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Abstract—Joint diagonalization of a series of non-negative
Hermitian matrices is one of important techniques in the fields
of signal processing, such as blind source separation based on
second order statistics. In our previous works, we introduced
a closed-form solution of a joint diagonalizer of non-negative
Hermitian matrices and also proposed a method for improving
the performance of the solution for the cases where given series
of Hermitian matrices are not jointly diagonalizable strictly.
However, the performance of the method may degrade when the
number of given Hermitian matrices are comparatively small.
In this paper, we propose an improved version of the closed-
form joint diagonalizer of given set of Hermitian matrices by
increasing the number of Hermitian matrices virtually. Some
numerical examples are also shown to verify the efficacy of the
proposed method.

I. INTRODUCTION

Joint diagonalization of a series of non-negative Hermitian
matrices is one of important techniques in the fields of signal
processing, such as blind source separation problems based on
second order statistics (see [1] for instance). The theories of
joint diagonalization of given series of Hermitian matrices are
thoroughly investigated in [2]. On the basis of these theories,
we gave a closed-form solution for the second-order-statistics-
based blind source separation, that is, joint diagonalizer of
given series of correlation matrices obtained from observa-
tions; and gave a necessary and sufficient condition for the
closed-form joint diagonalizer to achieve the source separation
in [3]. Since computational costs of the closed-form solution
is quite small, it was adopted as an initial value for higher-
order-statistics-based blind source separation algorithms (see
[4] for instance).

In practical problems, given series of Hermitian matrices
are not always jointly diagonalizable strictly. For instance in
blind source separation problems, although source signals are
assumed to be independent each other, the source signals may
have small correlations in practice. In order to deal with this
problem, we analyzed perturbations of the solutions caused
by these correlations and proposed an improved version of
the solution on the basis of the analyses [5]. However, the
performance of the improved version of the solution may
degrade when the number of given Hermitian matrices are
comparatively small.
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In this paper, we propose an improved version of the
method given in [5]. The key idea of the proposed method
is to increase the number of Hermitian matrices virtually
by considering linear combinations of given matrices. Some
numerical examples are also shown to verify the efficacy of
the proposed method.

II. PROBLEM FORMULATION OF JOINT DIAGONALIZATION
AND CLOSED-FORM JOINT DIAGONALIZER

Let Rk ∈ Cn×n, (k ∈ {1, . . . , K}) be a given set of non-
negative (n.n.d.) Hermitian matrices modeled as follows:

Rk = AΛkA∗, (1)

where A ∈ Cn×m denotes some full column rank constant
matrix, which implies that n ≥ m, Λk ∈ Rm×m denotes
a positive definite (p.d.) diagonal matrix, and the superscript
∗ denotes the adjoint (conjugate and transposition) operator,
respectively. The aim of joint diagonalization is to obtain a full
row rank matrix W ∈ Cm×n that makes WRkW ∗ diagonal
for all k ∈ {1, . . . , K}.

Here, we introduce fundamental theorems for the joint
diagonalization shown in [2].

Theorem 1: [2] Let M1, M2 ∈ Cn×n be Hermitian ma-
trices. There exists a unitary matrix U ∈ Cn×n that makes
U∗M1U and U∗M2U diagonal matrices, if and only if

M1M2 = M2M1 (2)

holds.
Theorem 2: [2] Let Rk ∈ Cn×n, (k ∈ {1, . . . , K}) be

n.n.d. Hermitian matrices and let

B =
K∑

k=1

Rk.

There exists a non-singular matrix T that makes T ∗RkT
diagonal for all k ∈ {1, . . . ,K}, if and only if

RiB
−Rj = RjB

−Ri (3)

holds for any i, j ∈ {1, . . . , K}, where B− denotes an
arbitrary generalized inverse matrix of B [2], that is, a matrix
B− satisfying BB−B = B.

On the basis of these theorems, we gave a closed-form
solution of W in [3]. Here, we give an overview of the



solution. Let Ã ∈ Cn×(n−m) be a full column rank matrix
consisting of basis vectors of N (A∗) (null space of A∗). Then

Â =
[

A Ã
]
∈ Cn×n

is reduced to a non-singular matrix. Also let

Λ̂k =
[

Λk Om,n−m

On−m,m On−m,n−m

]
∈ Rn×n,

where Om,n denote the zero matrix in Cm×n. Then (1) can
be represented as

Rk = ÂΛ̂kÂ∗. (4)

Although Â is unknown, its inverse surely exists and it jointly
diagonalizes all Rk. Therefore from Theorem 2,

RiB
−Rj = RjB

−Ri (5)

holds for any i, j ∈ {1, . . . , K}, where B =
∑K

k=1 Rk. Note
that since RiB

−Rj is invariant for any B− [2], we adopt B+

for B−, where B+ denotes the Moore-Penrose generalized
inverse matrix of B [2]. Let B+ = LL∗ be a full-rank
decomposition of B+ with L ∈ Cn×m. Then (5) is rewritten
as

RiLL∗Rj = RjLL∗Ri (6)

and we have

(L∗RiL)(L∗RjL) = (L∗RjL)(L∗RiL), (7)

which implies that L∗RiL and L∗RjL are commutable for
any i, j ∈ {1, . . . , K}. Thus, it is concluded that all Rk, (k ∈
{1, . . . ,K}) can be diagonalized by the same unitary matrix
from Theorem 1. Let

L∗RkL = UDkU∗ (8)

be the eigenvalue decomposition of Rk. Note that the unitary
matrix U does not depend on k from the above discussion.
Thus,

W = (LU)∗ (9)

gives a closed-form solution of a joint diagonalizer of
Rk, (k ∈ {1, . . . ,K}). Note that the computational order
of these procedures is O(n3 + m3) since it is dominated by
the calculation of B+ and that of eigenvalue decomposition
of L∗RkL for a certain k ∈ {1, . . . , K}. When we consider
the blind source separation based on second order statistics,
calculation of correlation matrices need O(Tn2), where T
denotes the length of observations. In general, T � n holds.
Therefore, computational costs for obtaining the closed-form
joint diagonalizer W is much less than those for obtaining
correlation matrices. Due to its small computational costs, this
closed-form solution was adopted as an initial value for blind
source separation methods based on higher order statistics in
[4].

III. IMPROVED VERSION OF JOINT DIAGONALIZER

In practical problems, a given set of Hermitian matrices
are not always jointly diagonalizable strictly. For instance in
blind source separation problems, although unknown source
signals are assumed to be independent, they may have small
correlations. In [5], we analyzed the perturbation of the closed-
form solution, given in the previous section, caused by these
small correlations and proposed a method for improving the
performance of the solution. In this section, we briefly review
this improved method.

We modeled a given set of Hermitian matrices that can not
be jointly diagonalizable strictly as follows:

R̃k = AΛ1/2
k (Im + Ck)Λ1/2

k A∗, (k ∈ {1, . . . , K}), (10)

where Im denotes the identity matrix of degree n, and Ck =
(c(k)

ij ) denotes a Hermitian matrix whose diagonal elements
are zeros and non-diagonal elements are i.i.d complex random
variables with zero-mean and variance E|c(k)

ij |2 = σ2. Ac-
cordingly, R̃k can be regarded as a perturbed version of Rk

by
Zk = AΛ1/2

k CkΛ1/2
k A∗.

Since c
(k)
ij is assumed to be i.i.d. and zero mean while Λk is

non-negative, the perturbation in B̃ =
∑K

k=1 R̃k is relatively
small. Therefore, we assume that B̃ =

∑K
k=1 R̃k ' B and

B̃+ ' B+ = LL∗. Due to the existence of Ck in (10), (8)
does not hold for R̃k, which implies that the unitary matrix in
the eigenvalue decomposition of L∗R̃kL depends on k, that
is,

L∗R̃kL = ŨkD̃kŨ∗
k . (11)

Accordingly, we have K candidates of joint diagonalizer of
R̃k, (k ∈ {1, . . . ,K})), written as Wk = (LŨk)∗ and we
have to select one among them.

If Zk is comparatively small, the eigenvalue decomposition
of L∗R̃kL can be represented as

L∗R̃kL = (U + dUk)(Dk + dDk)(U + dUk)∗, (12)

where U + dUk and Dk + dDk denote the first-order Taylor
expansions of Ũk and D̃k. Therefore, if we select Ũk with the
smallest ||dUk||2F , then it is expected to the optimal one, where
|| · ||F denotes the Frobenius norm of a matrix. However, since
dUk is unknown, we can not obtain ||dUk||2F . In [5], we had
the formula of the expectation of ||dUk||2F as follows:

Theorem 3: [5]

ECk
||dUk||2F = σ2

m∑
i=1

m∑
j=1,j 6=i

λ
(k)
i λ

(k)
j

(λ(k)
i − λ

(k)
j )2

, (13)

where λ
(k)
i denotes the i-th eigenvalue of L∗RkL.

Since σ2 does not depend on k, the optimal selection is
given as

kopt = arg min
k

J(k), (14)



where

J(k) =
m∑

i=1

m∑
j=1,j 6=i

λ
(k)
i λ

(k)
j

(λ(k)
i − λ

(k)
j )2

. (15)

Finally, we have a joint diagonalizer, that is expected to be
optimal in terms of the expectation over Ck, as

Wopt = (LŨkopt)
∗. (16)

Note that since Dk is unknown, we can not calculate J(k)
directly. Here, we introduce the following theorem in order to
analyze the properties of dDk.

Theorem 4: [6] Let X0 be an n × n Hermitian matrix.
Let u0 be a normalized eigenvector associated with a simple
eigenvalue λ0 of X0. Then a complex-valued function λ and
a vector-valued function u are defined for all X in some
neighborhood B(X0) ∈ Cn×n of X0, such that

λ(X0) = λ0, u(X0) = u0,
Xu = λu, u∗

0u = 1 (X ∈ B(X0)).

Moreover, the functions λ and u are ∞ times differentiable
on B(X0), and the differentials at X0 are

dλ = u∗
0(dX)u0, (17)

and
du = (λ0In − X0)+(dX)u0. (18)

According to this theorem, the first-order Taylor expansion
of i-th eigenvalue of D̃k can be written as

λ̃
(k)
i = λ

(k)
i + (u(k)

i )∗L∗ZkLu
(k)
i , (19)

where u
(k)
i denotes the i-th column of U , that is, the eigen

vector of L∗RkL corresponding to the eigenvalue λ
(k)
i . Since

Ck is assumed to be zero-mean, the expectation of λ̃
(k)
i is

also reduced to zero. Therefore, we use λ̃
(k)
i instead of λ

(k)
i

to calculate J(k).
In [5], it was confirmed that this selection scheme works

well especially in case that K is comparatively large. On the
other hand, when K is comparatively small, the performance
of this method may degrade.

Note that the computational order of this improved version
is O(n3 + Km3) since we have to calculate the eigenvalue
decompositions for all L∗R̃kL, (k ∈ {1, . . . , K}).

IV. THE PROPOSED METHOD

In this section, we construct an improved version of the
method proposed in [5], in which the number of candidates
is virtually increased by considering linear combinations of
given Hermitian matrices.

Let K0 = 2{1,...,K} be the power set of {1, . . . , K} and let
K = K0 − {φ, {1, . . . ,K}}. Note that

|K| = 2K − 2

holds. Therefore, we can construct at most 2K − 2 Hermitian
matrices written as

R̃S =
∑
k∈S

R̃k, S ∈ K (20)

that is a linear combination of given Hermitian matrices.
Hereafter, we also use S ∈ K as indices as the same with
k ∈ {1, . . . ,K}. Also we have at most 2K − 2 candidates for
ŨS obtained by the eigenvalue decomposition

L∗R̃SL = ŨSD̃SŨ∗
S , S ∈ K. (21)

However, some candidates ŨS , (S ∈ K) may not be indepen-
dent. In fact, the following theorem holds.

Theorem 5: Let S ∈ K and T be the complement set of
S in {1, . . . , K}, then

(L∗R̃SL)(L∗R̃T L) = (L∗R̃T L)(L∗R̃SL) (22)

holds.
Proof: Note that BB+ = B+B holds since B =∑K

k=1 R̃k is Hermitian, and it is trivial that BB+ = B+B
is the orthogonal projector onto the range space of B, written
as R(B). Also note that BB+R̃S = R̃SBB+ = R̃S holds
for any S ∈ K since R(R̃S) ⊂ R(B) for any S ∈ K.

Since R̃T = B − R̃S and B = LL∗, we have

(L∗R̃SL)(L∗R̃T L)
= (L∗R̃SL)(L∗(B − R̃S)L)
= L∗R̃SLL∗BL − L∗R̃SLL∗R̃SL

= L∗R̃SB+BL − L∗R̃SB+R̃SL

= L∗R̃SL − L∗R̃SB+R̃SL.

Similarly, we have

(L∗R̃T L)(L∗R̃SL)
= L∗R̃SL − L∗R̃SB+R̃SL,

which concludes the proof.
According to this theorem and Theorem 1, it is concluded

that L∗R̃SL and L∗R̃T L share all eigen vectors, that is, ŨS =
ŨT . Therefore, we have 2K−1 − 1 independent candidates of
ŨS .

The rest problem that should be resolved is which of J(S)
and J(T ) should be adopted to evaluate the goodness of ŨS =
ŨT .

Since B =
∑K

k=1 Rk, we have

L∗BL = Im =
K∑

k=1

L∗RkL = U

(
K∑

k=1

Dk

)
U∗, (23)

which implies that

Im =
K∑

k=1

Dk,
K∑

k=1

λ
(k)
i = 1. (24)

Also we have,

Im = DS + DT , λ
(S)
i + λ

(T )
i = 1 (25)

for S ∈ K and its complement T ∈ K.
The criterion (15) for S ∈ K is written as

J(S) =
m∑

i=1

m∑
j=1,j 6=i

λ
(S)
i λ

(S)
j

(λ(S)
i − λ

(S)
j )2

(26)



and that for T is written as

J(T ) =
m∑

i=1

m∑
j=1,j 6=i

(1 − λ
(S)
i )(1 − λ

(S)
j )

((1 − λ
(S)
i ) − (1 − λ

(S)
j ))2

= J(S) +
m∑

i=1

m∑
j=1,j 6=i

1 − λ
(S)
i − λ

(S)
j

(λ(S)
i − λ

(S)
j )2

. (27)

Since we have no a priori information for λ
(k)
i , it is natural to

assume that λ
(k)
i , (k ∈ {1, . . . , K}, i ∈ {1, . . . ,m}) are i .i .d .

random variables with the constraint λ
(k)
i ≥ 0. Therefore, we

have E[λ(k)
i ] = 1/K for all i ∈ {1, . . . ,m} and E[λ(S)

i ] =
|S|/K and E[λ(T )

i ] = 1 − |S|/K. Accordingly,

E[1 − λ
(S)
i − λ

(S)
i ] = 1 − 2|S|/K (28)

is obtained which implies that J(S) tends to be smaller than
J(T ) when |S| < |T | (which means |S| < |K|/2). Thus, it
is concluded that we had better to adopt J(S) to evaluate the
goodness of ŨS = ŨT when |S| < |T |.

Note that the set of Hermitian matrices obtained by lin-
ear combination includes Rk, (k = {1, . . . , K}) (linear
combination of one matrix). Therefore, if we can select the
best matrix∗, the proposed method always outperforms the
conventional one proposed in [5].

Also note that the approximated computational order of this
improved version is O(n3 + 2K−1m3) when we adopt all in-
dependent candidates R̃S ∈ K. Note that we can intensionally
reduce the number of candidates when K is comparatively
large in order to reduce the computational costs. In such cases,
it is suggested to adopt linear combinations with small number
of Hermitian matrices on the basis of the above analyses for
J(S).

V. COMPUTER SIMULATIONS

In this section, we verify the efficacy of the proposed
method by computer simulations. We compare the perfor-
mance of the proposed joint diagonalizer and our previous
method proposed in [5]. Let Wc and Wp denotes the joint
diagonalizer obtained by the conventional method [5] and that
obtained by the proposed method. As the evaluation measure,
we adopt

Z(W ) =
||(WA)(WA)∗ − diag((WA)(WA)∗)||2F

||(WA)(WA)∗||2F
, (29)

where diag(X) denotes the diagonal matrix whose diagonal
elements are the same with X . Note that Z(W ) ≥ 0 holds
and a smaller Z(W ) means a better result. Also note that
Z(W ) = 0 is achieved when W = PDA−1

` , where P , D,
and A−1

` denote an arbitrary permutation matrix, an arbitrary
full-rank diagonal matrix, and an arbitrary left inverse matrix
of A, respectively, which implies that W achieves perfect joint
diagonalization. We randomly generate A, Λk, and Ck with the
conditions σ = 0.01, m = n = 4, 8, and comparatively small

∗Selection of the best matrix may not be achieved by using J(S) since
J(S) is an approximation of ECS

||dUS ||2F .

TABLE I
MEANS AND VARIANCES OF Ac .

K = 5 mean of Ac variance of Ac

m = n = 4 1.39 × 10−2 1.35 × 10−1

m = n = 8 3.50 × 10−2 2.12 × 10−1

K = 9 mean of Ac variance of Ac

m = n = 4 2.99 × 10−2 2.08 × 10−1

m = n = 8 5.25 × 10−2 2.57 × 10−1

K = 5, 9. In the proposed method, we have 15 candidates
for K = 5 (all possible candidates) and 45 = 9C1 + 9C2

candidates for K = 9 including linear combinations of two
Hermitian matrices at most.

Table I shows the mean and the variance of

Ac =
Z(Wc) − Z(Wp)

Z(Wc)
(30)

over 1, 000 trials for each (m,K). Note that a positive Ac

means that the proposed method outperforms the conventional
one. According to Table I, it is confirmed that the proposed
method outperforms the conventional one in terms of the
mean since the mean of Ac is positive. On the other hand,
it is confirmed that the variance of Ac is comparatively large,
which implies that the selection criterion J(S) may fail to
select the best one. Thus, the improvement of the selection
criterion J(S) is needed in order to improve the overall
algorithm.

VI. CONCLUSION

In this paper, we proposed an improved version of the
closed-form joint diagonalizer of a given set of n.n.d Hermitian
matrices by incorporating linear combinations of given Her-
mitian matrices. We also investigated the performance of the
proposed method by computer simulations and confirmed the
efficacy of the proposed method. Improvement of the selection
criterion is one of our future works that should be undertaken.
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