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Abstract—This paper proposes a method using speaking rate
dependent multiple acoustic models for speech recognition. In this
method, multiple acoustic models with various speaking rates are
generated. Among them, the optimal acoustic model relevant to
the speaking rate of test data is selected and used in recognition.
To simulate the various speaking rates for the multiple acoustic
models, we use the variable frame shift size considering the
speaking rate of each utterance instead of applying a flat frame
shift size to all training utterances. The continuous frame rate
normalization (CFRN) is applied to each of training utterances
to control the frame shift size. Experimental results show that
the proposed method outperforms both the baseline and the
conventional CFRN on test utterances.

I. INTRODUCTION

As speech recognizer is deployed to a variety of people
and environments, the problems that should be overcome have
been emerged. These problems include the variabilities due to
additive noise, channel distortion and speaker characteristics,
and speaking rate variability should also be considered. Pre-
vious studies revealed that the difference between speaking
rates of training and test data degrades the performance of
speech recognition [1], but the researches on this problem are
relatively limited.

Some researches have been performed to relieve the per-
formance degradation caused by speaking rate variability. A
kind of adaptation technique to adjust the state transition
probability was proposed to deal with this problem [1], but
most studies were performed in terms of variable frame rate
in feature domain [2]-[5]. In early researches on the variable
frame rate approach, frame shift size was controlled by using
frame dropping. Whether a certain frame is dropped or not
is decided by speaking rate of the utterance. To measure the
speaking rate, various techniques have been proposed [2]-[7].
Among them, Euclidean distance between two feature vectors
of adjacent frames was used to measure the speaking rate
[2]. To consider the information from multiple frames, the
norm of the cepstral derivative or entropy of cepstra was
also employed for the estimation of speaking rate [3], [4].
In addition, frame dropping was performed using short frame
shift size such as 2.5 ms in order to capture the dynamic
changes in high speaking rate region [5]. As an alternative
approach, phonetic information from the speech recognizer
was used for the estimation of speaking rate. In this approach,
there was a method of considering the phonetic classes in the
test utterance [6], and recently, the average phone durations of

training and test utterances were used to normalize the frame
shift size of the test data to the training data [7].

Because the speaking rate is variable according to speaker
and task, always there exists the mismatch between the
speaking rates of training and test data. Most conventional
algorithms focused on the speaking rate adaption of test data to
the training data. But it is difficult to obtain the representative
frame shift size of training data, because the variance of the
average phone duration in all training utterances is large.
Consequently, it is not very effective to adapt the speaking
rate of test data to that of training data.

In this study, instead of adapting the speaking rate of test
data to that of training data, multiple acoustic models are
generated from the feature sets with various frame shift sizes,
and the acoustic model which is appropriate to the test data
is selected and used in recognition. If a flat frame shift size is
applied to all of the utterances, the average phone duration is
changed, but its distribution is unchanged. Thus, as mentioned
earlier, the problem of large variance in average phone duration
is still remained. In this paper, to alleviate this problem, the
continuous frame rate normalization (CFRN) is applied to all
of the training data in order to reduce the variance of the
average phone duration.

This paper is organized as follows: In section 2, speaking
rate dependent multiple acoustic models is introduced and
CFRN is described in section 3. Finally, the performance
of the proposed algorithm is evaluated in section 4, and the
conclusion of this paper is drawn.

II. SPEAKING RATE DEPENDENT MULTIPLE ACOUSTIC
MODELS

To adapt the speaking rate of test data to that of the
training data, CFRN was proposed recently. In previous study
of CFRN, average phone duration of test utterance was used as
the speaking rate information. But the average phone duration
in training utterances has a broad distribution as shown in Fig.
1. Therefore, even if the speaking rate of test data is matched
to the global average phone duration of training data with an
optimal frame shift size, the normalized speaking rates of each
phoneme can be so different.

To overcome this problem, this paper proposes a method
using speaking rate dependent multiple acoustic models. The
block diagram in Fig. 2 shows the proposed method. After
obtaining the speaking rate of each training utterance, CFRN



8 10 12 14 16 18 20 22 24
0

200

400

600

800

1000

1200

1400

1600

Average phone duration (frames/phone)

N
um

be
r 

of
 u

tt
er

an
ce

Fig. 1. The distribution of the average phone duration in training utterances.

is applied to each training utterance. Then the speaking rate
normalized feature vectors corresponding to the target speak-
ing rate are generated by using an appropriately chosen frame
shift rate. In this way, multiple acoustic models corresponding
to each of frame shift sizes are generated and is used in recog-
nition. Given the test utterance, an optimal acoustic model
relevant to this test data is selected based on the maximum
likelihood criterion. In Fig. 2, to estimate the speaking rate of
the training utterance, the average phone duration obtained by
the forced alignment is used. The average phone duration f(i)
of the i-th utterance is defined as

f(i) =

Mi∑
j=1

ti(j)/Mi. (1)

Here, Mi is the number of phones in the i-th utterance, ti(j)
represents the number of frames at the j-th phone in the i-th
utterance. In next session CFRN will be explained in some
detail.

III. CFRN FOR ACOUSTIC MODEL TRAINING

At first, the conventional CFRN is described. In the con-
ventional CFRN, to normalize the speaking rate of the test
utterance to that of training data, target speaking rate from
training utterances is obtained as

Φ =

N∑
i=1

Mi∑
j=1

ti(j)/

N∑
i=1

Mi (2)

where, Φ is the global average phone duration, i is the
utterance index, and N is the number of total utterances in
training data [7]. Using the Φ and average phone duration
f̂test(i) from the i-th test utterance, warping factor warp(i)
is obtained as follows:

warp(i) =


minwarp if f̂test(i)

Φ ≤ minwarp

maxwarp if f̂test(i)
Φ ≥ maxwarp

f̂test(i)
Φ otherwise

(3)

Fig. 2. Block diagram of the proposed method.

where warp(i) is the warping factor of the i-th test utterance
to normalize speaking rate of the i-th test utterance to the
original speaking rate. The minimum and maximum warping
factor are set as minwarp and maxwarp to avoid the warping
factor to be unrealistic value. Then the frame shift size of the
i-th utterance is expressed as

s(i) = warp(i)Tstep (4)

where Tstep is the original frame shift size.
In our proposed method, the CFRN is applied to the training

utterances and the warping factor in the equation (3) is
modified to warpwk

(i) as

warpwk
(i) =


minwarp if wk

f̂train(i)
Φ ≤ minwarp

maxwarp if wk
f̂train(i)

Φ ≥ maxwarp

wk
f̂train(i)

Φ otherwise
(5)

where f̂train(i) represents the average phone duration of the
i-th training utterance. warpwk

(i) is the warping factor to
normalize the speaking rate of the i-th training utterance to
the speaking rate corresponding to the k-th target ratio wk. To
generate multiple acoustic models, wk has multiple values. If
the average phone duration of a certain training utterance is
large, then its warping factor is increased more than that of
other utterance having relatively small average phone duration.
Then frame shift size swk

(i) of the i-th utterance can be
expressed as

swk
(i) = warpwk

(i)Tstep. (6)

In the case of flat frame shift size, warpwk
(i) becomes a fixed

value of wk regardless of the speaking rate of input training
utterance,
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Fig. 3. Distribution of the duration in phoneme [o] (a) with frame shift rate
of 10 ms (b) with flat frame shift rate (c) with variable frame shift rate using
CFRN

The optimal acoustic model to the test data is selected as

Ψ̂ = argmax
Ψk

p(x|Ψk). (7)

Here, Ψk is the one of the multiple acoustic models corre-
sponding to the k-th speaking rate. Ψ̂ is the optimal acoustic
model relevant to the speaking rate of the test utterance.
p(x|Ψk) represents the likelihood of the acoustic model to
x, the feature vector sequence of the test utterance.

When CFRN is applied to the training data using wk as 1.5,
the distribution of the duration in phoneme [o] is shown in
Fig. 3. In the case of applying the flat shift rate to the training
data as in [6], the mean of the phone duration has moved to
the other value, but the characteristics of the distribution is un-
changed. That is, the normalized data does not have the phone
durations concentrated around the target rate but has diverse
phone durations. In the case of applying CFRN to the training
data, it is observed that the variance of the phone duration is
reduced. This means that the normalized data is concentrated
around the target speaking rate. Table 1 indicates the standard
deviations of the durations in the various phonemes according
to the two different normalization techniques. From the table,
it is also observed that the normalized data by applying CFRN
to the training data is more concentrated around the target
speaking rate than that with flat shift rate.

IV. EXPERIMENTAL RESULTS

To evaluate the proposed algorithm, we performed isolated
word recognition test. As training data, the phonetically bal-
anced sentence database (PBS DB) is used, which contains
21246 sentences (30 hours) from 100 males and 100 females.

TABLE I
Standard deviations of the durations (frames) in some phonemes

phoneme [a] [e] [i] [o] [u]
flat 18.81 5.55 9.59 14.56 4.39

CFRN 18.55 5.28 8.58 13.58 4.03

As test data, the phonetically balanced word database (PBW
DB) is used, which is composed of 31640 words (18 hours)
from 38 males and 32 females [8] and contains 452 vocabulary
words per each speaker. Both database are Korean speech
database provided by Speech Information Technology and
Industry Promotion Center (SiTEC), Korea. The proposed
algorithm is compared with the conventional CFRN method.
In this evaluation, 5 multiple acoustic models with 5 frame
shift rates are used. In acoustic model training, two different
frame shift sizes are included in each of the multiple training
sets and also 10 ms frame shift size is commonly included in
all the multiple training sets to have stable acoustic model
performance in speech recognition. Therefore, each of the
multiple training sets includes much more data than baseline
model. In equation (3), we set minwarp to 0.5 and maxwarp

to 1.5. For training, 3 state left-to-right HMM is used to
model triphone based speech unit. Baseline acoustic model
uses only 10 ms frame shift size containing 2086 tied states,
and each of multiple acoustic models contain about 2609 tied
states. We use 14 Gaussian mixtures for each tied state. For
feature vector, we use 39-dimensional vector composed of 13-
dimensional MFCCs, their delta and delta-delta coefficients,
including normalized energy.

Fig. 4 represents the word accuracy according to the average
phone duration range. It is observed that the word accuracy
tends to decrease as the average phone duration increases.
This tendency is due to the fact that as the speaking rate
of test word is fast, it becomes closer to the speaking rate
of training sentence which is generally more faster than
isolated word. Overall, the proposed method outperforms the
conventional CFRN and baseline results. Table 2 shows the
average word accuracy and error rate reduction. In this table,
”proposed(flat)” and ”proposed(var)” represent the proposed
speaking rate dependent multiple acoustic models applying a
flat frame shift size to all training utterances, and those apply-
ing the variable frame shift size to each utterance according
to the speaking rate, respectively. Both of the two proposed
methods outperform the conventional CFRN. From the table,
the performance improvements of frame rate dependent algo-
rithms over baseline results are statistically significant, e.g.,
p-value<0.05 for CFRN, p-value<0.01 for ’Proposed(flat)’,
p-value<0.001 for ’Proposed(var)’. But contrary to our expec-
tation, applying the variable frame shift size to each utterance
is not sufficiently effective. This result seems due to that
the proposed normalization method performed in sentence
level does not guarantee the normalization of speaking rate in
phoneme level. In fact, adjusting only the frame shift size is not
a sufficient tool to deal with the performance degradation due
to the speaking rate variability, which requires more elaborate
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Fig. 4. Word accuracy according to the average phone duration

schemes such as phoneme-class dependent duration control
and preservation of transient information.

TABLE II
Average word accuracy and error rate reduction

Algorithm Average accuracy(%) ERR(%)
Baseline 91.41 -
CFRN 91.88 5.30

Proposed(flat) 92.06 7.34
Proposed(var) 92.13 8.19

V. CONCLUSIONS

This paper proposed the speaking rate dependent multiple
acoustic models to overcome the performance degradation of
speech recognition due to the difference between speaking
rates of training and test data. Proposed method applied the
CFRN technique to the training utterances to make multiple
acoustic models with various frame shift sizes. In isolated
word recognition task, it was shown that proposed method
outperformed both the baseline and the conventional CFRN.
As a future work, we are going to normalize the speaking rate
in more detailed level instead of using sentence level speaking
rate only, and to combine our method with other approach
such as an adaptation technique considering the speaking rate
[9]. Additionally, we are going to simplify the model selection
algorithm, though it is not critical in the condition that parallel
processing is available.
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