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Abstract—This work elaborates connections between notions
of compressibility of infinite sequences, recently addressed by
Amini et al. [1], and the performance of the compressed sensing
(CS) type of recovery algorithms from linear measurements in the
under-sample scenario. In particular, in the asymptotic regime
when the signal dimension goes to infinity, we established a
new set of compressibility definitions over infinite sequences that
guarantees arbitrary good performance in an `1-noise to signal
ratio (`1-NSR) sense with an arbitrary close to zero number of
measurements per signal dimension.

I. INTRODUCTION

In the case of finite dimensions, compressed sensing (CS)
has established sufficient conditions over a set of lineal
measurements [2], [3], for perfect recovery and near-optimal
reconstruction under a notion of signal sparsity and compress-
ibility [4], [5], [6], [7]. Remarkably, these results cover the
under-sampled regime where the number of measurements is
strictly less than the signal dimension, and consequently per-
fect recovery over all possible signals cannot be achieved. In a
nutshell, CS captures signal structure by means of a notion of
sparsity (and compressibility), where restricted to these signal
families, a way of doing perfect signal decoding (and near
optimal best k-term approximation) is achieved by means of an
`1-minimization algorithm, which is implementable by linear
programing [4]. The other critical ingredient in the CS theory
is the role of random measurements that allow (with very large
probability) perfect recovery under an O(k log(N/k)) number
of measurements [3], with k being the sparsity of the signal
and N the signal dimension.

Moving on the countable infinity case (i.e., the space
of sequences), Amini et al. [1] have introduced definitions
of `p-compressibility for deterministic and random infinity
sequences. Remarkably, these definitions allow the signals to
have an infinite `p-norm, as they are based on a relative norm
concept (the ratio between the norm of the best k-term approx-
imation and the norm of the whole signal), reminiscent of an
`p-signal to noise ratio (`p-SNR) fidelity measure. This relative
fidelity measure allows capturing a wider spectrum of signal
collections, which was particularly relevant when the authors
addressed the random case generated from an independent
and identically distributed (i.i.d.) process [1, Sec III, Th. 1].
In summary, based on their notion of `p-compressibility for
deterministic and random sequences, they offered the basis

for categorizing sequences in a way that could be of interest
for CS performance recovery.

In this work we move on in this direction, and provide
a connection between `1-compressibility notions for deter-
ministic sequences and their respective performance in a CS
(lineal measurement coding and `1-minimization decoding)
setting. In particular, we revisit and propose new compress-
ibility definitions that provide a concrete categorization of
sequences over which the CS signal representation setting
achieves an arbitrary close to zero `1-SNR distortion under
arbitrary close to zero number of measurements per signal
dimension. We show that these performances are obtained
under different scenarios with compressibility notions that
are stronger than original definitions of Amini et al. [1]. In
summary, these results provide concrete connections between
signal structure and guarantee performance for an infinitely
countable CS setting, with focus on the zero measurement per
signal dimension asymptotic regime.

The rest of the paper is organized as follows: Section II
introduces the basic elements of the CS theory needed in the
work. Section III is the main content section that presents the
new definitions and CS recovery results. Section IV explores
the important case of `1-sequences, and finally Section V
offers some directions for future work .

II. COMPRESSED SENSING

Let x ∈ RN be a finite dimensional vector, where the usual
`p-norm is given by

||x||`p =

(
N∑
n=1

|xi|p
) 1

p

, ∀p > 1. (1)

We define the support of a x by support(x) ≡
|{i : |xi| > 0}| ≤ N . The signal x is said to be k-sparse if
support(x) ≤ k, and the collection of k-sparse signals is
denoted by Σk. For an arbitrary signal x ∈ RN , xk denotes
its best k-term approximation, i.e., xk retains the k-largest
entries of x and zeroes out the rest of the coefficients1. In
this context the k-term approximation error of x is denoted
by σk(x)p ≡ inf x̃∈Σk

||x− x̃||`p .
CS puts attention on the problem of recovering sparse

signals through linear measurements. The CS setting can be

1Alternatively, xk ≡ arg minx̃∈Σk
||x− x̃||l1 for all k ∈ {1, ..N}.



seen as a coding-decoding framework over the operational
constraint of a finite set of linear measurements [8], [3], [4].
The encoding function is a linear operator φ : RN → Rm, that
generates a measurement vector by y = φx ∈ Rm. The main
focus is on the under-sample regime, i.e., m < N , where
the problem of recovering x from y is ill-posed. However,
the main CS conjecture was that on constraining the signal
domain to a collection of sparse signals, perfect reconstruction
could be achieved when m < N . Furthermore, CS proposes a
concrete and implementable (by linear programing) decoding
function ∆∗ : Rm → RN given by

∆∗(y) = arg min
{x̃∈RN :y=φx̃}

||x̃||`1 . (2)

Remarkably, CS theory establishes sufficient conditions over
φ (and implicitly over the number of measurements m) in
order that x = ∆∗(φx) when x ∈ Σk for some k < N . Here,
we revisit the results derived from the celebrated restricted
isometry property (RIP) [2], [4], which is the one we use in
this work.

Definition 1: [2, Def. 1.1] Given a matrix φ and k ∈
{1, ..N}, the isometry constant δk of φ is the smaller non-
negative number such that ∀x ∈ Σk

(1− δk) · ||x||2`2 ≤ ||φx||
2
`2
≤ (1 + δk) · ||x||2`2 . (3)

The isometry definition in (3) is the key to obtaining the
following recovery result:

THEOREM 1: [2, Th. 1.2] If the measurement matrix φ
has an isometry constant δ2k <

√
2− 1 for some k > 0, then∣∣∣∣x− x‡∣∣∣∣

`1
≤ C0 ||x− xk||`1 = C0 · σk(x)1 (4)

where x‡ is the solution of (2) and C0 is a universal constant
that is only a function of δk. In this case, we say that φ satisfies
the RIP property for k.

Hence for a given level of approximation k, it is critical
to characterize the minimum number of measurements m and
the structure of the matrix φ that satisfy the RIP property of
Theorem 1. The following result, in its original form stated in
[5], shows that random measurements offer a solution to the
problem of constructing matrixes that satisfy the RIP property
with a near optimal relationship between m and k [8].

THEOREM 2: [3, Th. 5.2] Let φ(w) be a random matrix2,
w ∈ ΩmN , whose entries are driven by i.i.d realizations of
a Gaussian distribution N (0, 1/m) or a binary variable with
uniform distribution over {1/

√
m,−1/

√
m}. Then for any

arbitrary number δ ∈ (0, 1) and k ≤ N , if m ≥ C1k log N
k ,

φ(w) satisfies the condition in (3) with respect to δ and k with
a probability over the space ΩmN at least equal to 1−2−C2·m,
where C1 and C2 are universal constants that are only function
of δ.

In summary, Theorems 1 and 2 provide sufficient conditions
over the number of measurements m of concrete random
matrices (the Gaussian and Bernoulli random matrices) to

2This result can be generalized to random matrices satisfying a concen-
tration inequality, which is not reported here for space considerations. See
details on this observation in [3].

achieve perfect reconstruction for k-sparse signals, or near
optimal k-term approximation errors for any arbitrary signal
in RN . This can be obtained with high probability over the
sample space of random matrixes, i.e., over ΩmN .

III. COMPRESSIBILITY AND CS PERFORMANCE
GUARANTEE IN THE ASYMPTOTIC REGIME

Here we are interested in the role of CS coding-decoding
for sequences (xn) ∈ RN and in the kind of compressibility
notion in this domain that provides guaranteed performance in
this context. We follow the approach proposed by Amini et al.
[1], where the analysis is based on truncating the sequence to
a finite dimension N and then taking the limit as N →∞. We
begin revisiting the definitions introduced in [1] and include
some new extensions.

Let x = (xn) be a sequence in RN. We denote xN ≡
(xi)

N
i=1 the N -truncated version of x and (xni)

N
i=1 its N -order

statistics, where |xn1| ≥ |xn2| . . . ≥ |xnN |. Let

ςp(k, x
N ) ≡ (|xn1|p + . . .+ |xnk|p)

1
p , ∀k ∈ {1, .., N} (5)

be the `p-norm concentrated in the k-most significant entries
of xN , and let us define

κp(r, x
N ) ≡ min

{
k ∈ {1, .., N} :

ςp(k, x
N )

||xN ||`p
≥ r

}
, (6)

for all r ∈ (0, 1].
Definition 2: (Amini et. al[1, Def. 4]) A sequence (xn) ∈

RN is said to be `p-compressible, if ∀r ∈ (0, 1),

lim
N→∞

κp(r, x
N )

N
= 0. (7)

Definition 3: (xn) is said to be strongly `p-compressible if
∀r ∈ (0, 1),

lim
N→∞

κp(r, x
N ) · logN

N
= 0. (8)

Definition 4: (xn) is said to be τ -power dominated for `p
for some τ ∈ (0, 1), if ∀r ∈ (0, 1),

(κp(r, x
N ))N>0 is O(Nτ ). (9)

Definition 5: (xn) is said to be asymptotically sparse for
`p, if ∀r ∈ (0, 1),

lim sup
N→∞

κp(r, x
N ) <∞. (10)

Note that all these definitions of compressibility are hier-
archical, from the weakest in Definition 2 to the strongest in
Definition 5. Finally in this countable infinite setting, we can
naturally say that (xn) is k-sparse if |support(xn)| ≤ k.

Here we are interested in the recovery of x with a family
of CS encoding-decoding pairs {(φmN×N ,∆

∗
N ) : N > 0} of

different signal-lengths, where for a fixed dimension N > 0
the encoder is given by a linear operator:

yN ≡ φmN×Nx
N (11)

from RN to RmN , and the decoding process x‡N ≡
∆∗N (yN ) ∈ RN is the solution of the `1-minimization in (2).



Sequences in RN have an infinite norm in general, then as
a performance metric (or distortion measure) we consider the
notion of noise to signal ratio (NSR) in the `p-sense given by:

D`p

(
(φmN×N ,∆

∗
N );xN

)
≡

∣∣∣∣x‡N − xN ∣∣∣∣
`p

||xN ||`p
∈ [0, 1]. (12)

On the other hand, as a cost measure for the pair
(φmN×N ,∆

∗
N ) we consider the number of linear measure-

ments per signal dimension given by:

R(φmN×N ,∆
∗
N ) ≡ mN/N ∈ (0, 1]. (13)

A. Asymptotic CS Recovery Results

From this point on, we will focus exclusively on `1-norm
compressibility as is seen in Theorem 1 (the right-hand side
of (4)), it is the type of approximation condition over the
signals that could provide guaranteed performance. We begin
introducing an asymptotic definition of performance for the
random CS scheme of Theorem 2.

Definition 6: The pair (d, c) ∈ [0, 1)× [0, 1) is achievable
for (xn) ∈ RN adopting the standard random CS scheme
{(φmN×N (w),∆∗N ) : N > 0} of Theorem 2, if there is a
sequence (mN ) such that

lim sup
N→∞

R(φmN×N (w),∆∗N ) ≤ c and

lim
N→∞

P
({
w ∈ ΩmN ·N : D`1

(
(φmN×N (w),∆∗N );xN

)
≤ d
})

= 1,

where P denotes the process distribution of the random matrix
process {φmN×N (w) : N ≥ 1}.

We can state the following result which is a corollary of
Theorem 1:

LEMMA 1: Let (xn) be an arbitrary sequence and
(φmN×N ,∆

∗
N ) be a CS encoding-decoding pair. If φmN×N

satisfies the RIP of Theorem 1 for all k ≤ κ1(r, xN ), then

D`1

(
(φmN×N ,∆

∗
N );xN

)
≤ C0 · (1− r). (14)

Proof: In particular, φmN×N satisfies the RIP with respect
to k = κ1(r, xN ), hence from (4),∣∣∣∣x− x‡∣∣∣∣

`1

||xN ||`1
≤ C0

||x− xk||`1
||xN ||`1

≤ C0(1− r), (15)

this last inequality by definition of κ1(r, xN ).
THEOREM 3: Let (xn) be `1-strongly compressible, then

∀d ∈ (0, 1) there is {(φmN×N (w),∆∗N ) : N > 0} a random
CS scheme3, where

lim
N→∞

P
({
w ∈ ΩmN ·N : D`1

(
(φmN×N (w),∆∗N );xN

)
≤ d
})

= 1 and lim
N→∞

R(φmN×N ,∆
∗
N ) = 0.

In other words, for any strongly compressible signal and
distortion level, there is a standard random CS scheme that
achieves that distortion, under the asymptotic regime of zero

3φmN×N (w) is either the Gaussian or Bernoulli random matrix of
Theorem 2.

measurement per signal dimension, and with an arbitrary prob-
ability close to one. Hence, this result provides the operational
interpretation of the notion of asymptotic compressibility
stated in Definition 3.

Proof of Theorem 3: Let d ∈ (0, 1) be an arbitrary number
and r ∈ (0, 1) such that C0 · (1− r) < d. Let us consider the
sequence (κ1(r, xN )) and take (mN ) ∼ (κ1(r, xN ) · logN).
In this context, Theorem 2 says that for an arbitrary number
N > 1, φmN×N (w) satisfies the RIP property of Theorem 1
with respect to k ≤ κ1(r, xN ) with probability at least equal
to 1− 2C2·mN . Therefore from Lemma 1,

P
({
w : D`1

(
(φmN×N (w),∆∗N );xN

)
≤ C0 · (1− r)

})
≥ 1− 2C2·mN . (16)

Finally, the facts that mN →∞ and C0 ·(1−r) < d conclude
the argument.

It is worth noting that the proof of this result uses a CS
scheme that depends on the signal and the level of distortion
((mN ) ∼ (κ1(r, xN ) · logN) with r > 1− d/C0), which is a
kind of oracle result. The following result takes advantage of
the universal nature4 of the RIP property obtained for random
matrices in Theorem 2, and offers an universal CS coding-
decoding construction over a family of signals and distortion
levels.

PROPOSITION 1: Let us consider a random CS scheme
{(φmN×N (w),∆∗N ) : N > 0} with mN ∼ Nρ · logN with
ρ ∈ (0, 1). Then for all (xn) τ -power dominated with τ < ρ
and for any d ∈ (0, 1),

lim
N→∞

P
({
w : D`1

(
(φmN×N (w),∆∗N );xN

)
≤ d
})

= 1,

(17)
furthermore, we have that

lim
N→∞

D`1

(
(φmN×N (w),∆∗N );xN

)
= 0, P− almost surely.

(18)
Note that the universal scheme of Proposition 1 is zero

measurement per signal dimension by construction.
Proof of Proposition 1: Let d ∈ (0, 1) be an arbitrary

number and (xn) an arbitrary signal τ -power dominated.
By hypothesis as mN ∼ Nρ · logN , considering any r >
(1 − d/C0), we have that ∃N0 such that for all N ≥ N0,
mN ≥ κ1(r, xN ) · logN . Therefore from Lemma 1, ∀N ≥ N0

P
({
w ∈ ΩmN ·N : D`1

(
(φmN×N (w),∆∗N );xN

)
≤ d
})

≥ 1− 2C2·mN , (19)

then, taking the limit on N , we obtain (17). Note that (19)
is valid for all d > 0, which is equivalent to saying that
limN→∞D`1

(
(φmN×N (w),∆∗N );xN

)
= 0 in probability (or

measure) [9]. We can get the stronger almost-sure convergence
in (18) from the Borel-Cantelli lemma [9] and from the fact
that by the hypothesis we have that

∑
N≥1 2−C3·mN <∞.

Remark 1: i) Note that the construction of Proposition
1 shows that the distortion-measurement point (d, 0), for d
arbitrary close to zero, is achievable for the class of signals

4Over the signal collection Σk .



τ -power dominated Kτ . ii) Furthermore, there is a universal
scheme that achieves this result over the family ∪τ<pKτ . iii)
Finally, D`1

(
(φmN×N (w),∆∗N );xN

)
convergences to zero

with probability one with respect to P, which is stronger than
the convergence in measure stipulated in Definition 6.

The universal zero distortion and zero measurement con-
struction of Proposition 1 is also valid for the collection of
asymptotically sparse signals of Definition 5, as they are τ -
power dominated for any τ ∈ (0, 1). However, we can get
a refined result if we restrict the analysis exclusively to this
family of asymptotically sparse signals.

PROPOSITION 2: Let {(φmN×N (w),∆∗N ) : N > 0} be
the usual random CS scheme of Theorem 3, and let K∞ ⊂ RN

denote the set of asymptotically sparse signals. If we assume
that (1/mN ) is o(1/logN) and (mN ) is o(N), then for any
d > 0 and for all (xn) ∈ K∞,

lim
N→∞

P
({
w : D`1

(
(φmN×N (w),∆∗N );xN

)
≤ d
})

= 1.

(20)
Thus this result shows sufficient conditions for a zero

measurement universal CS scheme to achieve close to zero
arbitrary distortion as N tends to infinity. It is important to
note that the condition ( 1

mN
) is o( 1

logN ) is weaker than its
universal counterpart in Proposition 1, obtained for the family
of τ -power dominated signals. However, we pay the price that
the almost-sure convergence in (18) is not necessarily holding,
where from (20) D`1

(
(φmN×N (w),∆∗N );xN

)
converges to

zero in probability.
Proof of Proposition 2: Let us fix an arbitrary r ∈ (0, 1).

As lim supN→∞ κ1(r, xN ) < ∞, then by hypothesis ∃N0

such that ∀N ≥ N0, mN ≥ κ1(r, xN ) logN . The rest of
the argument follows the same steps as those in the proof of
Proposition 1.

Remark 2: To conclude this section, it is worth empha-
sizing that the compressibility in Definition 2, although it
provides a nice interpretation of asymptotic energy compaction
of the signal in the sense of best k-term approximation [1],
does not grant any performance in the sense of NSR versus
number of measurements per dimension for the operational
context of CS analysis and synthesis studied in this work. As
a result, stringent compressibility notions were needed to fill
this gap, which motivated the inclusion of Definitions 3-5.

IV. THE `1(N) CASE

Here we study the implications of the type of results
presented in the previous section, for the special case of
sequences in `1(N). We begin by mentioning the following
fact:

LEMMA 2: If (xn) is `1(N) then it is asymptotically
sparse (Definition 5).
The proof is presented in the Appendix.

As `1(N) ⊂ K∞, then, from Proposition 2, we have a
universal CS scheme achieving zero distortion with zero mea-
surement per dimension for this class of signals. Furthermore
considering that ||(xn)||l1 < ∞, Theorems 1 and 2 offer the

following result concerning `1-absolute error in the asymptotic
regime:

THEOREM 4: Let {(φmN×N (w),∆∗N ) : N > 0} be the
standard CS random scheme. If (1/mN ) is o(1/logN) and
(mN ) is o(N), then ∀(xn) ∈ `1(N) and for any d > 0,

lim
N→∞

P
({
w :
∣∣∣∣xN −∆∗N (φmN×N (w) · xN )

∣∣∣∣
`1
≤ d
})

= 1.

(21)
Furthermore, if (mN ) ∼ (Nρ · logN) for some ρ ∈ (0, 1),
then ∀(xn) ∈ `1(N)

lim
N→∞

∣∣∣∣xN −∆∗N (φmN×N (w) · xN )
∣∣∣∣
`1

= 0, P−almost surely.
(22)

The proof follows the same arguments as the proof of Propo-
sitions 1 and 2. For completeness it is presented here.

Proof: We show first the result in (21). Let us consider
r ∈ (0, 1). As lim supN→∞ κ1(r, xN ) < ∞ by Lemma 2,
then by the hypothesis ∃N0(r) such that ∀N ≥ N0(r), mN ≥
κ1(r, xN ) logN . Then from (19) and the fact that

∣∣∣∣xN ∣∣∣∣
`1
≤

||(xn)||`1 <∞ , ∀N ≥ N0(r)

P
{∣∣∣∣xN −∆∗N (φmN×N (w) · xN )

∣∣∣∣
`1
≤ C0(1− r) ||(xn)||`1

}
≥ 1− 2C2·mN , (23)

At this point for any arbitrary d > 0, we can choose r >
0 sufficiently small such that C0(1 − r) ||(xn)||`1 < d, and,
consequently, we obtain the result in Eq. (21) from (23) since
by hypothesis mN goes to infinity.

Concerning the result in Eq.(22), note that this is ob-
tained from (23), which is valid in this scenario as
(mN ) ∼ (Nρ · logN), and the Borel-Cantelli lemma, because∑
N≥1 2−C3·mN <∞.
Finally, given that ||(xn)||`2 ≤ ||(xn)||`1 < ∞, we can

obtain a version of Theorem 4 considering `2-norm as a
fidelity measure.

V. SUMMARY AND FUTURE WORK

This work introduces new definitions of compressibility
of infinite sequences. In this context, we elaborate a com-
pressed sensing analysis-synthesis scenario, in which results
are established that guarantee recovery performances in the
sense of achieving a given number of measurements per signal
dimension and an `1 noise to signal ratio (`1-NSR) distortion
measure. In particular, we explore the zero-measurement and
zero distortion regime, and their interplay with the previously
mentioned notions of compressibility in the asymptotic regime
when the signal dimension goes to infinity.

There are a number of interesting directions to pursue
in further research on this topic. Just to name a few key
ones: i) the characterization of concrete sequences that satisfy
the proposed notions of compressibility; ii) the extension
of performance recovery for the important case of an `2-
based distortion measure; iii) the extension of these results
for random sequences, where the focus would be on average
performances instead of the universal (minimax) [8] perfor-
mance criterion explored in this work.
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VI. APPENDICES

A. Proof of Lemma 2

As (xn) is `1(N), then ∀ε > 0, ∃N(ε) ≥ 1 such that∑
n≥N(ε) |xn| < ε. Let us define

k1(r,N, (xn)) ≡ min

{
k ∈ {1, .., N} :

ς1(k, xN )

||(xn)||l1
≥ r

}
,

(24)
where k1(r,N, (xn)) ≥ κp(r, x

N ) as ||(xn)||l1 ≥
∣∣∣∣xN ∣∣∣∣

l1
.

We have that for all N > 0, and for any k ∈ {1, .., N},

|xN1|+ · · ·+ |xNk|
||(xn)||l1

≥ |x1|+ · · ·+ |xk|
||(xn)||l1

= 1−
∑
n≥k |xn|
||(xn)||l1

,

(25)
where {xN1, .., xNN} is the order statistics of {x1, .., xN}.
Hence, for all ε > 0, if N ≥ k > N(ε), |xN1|+···+|xNk|

||(xn)||l1
≥

1 − ε/ ||(xn)||l1 . Therefore, if ε < (1 − r) ||(xn)||l1 ,
lim supN→∞ k1(r,N, (xn)) ≤ N(ε) < ∞ for all r ∈ (0, 1).
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