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Abstract—In this paper, we propose a novel algorithm for
multi-frame super resolution (SR) with consideration of scale
changing between frames. First, we detect the scale of each frame
by scale-detector. Based on the scale gap between adjacent frames,
we extract patches and modify them from different scales into
the same scale to obtain more redundant information. Finally,
a reconstruction approach based on patch matching is applied
to generate a high resolution (HR) frame. Compared to original
Nonlocal Means SR (NLM SR), the proposed Scale-Compensated
NLM finds more potential similar patches in different scales
which are easily neglected in NLM SR. Experimental results
demonstrate better performance of the proposed algorithm in
both objective measurement and subjective perception.

I. INTRODUCTION

Multi-frame super resolution method intends to reconstruct
a HR frame from a series of low resolution (LR) frames. It
is based on an assumption that a large amount of redundant
information exists in LR frames and they complement each
other. Therefore, the key to multi-frame SR is to obtain precise
and high quantity redundant information from the LR images.

Many researchers focus on improving motion estimation to
get more precise locations of redundant information, such as
Tanaka et al. [1]. Correct direct motion estimation assures the
precision, but there are unavoidable motion estimation errors
because scenes of videos are various and complex. Several
wrong estimations severely degrade HR frames compared to
slight imprecise estimations in a large domain, which is the
bottleneck of the direct motion estimation methods. Potter et
al. [2] proposed a method, NLM SR, free of explicit motion
estimation enlightened by NLM denoising algorithm. NLM
SR estimates the similarity of patches in the neighborhood,
which reflects theirs possible motion estimation, and the final
motion estimation is a weighted average from many possible
motions, so it avoids severe motion estimation errors.

Recently, some new methods inspired by NLM SR have
been proposed. Zeng et al. [3] separated an image into various
regions and processed them with adaptive methods. Viewing
an image as a signal and processing it in the frequency
domain, Zheng et al. [4] combined wavelet theory with NLM
and proposed a new method, wavelet-based nonlocal means
(WNLM). Considering adaptive parameters in NLM, Cheng
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et al. [5] improved NLM SR by mobilizing its search win-
dow and adjusting block size adaptively. Our previous work
[6] took rotation-invariance and search window into account
simultaneously and proposed an SR reconstruction approach,
Adaptive Rotation Invariance and Search Window Relocation
(ARI-SWR) algorithm.

All methods mentioned above only have considered transla-
tion and/or rotation between adjacent frames. They neglect the
zooming which changes scales of objects. Zooming caused by
camera motion and objects motion is considered ubiquitous in
videos. Regardless of scale changing, patches extracted from
a same scale can not match flawlessly. Fig. 1 shows the scale
changing effect in adjacent frames. Glanser et al. [7] took scale
changing into account in single-frame SR. But their approach
is blind to the explicit changing scales and fails to handle
frames in arbitrary scales because LR frames are decimated
by fixed scale factors. Furthermore, only the higher scale patch
in a mapping relationship of the patches is taken into the
reconstruction in their approach. Instead, an algorithm should
make full use of all the redundant information from LR frames
in multi-frame SR.
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Fig. 1. Scale changing effects in adjacent frames. (a) Two adjacent frames,
(b) some critical areas of the frames.

Taking account of the above issues, a scale-compensated
measurement is used to estimate an accurate scale between ad-
jacent frames. After that, patches are extracted from different
scales and are modified into one scale so that patch-matching
is more precise. Finally, the HR frame is reconstructed by the
proposed algorithm, Scale-Compensated NLM.

The rest of this paper is organized as follows. In Sec. II, an
improved NLM SR, ARI-SWR algorithm, is reviewed. Scale-
Detector based on scale-invariant feature transform (SIFT)
and verification is presented in Sec. III. Sec. IV focuses on
proposed algorithm. Experimental results are shown in Sec.
V. A brief conclusion is given in Sec. VI.



II. OVERVIEW OF THE IMPROVED NLM SR:
ARI-SWR ALGORITHM

The NLM SR [2] works effectively based on the assumption
that image contents is likely to repeat itself within the neigh-
borhood. Although NLM SR is a useful way to reconstruct
higher resolution frames, it overlooks some affine transforma-
tions between the frames, including translation, rotation and
zooming. ARI-SWR algorithm [6] is presented to compensate
for part of the above omissions. Applying structure descriptor
and local intensity kernel to NLM SR and relocating the search
window by motion estimating, ARI-SWR algorithm performs
better in videos with rotation and translation. In this specific
scenario, we use a reference frame and several candidate
frames which are adjacent to the reference frame to generate
a HR frame.

The value of each pixel Res(k, l) is calculated by

Res(k, l) =
Σt∈[1,··· ,T ]Σ(i,j)∈N(k,l)w(k, l, i, j, t)yt(i, j)

Σt∈[1,··· ,T ]Σ(i,j)∈N(k,l)w(k, l, i, j, t)
,

(1)
where T is the number of reference frames, the neighborhood
of the pixel (k, l) is represented by N(k, l), and yt stands for
the t-th reference frame. wt(k, l, i, j) is given by

w(k, l, i, j, t) =
1

C(k, l)
· exp

{
−∥S(k, l)Yr − S(i, j)Yt∥22

2σ2
1

}
·exp

{
−∥I(k, l)Yr − I(i, j)Yt∥22

2σ2
2

}
,

(2)

where S and I denote the structure descriptor and the local
intensity kernel, C(k, l) is the normalization constant, Yr and
Yt stand for the HR reference frame and the t-th HR candidate
frame generated by bilinear interpolation. w(k, l, i, j, t) is the
weight that describes the similarity between the reference
patch and the candidate patch. A higher weight implies more
similarity between them. σ1 and σ2 control the proportion of
S and I . σ1 is defined as a piecewise function to be adjusted
adaptively.

Although ARI-SWR algorithm considers rotation and trans-
lation in videos, it neglects zooming. Thus, we proposed the
scale-detector which calculates the scale gap between the
frames to consider zooming in our reconstruction approach.

III. SCALE-DETECTOR AND THE VERIFICATION

A. Scale-Detector Based on SIFT

SIFT [8] proves a reliable and effective method for extract-
ing the distinctive features (keypoints) from frames regardless
of affine transformation. There are two main stages of gener-
ating the set of keypoints, keypoints detection and keypoints
description. In addition, when SIFT is served to compute the
relationship of two frames, keypoints matching are proposed.
Our algorithm uses SIFT to compute the keypoints in each
frame and matches these keypoints between adjacent frames.
Then the scale between adjacent frames is defined as follow:

st =
1

|M |
×

(
Σi∈M

s′r(i)

s′c(i)

)
, (3)

where st means the scale between the t-th candidate frame and
the reference frame. s′r(i) and s′c(i) stand for the scale of the
i-th matched keypoint descriptor in the reference frame and
the i-th candidate frame, respectively. M is the set of matched
keypoints and |M | is the number of elements in M .
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Fig. 3. Partial matched keypoints and the corresponding scale values.

Fig. 3 is a brief illustration of the scale-detector. Ratios of
all the matched keypoints are summed and averaged so that
influences from several keypoints computation errors in SIFT
are weakened and a stable and accurate estimation of the scale
between adjacent frames can be obtained.

B. The Verification of Scale-Detector

To demonstrate the precision and stability of the scale-
detector, some verification experiments are conducted. We
apply scale-detector to various changing scales and resolutions
of the sequences. We use three CIF sequences (Bus, City and
Crew) with a fixed resolution (352×288) on changing scales in
Figs. 2(a) and (b). And we use three 1080p video sequences
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Fig. 2. The performances of scale-detector in different standard scales and different resolutions. 1080p, 540p, 270p and 135p represent resolution of 1920×1080,
960× 540, 480× 270 and 240× 135 respectively.



(Bluesky, Pedestrian and Sunflower) with a fixed scale gap
between testing frames (2×) on changing resolutions in Figs.
2(c) and (d). In Figs. 2(a) and (c), the average relative error
(axis-y, δ) reflects the precision of the scale-detector. And in
Figs. 2(b) and (d), the standard deviation (axis-y, σ) reflects
the stability of the scale-detector.

When the scale is under 2.5 and the resolution is higher than
270p, Figs. 2(a) and (c) show the low level of δ which indicates
the high level of the precision of scale-detector. In Fig. 2(b),
when the scale is under 1.5, over 99% of the results fluctuate
in a very small range (±5%). Even when the scale reaches 2.5,
over 60% of the fluctuation of results are still under 10%. In
Fig. 2(d), over 99% of the results have very little fluctuation
(±5%) when the resolution is higher than 270p. Therefore,
when the scale is under 2.5 and the resolution is higher than
270p, scale-detector generates stable consequences.

Limited by the zooming speed of the camera, the scale
changing of adjacent frames is rarely over 2.5. And the
resolution of a video sequence is unlikely to be lower than
270p with the development of camera devices. Thus, scale-
detector can be consider efficient and reliable on most video
sequences.

IV. SCALE-COMPENSATED NONLOCAL MEANS

After calculating the accurate scales between adjacent
frames by scale-detector, we extract and modify patches from
the candidate frames into the scale of the reference frames.
Then, we reconstruct the HR frames based on NLM SR.
Sec. IV-A focuses on the patch extraction, modification and
matching. The whole algorithm is presented in Sec. IV-B.

A. Patches from Multi-Scales

In both NLM SR and ARI-SWR algorithm, the size of a
patch has been decided before SR reconstruction. Therefore,
any similar patch with zooming in different frames has lower
weights, and is even more easily to be neglected when patch
matching. After obtaining accurate scales from the scale-
detector, we match the patches from different scales more
precisely and obtain extra information.

First, patches in different scales are extracted on the basis of
the scale between the reference frame and the t-th candidate
frame (st in Sec. III). Then patches are modified by interpo-
lation into the scale of the reference frame. To sum up, each
modified patch can be described as follow:

MP (i, j, t) = I(st×f)R(st, i, j)yt, (4)

where MP (i, j, t) represents the modified patch, I(st×f)
and R(st, i, j) are interpolation operator and patch extraction
operator in the scale of st×f , yt is the t-th candidate frame.
In addition, we use bilinear interpolation as I(st×f), st×f is
the interpolation scale factor.

With the set of modified patches, we match the patches and
get the final value of each pixel as follow:

Res(k, l) =
Σt∈[1,··· ,T ]Σ(i,j)∈N(k,l)ŵ(k, l, i, j, t)yt(i, j)

Σt∈[1,··· ,T ]Σ(i,j)∈N(k,l)ŵ(k, l, i, j, t)
,

(5)

which is the same as NLM SR, and specially, ŵt(k, l, i, j) can
be described as follow:

ŵ(k, l, i, j, t) = exp

{
−∥R(1, k, l)Yr − I(st×f)R(st, i, j)yt∥22

2σ̂2

}
,

(6)
where Yr is the HR reference frame interpolated by bilinear,
yt is the t-th LR candidate frame, σ̂ is a constant. As we have
got the set of modified patches, the equation can be simplified
as follow:

ŵ(k, l, i, j, t) = exp

{
−∥R(1, k, l)Yr −MP (i, j, t)∥22

2σ̂2

}
,

(7)
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Fig. 4. Comparison of unmodified and modified patch-extractor in patch
matching.

Algorithm 1 Scale-Compensated Nonlocal Means SR
Input:
� yt(t = 1, · · · , T ): input LR frames
� Yt(t = 1, · · · , T ): input HR frames generated from input
LR
frames by interpolation
� f : the scale factor of SR
� r(1 ≤ r ≤ T ): the number of the reference frame in the
sequence of LR frames
Initialization:
1. V,W ← 0
Scale detection: For each t ∈ [1, T ]
2. SIFT processing
3. st ← Eq. (3)
Patch Modification: For each t ∈ [1, T ], each (i, j) ∈ yt
4. p← R(st, i, j)yt
5. p← I(st×f)p
6. MP (i, j, t)← p
Reconstruction: For each (k, l) ∈ Yr, each (i, j, t) that
(f×i, f×j, t) ∈ N(k, l)
7. ŵ(k, l, i, j, t)← Eq. (7).
8. V (k, l)+ = Σt∈[1,··· ,T ]Σ(i,j)∈N(k,l)ŵ(k, l, i, j, t)yt(i, j)
9. W (k, l)+ = Σt∈[1,··· ,T ]Σ(i,j)∈N(k,l)ŵ(k, l, i, j, t)
Result:For each (k, l) ∈ Yr

10. Res(k, l)← V (k, l)/W (k, l)
Output:
� Res: the HR reference frame

Since accurate scales are acquired and patches are modified
from different scales into the same, we match the patches



more precisely and exploit more redundant information. In
Fig. 4, when patch-extractor is modified, weights between truly
similar patches are higher (lighter blocks in the figure), which
means that the proposed patch-matching provides more useful
information.

B. Scale-Compensated Nonlocal Means Algorithm

In this subsection, we integrate all the processes in the
above and list a pseudocode of Scale-Compensated NLM in
Algorithm 1 to give an overview of the proposed algorithm.

V. EXPERIMENTAL RESULTS

In experiments, we set patch size at 13×13, search window
size at 37× 37 and the scale factor of SR is 1:3 in each axis
(f = 3). Our experiments have two main parts: testing on syn-
thetic and real sequences. The improvements of the proposed
algorithm can be easily observed. In measurements, Scale-
Compensated NLM algorithm achieves the highest PSNR and
SSIM among all the comparison experiments.

First, we test our algorithm on synthetic video sequences,
such as Foreman. We down-sample several frames in Foreman
to make a sequence with artificial zooming and reconstruct the
15-th of Foreman frames. To amplify the zooming effect in
sequences, we use Tempete which is extracted with an interval
of 20 frames, the 20th, 40th, 60th, 80th and 100th frames, to
reconstruct the 60th frame.

Fig. 5. Subjective comparison of two algorithms on Text. (a) An result of
Scale-Compensated NLM on Text, (b) partial areas of the original frame, (c)
NLM SR, (d) Scale-Compensated NLM.

TABLE I
OBJECTIVE MEASUREMENT OF SR RESULTS IN SEQUENCES (PSNR)

Sequence NLM SR ARI-SWR Proposed
Foreman 31.15 30.96 31.27
Tempete 22.85 22.74 23.00

Text 29.23 30.06 30.11
Man 27.14 27.02 27.29

Considering the lack of natural zooming motion in synthetic
video sequences, we shoot some real sequences with zooming.
Our sequences (Text and Man) have lots of complex object
motions during the camera motion and we choose some frames
to conduct the experiments. Scale-Compensated NLM algo-
rithm improves the original NLM SR by 0.1dB in objective
measurement (PSNR) at Table I. Table II shows that Scale-
Compensated NLM algorithm performs well in subjective
measurement (SSIM). Scale-Compensated NLM algorithm
preserves more details and produces less block effect in Figs.

5 and 6, compared to NLM SR. The above results indicate
that Scale-Compensated NLM obtains more useful information
from a same frame for the scale variation is considered. Thus,
a positive conclusion to the proposed algorithm is made.

Fig. 6. Subjective comparison of two algorithms on Man. (a) An result of
Scale-Compensated NLM on Man, (b) partial areas of original frame, (c)
NLM SR, (d) Scale-Compensated NLM.

TABLE II
SUBJECTIVE PERCEPTION OF SR RESULTS IN SEQUENCES (SSIM)

Sequence NLM SR ARI-SWR Proposed
Foreman 0.8109 0.8001 0.8151
Tempete 0.6927 0.6737 0.7013

Text 0.8592 0.8512 0.8633
Man 0.7780 0.7617 0.7831

VI. CONCLUSIONS

NLM SR is popular in SR reconstruction. However, most
of these methods fail to concern the scale changes between
frames. In this paper, we present two main contributions to
solve this problem. One is the scale-detector which proves
effective and reliable in detecting scale of video sequences.
The other is the proposed Scale-Compensated NLM SR which
improves NLM SR. To be extended, a more accurate scale-
detector should be considered and a combination of rotation-
invariant and translation-invariant algorithm is worth attempt-
ing.
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