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Abstract—In gait-based person identification, statistical meth-
ods such as hidden Markov models (HMMs) have been proved to
be effective. Their performance often degrades, however, when
the amount of training data for each walker is insufficient. In
this paper, we propose walker adaptation and walker adaptive
training, where the data from the other walkers are effectively
utilized in the model training. In walker adaptation, maximum
likelihood linear regression (MLLR) is used to transform the
parameters of the walker-independent model to those of the
target walker model. In walker adaptive training, we effectively
exclude the inter-walker variability from the walker-independent
model. In our evaluation, our methods improved the identification
performance even when the amount of data was extremely small.

I. INTRODUCTION

Human gait refers to the motion of an individual charac-
terized by his/her spatio-temporal movement while walking.
Automatic person identification using human gait has been
extensively studied. For example, binary silhouette [1], gait
energy image (GEI) [2], higher-order shape configuration [3],
and higher-order local autocorrelation [5] have been used as
gait features. Similarity matching (SM) [1], k-nearest neigh-
bors (k-NN) [5], dynamic time warping (DTW) [6], and hidden
Markov models (HMMs) [4], [7], [8], [9] have been often used
as gait classifiers. Statistical methods such as HMMs often
achieved higher performance than the others since they are
more robust against the variety in gait than the others.

In our previous work [9], we proposed an HMM-based
method robust against speed difference, and confirmed its
effectiveness. We used cubic higher-order local autocor-
relation coefficients mapped to Fisher discriminant space
(CHLAC+FDA) [5] and gait-silhouette principal component
(GSP) as features. These features discriminate walkers and
distinguish gait phases well. We used the Gaussian mixture
distribution as an output probability in HMMs in order to
achieve robustness against variations in observed features. Our
method was superior than the other methods (e.g. [1], [4], [5])
especially for dealing with speed variations across and within
a sequence.

Usually, maximum likelihood (ML) estimation is used for
estimating HMM parameters, where a large amount of training
data is needed. In gait-based person identification, however, it
is often difficult to obtain many training samples from one
walker. One effective solution to this problem is to utilize

model adaptation techniques [10] which were first proposed
in speech processing. Recently, Xu et al. [11] introduced it to
gait-based person identification, where they employ Gaussian
mixture models as walker models. Model adaptation is a
process to robustly estimate the model parameters with small
amount of data using a prior knowledge about the target
condition. It effectively utilizes the limited amount of available
data for estimating target model parameters more precisely.

In this paper, we propose walker adaptation and walker-
adaptive training for gait-based person identification based on
HMMs. In walker adaptation, using a small amount of data, a
transfer (mapping) function from the parameters of an initial
model to those of the target walker is robustly estimated.
Walker-adaptive training provides a good initial model for
walker adaptation, which represents intra-walker variety well.

This paper is organized as follows. Section 2 reviews our
gait recognition framework. Section 3 and 4 explains our
proposing methods, walker adaptation and walker adaptive
training, respectively. Section 5 describes the experimental
setup and reports the results obtained from our experiments.
Section 6 concludes the paper.

II. CHLAC+FDA+GSP HMM

In our previous gait-recognition framework, we use
CHLAC+ FDA and principal component analysis (PCA)-based
gait silhouette (GSP) concatenation as the observation vectors
and use an HMM as the classifier. CHLAC+FDA discriminates
accurately between classes, GSP distinguishes gait phases
precisely, while HMMs robustly classify gait sequences with
different speeds. Their combination was proven to be robust
against speed variations, even when the speed varied within a
gait sequence [9].

CHLAC features are shape and motion features extracted
from local autocorrelation [5]. Let f(x, y, t) be pixel intensity,
where x and y are pixel coordinates in one frame image, and
t is the time index. Let ai (i = 1, . . . , N) be a displacement
vector from the reference point, r = (x, y, t). A set of
independent local mask pattern, (r, r + a1, . . . , r + aN ), for
capturing shape and motion characteristics of a walker’s gait,
is generated based on the N -th orders of correlation. We
use CHLAC features with the orders 0 to 2. The 0th order
corresponds to the correlation within a single frame (1 mask
pattern). The 1st order corresponds to the correlation within a
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Fig. 1. The implementation of walker adaptation and walker adaptive training in gait-based person identification.

single frame and between two neighbouring frames (13 mask
patterns). The 2nd order corresponds to the correlation within
a single frame, between two, and up to three neighbouring
frames (237 mask patterns). Thus, the total dimensions of a
CHLAC feature vector is 251, which corresponds to the 251
independent local mask patterns for calculating the correlation.
The correlation coefficient for each pixel are then summed up.
CHLAC is governed by three parameters: spatial displacement
∆r, frame interval ∆t, and window width T . We set ∆r = 4,
∆t = 2, and T = 5 frames. Then, the CHLAC features are
mapped to the (c − 1)-dimensional (c is the total number
of classes) feature vector using Fisher discriminant analysis
(FDA). We call the resulting features CHLAC+FDA.

In addition to CHLAC+FDA features, we introduce another
features which have more explicit phase information, silhou-
ette features by principal component analysis (PCA). We call
the resulting features Gait Silhouette PCA (GSP). The number
of dimension is 1

2 (c − 1). We concatenate CHLAC+FDA
features and GSP features to make an input feature vector
for an classifier.

We use an HMM as the classifier and employ a continuous
gait-recognition framework. We prepare one HMM with 8
states for a half-gait cycle assuming there is symmetry between
the first and the second half of the cycle in the sagittal plane
view. Its topology is left-to-right without any skips. We used
a mixture of Gaussian distributions with 16 components as an
output probability for each state.

The more detailed explanation of this framework can be
found in [9].

III. WALKER ADAPTATION

In our previous framework described in Section I, we
directly train walker-dependent (WD) model from the scratch

using each walker’s training samples. In this paper, we intro-
duce walker adaptation (WA) for WD model estimation. By
using the parameters of the walker independent (WI) model as
the prior knowledge, the effective number of free parameters to
be estimated is largely reduced. Accordingly, WA can estimate
the model parameters more precisely than the conventional
training methods when the amount of data available is small.

We use Maximum Likelihood Linear Regression (MLLR)
technique [12] as an adaptation method. In MLLR adapta-
tion, we estimate a transfer (mapping) function from walker-
independent (WI) model, which is trained using training
samples from all other walkers, to that of the target walker
(Fig. 1). The mean vector µI of each mixture component of
the WI HMM is transformed to the walker-dependent (WD)
parameter µD as follows:

µD = AµI + b, (1)

where A is a d× d transformation matrix, b is a d-dimension
bias vector. d is the dimension of the feature vector. A
and b are shared among all the mixture components of the
HMM, and estimated by maximizing the likelihood of the
target walker’s data used for adaptation (adaptation data) using
expectation-maximization (EM) algorithm.

IV. WALKER ADAPTIVE TRAINING

There exists large variety in shape and motion character-
istics of human gait. Since the WI model is built by using
many walker’s gait data, it represents not only intra-walker
variety, but also such inter-walker variety. On the other hand,
ideally, the initial model for WA should have only intra-walker
variety and should not have inter-walker variety. We use walker
adaptive training (WAT) to obtain a canonical walker model,
which has less inter-walker variety than the WI model, and use



it as the initial model for WA. Figure 1 illustrates the scheme
using WAT. A similar framework has been implemented in
speech recognition, in particular speaker adaptive training [13].
Now we implement the framework for the first time to gait-
based person identification.

In WAT, a WI model is first trained using data from all
walkers in the training set. Next, the model is adapted to each
training walker using the walker adaptation in the previous
section. Then, the inverse of the transform matrix, A−1, for
each walker is used to transform each walker’s feature vector
o at each time t to walker-independent feature ô.

ô = A−1o−A−1b, (2)

The transformed features ô from all the time frames of all
walkers are used to train the canonical walker model. By
transforming the feature vectors of each walker to those of
a canonical walker, who is the average of all the training
walkers, we can effectively reduce the inter-walker variety
in features caused by the difference between walkers. This
procedure is carried out iteratively to obtain a lower inter-
walker variability.

We use the resulting canonical walker model as the initial
model for walker adaptation.

V. EXPERIMENT

A. Experimental Conditions

For the evaluation, we used USF-NIST (122 walkers) May
and November 2001 database [1] for Probe A, B, C (walk
on grass), CMU-MoBo database (25 walkers, walk on tread-
mill) [14], and TokyoTech database A [8] (30 walkers, walk on
a treadmill). TokyoTech database A included walkers walking
at various speeds. Its detailed description of can be found
in [9].

For each image, we first subtracted a background image
which was obtained in the preprocessing stage. After a certain
threshold for the intensity of all pixels was set, the foreground
pixels were then extracted as a binary silhouette image. Next,
the bounding box around the silhouette was resized into 128×
88 pixels. Silhouette images were kept in the center region.

The dimension of CHLAC+FDA feature was 121 for USF-
NIST, 24 for CMU-MoBo, and 29 for Tokyo Tech A. These
dimensions were automatically determined by the number of
walkers to be classified. We set the dimension of GSP features
to be 1

2 (c − 1), where c is the number of classes/walkers for
each database. We used 60 for USF-NIST database, 12 for
CMU MoBo, and 15 for the TokyoTech database A.

B. Results

Figure 2 shows the average results of the experiment using
USF-NIST Probe A, B, and C May and November 2001
database. We compared our method with pHMM [4], GEI [2],
Gabor-PDF-NN [11], Gabor-PDF-SR [11], and Gabor-PDF-
LGSR [11]. pHMM [4] uses an HMM trained from many
walkers for normalizing a sequence before the classification

Fig. 2. Average identification error rate (%) for USF-NIST Probe A, B, and
C for all walkers.

Fig. 3. Average identification error rate (%) across all speeds for CMU-MoBo
for all walkers.

stage. A gait energy image (GEI) [2] is obtained by averag-
ing the silhouette images. Gabor-PDF-NN [11] uses GMM-
based Gabor features, Gabor-PDF, obtained from GEI, and
the conventional nearest neighbour (NN) classifier. Gabor-
PDF-SR [11] uses a sparse representation (SR) of Gabor-PDF
as features. Gabor-PDF-LGSR [11] uses the local and group
information of a gait sequence to obtain SR.

We varied the number of gait cycles used for model es-
timation to examine the robustness against data insufficiency.
The errors for maximum likelihood estimation (ML), WA, and
WAT are 51.5%, 45.2%, and 42.8%, respectively, by using 1
gait cycle, and 12.2%, 8.7%, and 8.0%, respectively, by using
5 gait cycles.

The error reduction rates (ERRs) of the proposed methods,
WA and WAT, from ML was 12.2% and 16.8%, respectively,
by using only 1 gait cycle. Our proposed methods performed
better than pHMM [4], GEI [2], Gabor-PDF-NN [11], and
performed almost equally as Gabor-PDF-SR [11] and Gabor-
PDF-LGSR [11].

Figure 3 shows the average results of the experiment using
CMU MoBo. We compared our method with pHMM [4],
FHMM [7]. FHMM was employed by combining Frieze and
Wavelet features using two layers of HMM. The errors for ML,
WA, and WAT are 29.0%, 23.0%, and 20.0%, respectively, by
using 1 gait cycle, and 2.0%, 2.0%, and 2.0%, respectively, by
using 10 gait cycles. The ERRs of WA and WAT from ML,
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Fig. 4. Average identification error rate (%) across all speeds for TokyoTech
A for all walkers.

was 20.7% and 31.0%, respectively, by using only 1 gait cycle.
Our proposed methods performed significantly better than
pHMM [4], and equivalently to Factorial-HMM (FHMM) [7].

Figure 4 shows the results using TokyoTech A. We
compared our method with CHLAC+FDA-k-NN [5].
CHLAC+FDA-k-NN used CHLAC+FDA as features and
k-NN as a classifier. For TokyoTech A (Fig. 4), the errors for
ML, WA, and WAT are 12.3%, 8.3%, and 6.1%, respectively,
by using 1 gait cycle, and 2.3%, 1.9%, and 1.6%, respectively,
by using 50 gait cycles. The ERRs of WA and WAT from
ML, was 32.5% and 50.4%, respectively, by using 1 gait
cycle. It was 17.4% and 30.4%, respectively, by using 50
gait cycles. Our proposed methods performed better than
CHLAC+FDA-k-NN [5].

These results show that WA effectively utilizes a small
amount of data for walker model parameter estimation, and
WAT further improves the identification performance.

In order to confirm the effectiveness of WAT, we compared
the variances in the WI model and those in the canonical
model. Using USF-NIST database, we calculated a value
averaged over all the Gaussian distributions of all the HMM
states for each model. The ratio of the averaged variance of the
canonical model to that of the WI model was 0.52. This result
shows that WAT effectively reduced inter-walker variability.

VI. CONCLUSIONS

We proposed walker adaptation (WA) and walker adaptive
training (WAT) for gait-based person identification. These
methods estimate the walker model parameters more precisely
than directly estimating them from the scratch, especially when
the amount of data obtained from the target walker is small.
By our evaluation using three databases, USF-NIST Probe
A, B, and C, CMU MoBo, and TokyoTech A, we confirmed
that the proposed methods performed significantly better than
the conventional methods. In particular, WAT decreased the
identification error rate more than 16% when the amount of
data is only 1 gait cycle. Our methods are very useful in
real applications; we can decrease the load for each walker to
register gait data drastically. While the MLLR transformation
was proved to be effective in WAT, it is clear that such simple

transformation may not be sufficient to represent speaker
differences.

In future work, we plan to apply the proposed methods
for reducing the influence of shape variations in gait (e.g.
clothing differences). We also plan to combine our MLLR
adaptation method with the other adaptation techniques, such
as maximum a posteriori (MAP) adaptation, to further improve
the performance of gait-based person identification.
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