 

E {x (n2)} (44)

Also, from this equality, it can be shown that c (n) and z (n)

are statistically independent

E

�

c

T

(n1) z (n2)
 

= E

�

c

T

(n1)
 

E {z (n2)} (45)

III. DEVELOPMENT OF A DYNAMIC MODEL FOR THE
FXLMS-BASED ANC

This section derives a dynamic model for the FxLMS-based
ANC. For this purpose, the MSE function is initially expressed
by combining Eqs. (9) and (39) as

J (n) = E

�

e

2
o

(n)

 

�2

Q�1
X

q=0

s

q

E

�

c

T

(n� q) z (n� q) e

o

(n)

 

+

Q�1
X

q,p=0

s

q

s

p

E

�

c

T

(n� q) z (n� q) z

T

(n� p) c (n� p)

 

(46)
The first term in Eq. (46) is equal to J

o

. The second term is
equal to zero because based on the independence assumptions,
the rotated reference vector z (n� q) is a zero mean vector
and statistically independent of e

o

(n) and c (n). Therefore,
Eq. (46) can be simplified to

J (n) = J

o

+

(47)
Q�1
X

q,p=0

s

q

s

p

E

�

c

T

(n� q) z (n� q) z

T
(n� p) c (n� p)

 

Now, combining Eqs. (28), (31) and (47) results in

J (n) = J

o

+

(48)
Q�1
X

q,p=0

L�1
X

l,k=0

s

q

s

p

E {c
l

(n� q) c

k

(n� p) z

l

(n� q) z

k

(n� p)}

Using the third independence assumption, Eq. (48) can be
simplified to

J (n) = J

o

+

Q�1
X

q,p=0

L�1
X

l,k=0

s

q

s

p

E {z
l

(n� q) z

k

(n� p)}⇥

(49)
E {c

l

(n� q) c

k

(n� p)}

Combining Eqs. (29) and (49) results in

J (n) = J

o

+

Q�1
X

q,p=0

L�1
X

l,k=0

s

q

s

p

F

T

l

E

�

x (n� q)x

T

(n� p)

 

(50)
⇥F

k

E {c
l

(n� q) c

k

(n� p)}

Now, combining Eqs. (40) and (50) results in

J (n) = J

o

+

Q�1
X

q=0

L�1
X

l,k=0

s

2
q

F

T

l

RF

k

E {c
l

(n� q) c

k

(n� q)}

(51)
On the other hand, from Eq. (26), it can be shown that

F

T

l

RF

k

= �

l

�

l,k

(52)
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Using this equality, Eq. (51) is simplified to

J (n) = J

o

+

Q�1
X

q=0

L�1
X

l=0

s

2
q

�

l

E

�

c

2
l

(n� q)

 

(53)

Finally, Eq. (53) can be expressed in the form of

J (n) = J

o

+

Q�1
X

q=0

s

2
q

E

�

c

T

(n� q)⇤c (n� q)

 

(54)

From Eq. (54), it can be seen that J (n) is independent of
instantaneous values of the acoustic noise. Also, it can be
deduced that J (n) is a positive scalar function of c (n).

A. Excess-MSE Function

Here, the excess-MSE function is defined as a dynamic mea-
sure, determining the deviation of the MSE function from its
minimal level. Usually, the steady-state level of this function is
referred to as the excess-MSE in ANC terminology. However,
the excess-MSE function, which can be interpreted as the
distance of the instantaneous residual noise power from the
minimum achievable noise power, is considered in this thesis.
Accordingly, dynamics of an ANC system can be studied by
analyzing the variation of the excess-MSE function during the
operation of the adaptation algorithm on the ANC controller.
For developing a dynamic model for the excess-MSE function,
the MSE function is expressed as

J (n) = J

o

+ J

ex

(n) (55)

where J

o

is the minimal MSE level and J

ex

(n) is the excess-
MSE function. As can be seen in Eq. (55), the absolute value
of J

ex

(n) determines how far the instantaneous residual noise
power is from its minimal level. Obviously, since J

o

is the
minimal value of the positive definite function J (n), J

ex

(n)

is always a positive definite function of system variables:

J

ex

(n) � 0 (56)

Now, considering the expressions, given in Eqs. (54) and (55),
J

ex

(n) can be formulated as

J

ex

(n) ,
Q�1
X

q=0

s

2
q

E

�

c

T

(n� q)⇤c (n� q)

 

(57)

Substituting

J

ex

(n) =

Q�1
X

q=0

L�1
X

l=0

�

l

s

2
q

m

l

(n� q) (58)

where m0 (n) ,m1 (n) , . . . ,mL�1 (n) are the second-order
moments of the adaptive weights:

m

l

(n) , E

�

c

2
l

(n)

 

l = 0, 1, . . . , L� 1 (59)

Now, in order to investigate the variation of the excess-MSE
function during the operation of the FxLMS algorithm, its time
difference is defined as

4J

ex

(n) , J

ex

(n+ 1)� J

ex

(n) (60)

By combining Eqs. (58) and (60), 4J

ex

(n) can be expressed
as

4J

ex

(n) =

Q�1
X

q=0

L�1
X

l=0

�

l

s

2
q

4m

l

(n� q) (61)

where 4m

l

(n) is the time difference of the l-th second-order
moment. From Eq. (59), 4m

l

(n) can be expressed as

4m

l

(n) = E

�

c

2
l

(n+ 1)

 

� E

�

c

2
l

(n)

 

(62)

On the other hand, from Eq. (35), it can be shown that

c

l

(n+ 1) = c

l

(n) + µĝ

l

(n) e (n) (63)

By combining Eqs. (62) and (63), 4m

l

(n) is formulated by

4m

l

(n) = µ

2
E

�

ĝ

2
l

(n) e

2
(n)

 

+ 2µE {c
l

(n) ĝ

l

(n) e (n)}
(64)

On the other hand, from Eqs. (18), (29) and (38), it can be
shown that

ĝ

l

(n) = F

T

l

ˆ

f (n) (65)

By substituting the above expression for ĝ

l

(n) into Eq. (64),
4m

l

(n) is obtained as

4m

l

(n) = A

l

(n) +B

l

(n) (66)

where scalar functions A

l

(n) and B

l

(n) are given by

A

l

(n) = µ

2
F

T

l

E

n

ˆ

f (n)

ˆ

f

T

(n) e

2
(n)

o

F

l

(67)

and
B

l

(n) = 2µF

T

l

E

n

ˆ

f (n) c

l

(n) e (n)

o

(68)

The mathematical expressions, given in Eqs. (61) and (66)-
(68), compose a stochastic dynamic model for the variation of
the excess-MSE function during the operation of the FxLMS
algorithm. The following two sections formulate scalar func-
tions A

l

(n) and B

l

(n) .

Variation of A
l

(n) :

Based on the third independence assumption, it can be
shown that the reference vector x (n) is independent of the
MSE function J (n) [19]. Consequently, the filtered reference
vector ˆ

f (n) is independent of J (n). Accordingly, Eq. (67)
can be simplified to

A

l

(n) = µ

2
F

T

l

E

n

ˆ

f (n)

ˆ

f

T

(n)

o

F

l

.J (n) (69)

On the other hand, from Eqs. (18) and (40) , it can be shown
that

E

n

ˆ

f (n)

ˆ

f

T

(n)

o

= kˆsk2 R (70)

where k.k denotes the Euclidean vector norm and vector ˆ

s

is given in Eq. (4). Now, by substituting Eq. (70) into (69),
A

l

(n) is simplified to

A

l

(n) = µ

2 kˆsk2 FT

l

RF

l

J (n) (71)

From Eq. (26) , it can be shown that FT

l

RF

l

= �

l

; substituting
this equality into Eq. (71) results in

A

l

(n) = µ

2
�

l

kˆsk2 J (n) (72)
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Now, substituting Eq. (55) into Eq. (72) results in

A

l

(n) = µ

2
�

l

kˆsk2 J
o

+ µ

2
�

l

kˆsk2 J
ex

(n) (73)

Finally, by using Eq. (58), Eq (73) can be expressed as

A

l

(n) = µ

2
�

l

kˆsk2 J
o

+ µ

2
�

l

kˆsk2
Q�1
X

p=0

L�1
X

k=0

�

k

s

2
p

m

k

(n� p)

(74)
Eq. (74) formulates A

l

(n) as a function of the second-order
moments m

o

(n) , . . . ,m

L�1 (n).

Variation of B
l

(n):

By substituting Eq. (39) into (68), B
l

(n) is expanded to

B

l

(n) = 2µF

T

l

E

n

ˆ

f (n) c

l

(n) e

o

(n)

o

�2µF

T

l

Q�1
X

p=0

s

p

E

n

c

l

(n)

ˆ

f (n) c

T

(n� p) z (n� p)

o

(75)

Considering the second and third independence
assumptions, the first term in Eq. (75) is simplified to
2µF

T

l

E

n

ˆ

f (n)

o

E {c
l

(n) e

o

(n)}. Since the reference signal

has zero mean, it can be shown that E{ˆf (n)} = 0; therefore,
2µF

T

l

E

n

ˆ

f (n) c

l

(n) e

o

(n)

o

= 0. Using this result, B
l

(n) is
simplified to

B

l

(n) = �2µF

T

l

Q�1
X

p=0

s

p

E

n

c

l

(n)

ˆ

f (n) c

T

(n� p) z (n� p)

o

(76)
Now, using Eqs. (18), (28), (31) and (76) results in

B

l

(n) = �2µF

T

l

Q�1
X

p=0

M�1
X

m=0

L�1
X

i=0

s

p

ŝ

m

⇥ (77)

E {c
l

(n) c

i

(n� p)x (n�m) z

i

(n� p)}

On the other hand, from Eq. (29), it can be shown that

z

i

(n� p) = x

T

(n� p)F

i

(78)

Combining Eqs. (77) and (78) and the third independence
assumption, Eq. (77) can be simplified to

B

l

(n) = �2µF

T

l

Q�1
X

p=0

M�1
X

m=0

L�1
X

i=0

s

p

ŝ

m

E {c
l

(n) c

i

(n� p)}⇥

(79)
E

�

x (n�m)x

T

(n� p)

 

F

i

Now, substituting Eq. (40) into (79) results in

B

l

(n) = �2µ

Q�1
X

p=0

L�1
X

i=0

s

p

ŝ

p

E {c
l

(n) c

i

(n� p)}FT

l

RF

i

(80)
Note that, according to Eq. (4), for m > M � 1, ŝ

m

= 0. On
the other hand, Eq. (26) results in F

T

l

RF

i

= �

l

�

l,i

. By using
this equality, Eq.(80) is simplified to

B

l

(n) = �2µ�

l

Q�1
X

p=0

s

p

ŝ

p

E {c
l

(n) c

l

(n� p)} (81)

From the FxLMS update equation, given in Eq. (35), it can
be shown that for p = 0, 1, . . . , Q� 1

c (n) = c (n� p) + µ

p

X

k=1

ˆ

g (n� k) e (n� k) (82)

When the adaptation process is slow, Eq. (82) can be approx-
imated by

c (n) ⇡ c (n� p) + µp

ˆ

g (n� p) e (n� p) (83)

Therefore, for the variation of the l-th adaptive weight, the
following equation can be derived.

c

l

(n) ⇡ c

l

(n� p) + µpĝ

l

(n� p) e (n� p) (84)

Now, combining Eqs. (81) and (84) results in

B

l

(n) = �2µ�

l

Q�1
X

p=0

s

p

ŝ

p

E

�

c

2
l

(n� p)

 

(85)

�2µ

2
�

l

Q�1
X

p=0

ps

p

ŝ

p

E {c
l

(n� p) ĝ

l

(n� p) e (n� p)}

By using Eqs. (59), (65) and (68), Eq. (85) can be expressed
as

B

l

(n) = �2µ�

l

Q�1
X

p=0

s

p

ŝ

p

m

l

(n� p)� (86)

µ�

l

Q�1
X

p=0

ps

p

ŝ

p

B

l

(n� p)

By changing the index of the second summation in Eq. (86),
B

l

(n) can be re-expressed as

B

l

(n) = �2µ�

l

Q�1
X

p=0

s

p

ŝ

p

m

l

(n� p)� (87)

µ�

l

Q�1
X

r=0

rs

r

ŝ

r

B

l

(n� r)

The recursive equation, given in Eq. (87), can be expanded to

B

l

(n) = �2µ�

l

Q�1
X

p=0

s

p

ŝ

p

m

l

(n� p)

+ 2µ

2
�

2
l

Q�1
X

p=0

s

p

ŝ

p

Q�1
X

r=0

rs

r

ŝ

r

m

l

(n� p� r)

... (88)

For µ ⌧ 1, Eq. (88) is approximated by its two first terms:

B

l

(n) ⇡ �2µ�

l

Q�1
X

p=0

s

p

ŝ

p

m

l

(n� p)+ (89)

2µ

2
�

2
l

Q�1
X

p,r=0

rs

p

ŝ

p

s

r

ŝ

r

m

l

(n� p� r)

Eq. (89) formulates B

l

(n) as a function of the second-order
moments m

o

(n) , . . . ,m

L�1 (n).



7

Using the expressions, obtained in Sections 3.3 and 3.4,
this section develops an stochastic model for the excess-MSE
function. For this purpose, 4m

l

(n) can be initially expressed
by substituting Eqs. (74) and (89) into Eq. (66) . Subsequently,
substituting the obtained expression for 4m

l

(n) into Eq. (61)
gives the following expression for 4J

ex

(n).

4J

ex

(n) = µ

2 kˆsk2 ksk2 �2
rms

LJ

o

(90)

+µ

2 kˆsk2 L�2
rms

Q�1
X

q,p=0

L�1
X

k=0

�

k

s

2
q

s

2
p

m

k

(n� p� q)

�2µ

Q�1
X

p,q=0

L�1
X

l=0

�

2
l

s

2
q

s

p

ŝ

p

m

l

(n� p� q)

+2µ

2
Q�1
X

q,p,r=0

L�1
X

l=0

r�

3
l

s

2
q

s

p

ŝ

p

s

r

ŝ

r

m

l

(n� p� r � q)

where �

rms

is the RMS (Root Mean Square) value of the
Eigenvalues” �

rms

=

⇣

1
L

P

L�1
l=0 �

2
l

⌘0.5
. In a slow adaptation

process, the second-order moments are updated slowly so that:

m

l

(n� p� r � q) ⇡ m

l

(n� p� q) , r = 0, 1, . . . , L�1

(91)
By using this assumption, Eq. (90) is simplified to

4J

ex

(n) = µ

2 kˆsk2 ksk2 �2
rms

LJ

o

(92)

+µ

2 kˆsk2 L�2
rms

Q�1
X

q,p=0

L�1
X

k=0

�

k

s

2
q

s

2
p

m

k

(n� p� q)

�2µ

Q�1
X

q,p=0

L�1
X

l=0

�

2
l

s

2
q

s

p

ŝ

p

m

l

(n� p� q)

+2µ

2

 

Q�1
X

r=0

rs

r

ŝ

r

!

Q�1
X

q,p=0

L�1
X

l=0

�

3
l

s

2
q

s

p

ŝ

p

m

l

(n� p� q)

Now, by defining diagonal matrix  as

 = diag (0, 1, . . . , Q� 1) (93)

it can be shown that
Q�1
X

r=0

rs

r

ŝ

r

= s

T

 

ˆ

s (94)

Substituting Eq. (94) into (92) results in

4J

ex

(n) = µ

2 kˆsk2 ksk2 �2
rms

LJ

o

� (95)

µ

Q�1
X

q,p=0

L�1
X

l=0

�

l,p,q

m

l

(n� p� q)

where scalar parameter �
l,p,q

is defined as

�

l,p,q

= �

l

s

2
q

"

2�

l

s

p

ŝ

p

� µ�

2
rms

kˆsk2
 

Ls

2
p

(96)

+2

✓

�

l

�

rms

◆2

⇥ s

T

 

ˆ

s

kˆsk2
s

p

ŝ

p

!#

Eqs. (60), (95) and (96) describe a linear stochastic model
for the excess-MSE function, considering an arbitrary acoustic
noise, an arbitrary secondary path, and an arbitrary secondary
path model.

IV. SIMULATION RESULTS

Figure 2 shows the primary and secondary paths impulse
responses of the simulated ANC system. Also, Figure 3 shows
impulse responses of the two imperfect secondary path models
(M1 and M2), used in the implementation of the FxLMS
algorithm. In this figure, the impulse response of the actual
secondary path (perfect model) is also shown by a dashed
line. Figure 4 shows the power spectrum of the broad-band
white signal, generated by the computer to be used as the
reference signal x (n) in simulation experiments. As can be
seen, the power spectrum of this signal is approximately flat
over its entire frequency range. Hence, this signal can be
considered as a broad-band white signal. The total power
of the signal is limited to �

2
x

= 1. By passing this broad-
band signal through standard low-pass filters, different band-
limited white signals can be produced. For example, by using
a low-pass filter of normalized band-width 0.5, a band-limited
reference signal with band-width B

w

= 0.5 can be produced.
The power spectrum of such signal is shown in Figure 4. The
magnitude of the obtained signal is scaled in such a way that its
power remains constant at �2

x

= 1. Using the same procedure,
different band-limited reference signals with different band-
widths can be generated.

Note that, in Figures 4, blue solid lines show the power
spectrum, obtained using numerical methods and red dashed
lines show the theoretical power spectrum, as it is assumed in
our theoretical investigations. In addition to this theoretical
assumption, the independence assumptions are used in the
derivation of the analytical model developed in Chapter 3.
Based on this model, most of the theoretical contributions
of Chapters 4-6 are obtained. Therefore, before checking the
validity of the derived theoretical results, it is necessary to
check the general validity of this fundamental model.

A. Dynamic Simulation

Here, it is shown that the model, developed in Chapter 3,
can precisely describe behaviors of the simulated FxLMS-
based ANC system, despite using theoretical independence
assumptions in the derivation of this model. Each simulation
experiment includes 100 simulation runs with independent
noise sequences (reference signal). The variation of the square
of the residual acoustic noise, obtained from each run, is stored
in the computer memory. The MSE function is then estimated
by averaging over the stored data. Now, it is required to find
an estimate for the excess-MSE function form the obtained
simulation results. According to Eq. (55), it can be shown
that the difference of the excess-MSE function, 4J

ex

(n), is
equal to the difference of 4J (n); therefore, 4J

ex

(n) can be
evaluated as

4J

ex

(n) = J (n+ 1)� J (n) (97)
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Figure 2: Impulse responses of primary and secondary paths
in computer simulation
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Figure 4: Power spectrum of two reference signals generated
by computer (�2

x

= 1)

Now, the variation of 4J

ex

(n) can be computed using the
data obtained from the computer simulation. On the other
hand, the theoretical variation of 4J

ex

(n) can be computed
by using the analytical model, given in Eqs. (95) and (96).
Accordingly, comparing the result obtained from this model
and the one obtained from the computer simulation leads to the
verification of the validity of the proposed theoretical model.
For this purpose, several simulation experiments in different
cases are conducted.

In the first case, simulation experiments are conducted in
classical working conditions, which were usually considered
in the theoretical analysis of FxLMS-based ANC systems.
In these conditions, the reference signal is assumed to be a
broad-band white stochastic signal with a flat power spectrum,
as shown in Figure 4a. Also, the secondary path model is

assumed to be a perfectly accurate model (identical to the
actual secondary path).

In this situation, two simulation experiments with two
different step-sizes are conducted. In the first experiment, a
relatively small step-size of µ = 0.005 and in the second
one a relatively large step-size of µ = 0.05 is used. The
variation of 4J

ex

(n) for each experiment can be then plotted,
as shown in Figure 5a (blue lies). Also, the theoretical variation
of 4J

ex

(n), obtained from Eqs. (95) and (96) is shown in
Figure 5a by using red lines. As can be seen, the proposed
theoretical model can precisely describe behaviors of the
simulated system in both the transient and steady-state modes.

In the second case, band-limited acoustic noise signals are
considered; however, the secondary path model is still set to
a perfect model. In this situation, two experiments with two
different band-limited signals are conducted (B

w

= 0.2 and
B

w

= 0.8). In both of the experiments, the step-size is set to
µ = 0.005. For each experiment, experimental and theoretical
variations of 4J

ex

(n) are plotted in Figure 5b. The agreement
between the theoretical and simulation results is evident. This
agreement can be also shown for other values of the step-size.

In the third case, a broad-band white noise, as described
in Case 1, is considered; however, imperfect secondary path
models M1 and M2, shown in Figure 3, are used in the
FxLMS algorithm. For each secondary path model, a separate
experiment is conducted. In both of the experiments, the
step-size is set to µ = 0.005. Theoretical and experimental
variations of 4J

ex

(n) are plotted in Figure 5c. As this figure
shows, the proposed theoretical model can precisely describe
the simulated system behaviors in both the transient and
steady-state modes.

Now, the most general case with a band-limited noise and
an imperfect secondary path model is considered. In this case,
the acoustic noise is a band-limited white signal of band-
width B

w

= 0.8, and the secondary path model is set to M1.
Two simulation experiments for relatively small step-size of
µ = 0.005 and relatively large step-size of µ = 0.05 are
conducted. The variation of 4J

ex

(n) for each experiment
is plotted in Figure 5d. Similar to the previous cases, the
agreement between the theoretical and simulation results is
evident.

The above simulation experiments can be repeated for
different cases with different step-sizes, acoustic noise signals,
and secondary path models. However, in all of the cases, the
theoretical model, given by Eqs. (95) and (96), can effectively
describe system behaviors in the simulation. In fact, the
agreement between the theoretical and simulation results takes
away the ambiguity of the independence assumptions used in
the derivation of the theoretical model. The verification of this
model is important at this stage because this model will be
used for the further investigations in this research line.

V. CONCLUSION

A theoretical framework for stochastic modeling of FxLMS-
based ANC systems in general conditions is developed in
this paper. This model considers a realistic secondary path,
an stochastic acoustic noise with an arbitrary band-width,
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Figure 5: Variations of 4J

ex

(n) for different step-sizes and
in different working conditions, red lines: theoretical results,
blue lines: computer simulation

and an arbitrary secondary path model. This means that this
comprehensive model can precisely determine behaviors of
practical FxLMS-based ANC systems.
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