
Diffusion Noise Suppression by Crystal-Shape
Subtraction Array

Akira Tanaka∗ and Ryo Takahashi∗
∗ Division of Computer Science, Hokkaido University,

N14W9, Kita-ku, Sapporo, 060-0814 Japan
E-mail: {takira,ryo-t}@main.ist.hokudai.ac.jp Tel: +81-11-706-6809

Abstract—Noise suppression of diffusion noise by microphone
arrays is discussed in this paper. In our previous work, we pro-
posed a method for jointly estimating signal and noise correlation
matrices from observations with diffusion noise by using so-called
crystal shape microphone arrays; and discussed the performance
of the Wiener filter based on those correlation matrices. In
this paper, we propose a novel method for noise suppression of
diffusion noise based on the newly adopted spectral subtraction
scheme with the estimated correlation matrices by our previous
work. We also verify the efficacy of the proposed method by
some computer simulations and show that the proposed method
outperforms our previous method by the Wiener filter.

I. INTRODUCTION

Noise suppression for audio signals is one of important
topics in the field of speech and acoustic signal processing. A
microphone-array-based noise suppression scheme is known as
one of effective approaches for this problem. The minimum
variance distortionless response filter (MVDRF) [1] and the
Wiener filter (WF) (see [2], [3] for instance) are representative
linear methods in the scheme. As one of array-based non-
linear noise suppressors, Takahashi et al., proposed a novel
method in [4], named ’spatial subtraction array with indepen-
dent component analysis (ICA-SSA)’, in which the amplitude
spectrum of noise signal is estimated by the ICA and the noise
suppression is conducted by the spectral subtraction (SS) [5]
with the estimate. It is reported in [4] that an additive noise
can be effectively suppressed by this method. However, there
exist some drawbacks in this method such as 1) the number of
target signals is assumed to be unity, 2) the sum of the number
of target signals and the number of noise signals must be less
than or equal to the number of microphones, and 3) noise
signals are basically assumed to be directional ones.

Recently, Ono et al. clarified that eigenvectors of noise
correlation matrices for diffusion noise are invariant with
specific crystal-shape microphone arrays [6], [7], [2]. On the
basis of the knowledge, they also succeeded in widening the
application area of the WF [2]. Moreover, we introduced a
method for jointly estimating signal and correlation matrices
on the basis of their idea; and improved the performance of
the WF [3].

In this paper, we construct a novel non-linear noise suppres-
sor for diffusion noise, named ’crystal-shape subtraction array
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(CSSA)’ which incorporates the SS and the estimation of the
amplitude spectrum of noise by the method proposed in [3].
This method can be applied to the cases where the number of
microphones is equal to the number of target signals in which
the ICA-SSA can not be used. We also verify the efficacy of
the proposed method by some computer simulations and show
that the proposed method outperforms our previous method by
the Wiener filter [3].

II. PROBLEM FORMULATION AND SOME PRELIMINARIES

Let n, m (m ≤ n), t, ω be the number of observations
(microphones), the number of target signals, and the time
and frequency bin indices in the short time Fourier domain,
respectively. Note that m = n is permitted. Let s(t, ω) ∈ Cm,
n(t, ω) ∈ Cn, and A(ω) ∈ Cn×m be an unknown target
signal vector, an observation noise vector, and an observation
matrix consisting of steering vectors of s(t, ω) (or corre-
sponding to a mixing matrix related with impulse responses
between the microphones and the target signal sources) with
rank(A) = m, where Cn and Cm are n-dimensional and m-
dimensional unitary spaces. We assume that an observation
vector x(t, ω) ∈ Cn is given by the following model:

x(t, ω) = A(ω)s(t, ω) + n(t, ω). (1)

The aim of the noise suppression is to estimate the unknown
target signal vectors s(t, ω) or corresponding waveforms. Note
that A(ω) can be estimated by DOA estimation methods in
case of n > m, or noisy-BSS methods such as [8] for the
case of m = n. In this paper, we assume that A(ω) is given.
We also assume that the target signal vector s(t, ω) and the
observation noise vector n(t, ω) is uncorrelated each other,
that is

Et[s(t, ω)n∗(t, ω)] = Om,n (2)

holds for each ω, where the superscript ∗ denotes the adjoint
(conjugate and transposition) operator; Et denotes the expec-
tation operator over t; and Om,n denotes the m by n zero
matrix. On the basis of the assumption Eq.(2), the correlation
matrix of the observation vector x(t, ω) is reduced to

X(ω) = Et[x(t, ω)x∗(t, ω)]
= A(ω)R(ω)A∗(ω) + Q(ω), (3)



where R(ω) and Q(ω) denote the correlation matrices of the
unknown target signal vector and the noise vector, defined as

R(ω) = Et[s(t, ω)s∗(t, ω)],
Q(ω) = Et[n(t, ω)n∗(t, ω)],

respectively. In this paper, we assume that R(ω) is diagonal for
each ω, which implies that the target signals are uncorrelated
each other. We also assume that the noise vector n(t, ω) is
obtained by observation of diffusion noise. In [7], the diffusion
noise is defined by 1) the power spectrum of each microphone
is identical, and 2) the cross-power spectrum only depends on
the distance between corresponding two microphones. Let

Q(ω) = P (ω)Λ(ω)P ∗(ω) (4)

be the eigenvalue decomposition of Q(ω). When we observe
the diffusion noise by a so-called crystal-shape array, the
unitary matrix P (ω) is reduced to a constant matrix as shown
in [7]. In this paper, we use a crystal-shape microphone array,
which implies that we can assume that P (ω) is given.

III. CRYSTAL-SHAPE-ARRAY-BASED WIENER FILTERING

In this section, we give a overview of the method proposed
in [3]. Firstly, we give some definitions and a proposition as
preliminaries.

Definition 1: [9] Let A = [a1, . . . ,am], ai ∈ Cn, then the
vectored version of A is defined as

vec(A) = [a′
1, . . . ,a

′
m]′ ∈ Cmn, (5)

where the superscript ′ denotes the transposition operator.
Definition 2: [9] Let A ∈ Cp×q and B ∈ Cm×n be

arbitrary matrices and B = (bij), then the Kronecker product
of B and A is defined as

B ⊗ A =

 b11A · · · b1nA
...

. . .
...

bm1A · · · bmnA

 ∈ Cmp×nq. (6)

Proposition 1: [9] Let M1, M2, and M3 be arbitrary
matrices such that the product M1M2M3 is defined. Then,

vec(M1M2M3) = (M ′
3 ⊗ M1)vec(M2) (7)

holds.
Definition 3: Let Zn ∈ C(n2−n)×n2

be the matrix that
extracts non-diagonal elements of ’vec’-ed version of a square
matrix of degree n.

For example, Z2 is given by

Z2 =
[

0 1 0 0
0 0 1 0

]
. (8)

In fact, for

M =
[

a b
c d

]
,

we have

Z2vec(M) =
[

c
b

]
.

From Eqs.(3) and (4), and Proposition 1, we obtain

vec(X(ω)) = (A(ω) ⊗ A(ω))vec(R(ω))
+(P (ω) ⊗ P (ω))vec(Λ(ω)), (9)

where the overline denotes the conjugate operator. Also from
the assumption that R(ω) and Λ(ω) are diagonal, we obtain

Zmvec(R(ω)) = 0m2−m, (10)
Znvec(Λ(ω)) = 0n2−n, (11)

where 0n denotes the zero vector in Cn. From Eqs.(9), (10),
and (11), we have the linear equation

G(ω)
[

vec(R(ω))
vec(Λ(ω))

]
=

 vec(X(ω))
0m2−m

0n2−n

 , (12)

where

G(ω) =

 (A(ω) ⊗ A(ω)) (P (ω) ⊗ P (ω))
Zm Om2−m,n2

On2−n,m2 Zn

 . (13)

Thus, we have the estimates R̂(ω) and Λ̂(ω) of R(ω) and Λ(ω)
by solving Eq.(12); and substituting Λ̂(ω) to Eq.(4) yields the
estimate Q̂(ω) of Q(ω).

Note that the matrix G(ω) must be full column rank so that
R(G∗(ω)) (the linear subspace spanned by the column vectors
of G∗(ω)) is identical to Cm2+n2

, or the estimates R̂(ω) and
ˆΛ(ω) have some biases from their true matrices.
Based on these estimates, we can construct the WF as

BWF (ω) = R(ω)A∗(ω)(A(ω)R(ω)A∗(ω) + Q(ω))+, (14)

where the superscript + denotes the Moore-Penrose general-
ized inverse [10]; and the final estimate of s(t, ω) is given
as

ŝ(t, ω) = BWF (ω)x(t, ω). (15)

Hereafter, we call this method ’Crystal-shape-array-based
Wiener Filter’ which is abbreviated by CWF.

IV. THE PROPOSED METHOD

The key idea of the proposed method is adopting the SS
for noise suppression in which the amplitude spectrum of the
observation noise is estimated by the method shown in the
previous section.

Firstly, we obtain the estimated target signals by

y(t, ω) = A+(ω)x(t, ω)
= s(t, ω) + A+(ω)n(t, ω). (16)

Note that A+(ω) is a left inverse matrix of A(ω), that is,

A+(ω)A(ω) = Im, (17)

where Im denotes the identity matrix of degree m since A(ω)
is full column rank matrix. Let yi(t, ω) be the i-th element
of y(t, ω) and let ñi(t, ω) be the i-th element of ñ(t, ω) =
A+(ω)n(t, ω). The correlation matrix of ñ(t, ω) is trivially
given as

Q̃(ω) = A+Q̂(ω)(A+)∗, (18)



where Q̂(ω) is the estimated correlation matrix of n(t, ω)
given by the method shown in the previous section. Thus, the
power spectrum of the noise included in yi(t, ω) is given as the
i-th diagonal element of Q̃(ω), written as Qii(ω). Accordingly,
the amplitude spectrum of the noise included in yi(t, ω) is
given as

|ñi(t, ω)| =
√

Q̃ii(ω). (19)

We conduct the SS for noise suppression by using this estimate
|ñi(t, ω)|. Final estimated i-the target signal ŝi(t, ω) is given
by

ŝi(t, ω) = max(|yi(t, ω)| − |ñi(t, ω)|, 0)
yi(t, ω)
|yi(t, ω)|

. (20)

We call this method ’Crystal-Shape Subtraction Array with
INVerse’ abbreviated by CSSA-INV.

When the power of the noise in y(t, ω) is comparatively
large, which may be caused by small singular values in A(ω),
the performance of the CSSA-INV may be deteriorated. In
such cases, we can adopt BWF (ω) in Eqs.(16) and (18)
instead of A+(ω). We abbreviate the proposed crystal-shape
subtraction array using Wiener filter BWF (ω) as CSSA-WF.

Note that we can adopt more sophisticated SS in Eq.(20).
Also note that the fidelity of waveforms by the proposed
method may deteriorated since we use the phase spectrum of
yi(t, ω) for ŝi(t, ω) as the same with the general SS scheme.

V. COMPUTER SIMULATIONS

In this section, we numerically investigate the performance
of the proposed methods (CSSA-INV and CSSA-WF) by
comparing with CWF and the simple inverse filtering (INV),
that is, A+(ω) is used for BWF in Eq.(15), in computer
simulations.

Let m = n = 3 and we adopt a regular-triangle-shape array
for a crystal-shape microphone array in which the distance
between two microphones is set to 9.086 cm. As target signals
we use three music samples of 3.0 s with fs = 44.1 kHz
shown in Fig.1. The layout of the microphone array and the
directions of the target signals is shown in Fig.2. Note that
ICA-SSA can not deal with this setting since m = n. As the
noise signals, we use temporary white Gaussian noise whose
spatial correlation matrix in the time domain is given by

Q = σ2

 1.0 0.8 0.8
0.8 1.0 0.8
0.8 0.8 1.0

 , (21)

where σ2 is the variance of the noise. The short-time Fourier
transforms are conducted with the frame size of 512 samples;
the half-shift; and the hamming window.

As the evaluation measures, we use the waveform-based
SNR defined as

Sw = max
α

10 log
T∑

t=1

||s(t)||2

||s(t) − αŝ(t)||2
(22)
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Fig. 1. The target signals.
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Fig. 2. The layout of the microphone array and the directions of the target
signals.

and the amplitude-spectrum-based SNR defined as

Ss = max
α

10 log
T∑

ω=1

|(Fs)(ω)|2

(|(Fs)(ω)| − α|(F ŝ)(ω)|)2
, (23)

where T denotes the number of samples; s(t) and ŝ(t) denotes
the waveforms corresponding to s(t, ω) and ŝ(t, ω); and Fs
and F ŝ denotes the Fourier transforms of s(t) and ŝ(t),
respectively. Note that α is the regression coefficient to absorb
the scale differences.

Figure 3 shows the transition of Sw by the INV, CWF,
CSSA-INV, and CSSA-WF with respect to the SNR of the
observations defined as

So = 10 log
T∑

t=1

||x(t) − n(t)||2

||n(t)||2
, (24)

where x(t) and n denotes the waveforms corresponding to
x(t, ω) and n(t, ω); and Figure 4 show those of Ss. Figure 5
shows the three observations with So = 9.93 dB and Figure
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Fig. 3. Transition of Sw by each method with respect to So.
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Fig. 4. Transition of Ss by each method with respect to So.

6 shows the estimated target signal #1 corresponding to the
upper graph in Fig.1.

From these results, it is confirmed that the proposed CSSA
outperforms the CWF (and INV) in this setting and the CSSA-
WF gives the best performance among adopted competitors.

VI. CONCLUSION

In this paper, we proposed a novel noise suppression
method, named crystal-shape subtraction array, that is based
on the noise estimation scheme by crystal-shape microphone
arrays and the spectral subtraction. We also investigated the
performance of the proposed method by computer simulations
and confirmed that the proposed method outperforms the
conventional ones.

REFERENCES

[1] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,”
Proc. IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.

[2] N. Ito, N. Ono, and S. Sagayama, “A blind noise decorrelation
approach with crystal arrays on designing post-filters for diffuse noise
suppression,” in Proc. ICASSP, 2008, pp. 317–320.

[3] A. Tanaka and M. Miyakoshi, “Joint estimation of signal and noise
correlation matrices and its application to inverse filtering,” in Proc.
ICASSP, 2009, pp. 2181–2184.

[4] Y. Takahashi, T. Takatani, H. Saruwatari, and K. Shikano, “Robust
spatial subtraction array with independent component analysis for speech
enhancement,” in Proc. ISSPA, 2007, pp. 1–4.

[5] S. Boll, “Suppression of acoustic noise in speech using spectral
subtraction,” IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 27, no. 2, pp. 113–120, 1979.

-10

-5

 0

 5

 10

 0  20000  40000  60000  80000  100000  120000

a
m

p
li

tu
d

e

sample number

observation #1

-10

-5

 0

 5

 10

 0  20000  40000  60000  80000  100000  120000

a
m

p
li

tu
d

e

sample number

observation #2

-10

-5

 0

 5

 10

 0  20000  40000  60000  80000  100000  120000

a
m

p
li

tu
d

e

sample number

observation #3

Fig. 5. The observed signals.
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