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Abstract—This paper proposes an efficient feature extraction
method for automatic diagnosis systems to detect pathologi-
cal subjects using continuous speech. Since continuous speech
contains slow and rapid adjustments of vocal mechanisms
which relate to initiations and terminations of voicing, the
proposed algorithm utilizes both localized temporal character-
istics and histogram-based global statistics of harmonic-to-noise
ratio (HNR) to efficiently differentiate the key features from
phonetic variation. Experimental results show that the proposed
method improves the classification error rate by 11.2 % (relative)
compared to the conventional method using HNR.

I. INTRODUCTION

Automatic detection of pathological speech using features

that are extracted from acoustic signals is being actively stud-

ied. The acoustic analysis methods of speech signals often rely

on single vowel phonation of sustaining several seconds for its

simplicity. The metrics include a perturbation measurement of

fundamental frequency and amplitude, and harmonics-to-noise

ratio (HNR) [1], [2], [3].

However, most clinicians regard continuous speech as more

informative than sustained vowel phonation because contin-

uous speech involves slow and rapid adjustments of vocal

mechanisms which relate to initiations and terminations of

voicing that are not present during sustained vowel phonation.

Thus, it would be desirable and potentially more appropriate to

investigate continuous speech toward diagnosing pathological

subjects. Researches on continuous speech have not been

much investigated compared to the ones on sustained vowels

partly because of the feature variations in continuous speech.

For example, pitch variation or amplitude perturbation may

occur by phonetic variation not by pathological reasons in

continuous speech. In addition, it may not be a good idea to

use Mel-frequency cepstral coefficients (MFCCs), which are

widely used in the speech signal processing community [4],

[5], because they also vary depending on phonemes. Studies

devoted to vocal aperiodicities, such as signal-to-noise ratio,

in continuous speech have been conducted [6], [7], [8], but

they only used static features, i.e., average value of estimated

vocal aperiodicities in utterance.

The characteristics of vocal folds’ vibrations keep changing

across different types of phonations, such as onsets, offsets,

transient or weak voiced regions. Furthermore, the supra-

laryngeal impedance varies especially during obstruents, and

the larynx continually moves up and down in the neck [9].

Those conditions under which adjustments across phonations

must take place in continuous speech is considered to be chal-

lenging for pathological subjects. This results in the difference

of dynamic characteristic, i.e., rapid changes in HNR contour

of normal speech, compared to pathological speech. Therefore,

dynamic characteristic would be helpful for discriminating

normal and pathological speech.

To obtain dynamic characteristics of harmonicity, we pro-

pose the time derivatives of HNR contour in voiced region. By

analyzing statistical distributions of both static and dynamic

features of HNR in the sentence, specific regions where

normal and pathological groups can be identified clearly are

determined. The reliability of the proposed approach is verified

by measuring Jensen-Shanon divergence of feature distribu-

tions. Classification of normal and pathological speech is also

conducted using support vector machine (SVM). Experimental

results show that the proposed method significantly improves

classification accuracy. Compared to the performance obtained

from the conventional method using HNR only, the proposed

system using both dynamic characteristics and histogram-

based global statistics reduces error rates by 11.2 % relatively.

II. FEATURE EXTRACTION FOR BASELINE

A. Database

The voice recordings consist of utterances from pathological

and normal speech collected by Samsung Medical Center,

Seoul, Korea. The database contains phonation of the vowel

/aa/, along with readings of a passage (about 8 seconds) in

Korean, recorded by 2379 pathological (1155 female, 1224

male), and 235 normal (105 female, 130 male) subjects. The

data samples were recorded in different sessions in a sound

treated booth using a standardized recording protocol. In this

study, only a passage sample is used. The sampling frequency

is downsampled to 16 kHz.

B. Harmonic-to-noise ratio

HNR is defined as the energy ratio between the periodic

and aperiodic components as follows:

HNR(l) = 20 log

⎛
⎜⎜⎝

mj∑
m=mi

||S(m, l)| − |N(m, l)||
mj∑

m=mi

|N(m, l)|

⎞
⎟⎟⎠ (1)



where S(m, l) and N(m, l) are short-time Fourier transform of

original signal and aperiodic components, respectively. l and

m are the frame index and frequency bin index. Aperiodic

components N(m, l) can be considered as the residuals of

long-term predictive analysis [6]. The current analysis frame

of length L is predicted by a lagged frame of the same length

such that

ŝ(k) = βs(k − T ), (2)

where s(k) is the current speech sample, T is the prediction

lag with −Tmax ≤ T ≤ −Tmin and Tmin ≤ T ≤ Tmax, and β
is the long-term prediction coefficients. Tmax and Tmin are

fixed to 25ms and 2.5ms, respectively. The optimal long-term

prediction coefficient is derived by minimizing the prediction

error energy E, i.e.,

E =
L−1∑
k=0

e2(k) =
L−1∑
k=0

[s(k)− βs(k − T )]
2
, (3)

which yields

β =

∑L−1
k=0 s(k)s(k − T )√∑L−1

k=0 s2(k)
∑L−1

k=0 s2(k − T )
. (4)

β is bounded to be equal to or less than 1. The optimum

value is the lag for which the prediction error energy becomes

minimum, i.e.,

Topt = argmin
T

{
L−1∑
k=0

[s(k)− βs(k − T )]2

}
. (5)

The instantaneous value of the prediction error (residual sig-

nal) is calculated as follows,

e(k) = s(k)− βopts(k − Topt). (6)

The short-time Fourier transform of e(k) becomes N(m, l)
given in (1).

C. Determination of HNR frequency bands

HNR for normal subjects is expected to be higher than

that of pathological subjects. In literature, the normal voice

shows a relatively strong harmonic structure up to about 4

kHz. In the case of the pathologic voice, the spectrum includes

higher noise levels than normal one with deteriorated harmonic

structure even at lower frequencies. Therefore, the harmonic-

to-noise energy ratio (HNR) at limited frequency bands can

be beneficial for discriminating pathologic voices from normal

ones [1], [3], [10]. To assess the distribution distance of normal

and pathological speech in limited frequency bands, Jensen-

Shanon divergence is used [11]:

JS(p; q) = 1
2

∑
i

pi ln
pi

1
2 (pi+qi)

+ 1
2

∑
i

qi ln
qi

1
2 (pi+qi)

, (7)

where p and q are two probability distributions. In this

paper, probability distributions are modeled as four-mixture

Gaussians. Table I illustrates that FB2040, i.e., frequency band

between 2 kHz and 4 kHz, shows the highest distance. Since

the setup also shows the best classification accuracy, this paper

uses the FB2040 condition for the baseline system.

TABLE I
JENSEN-SHANON DIVERGENCE BETWEEN NORMAL AND PATHOLOGICAL

DISTRIBUTION OF HNR IN VARIOUS FREQUENCY BANDS. THE TERM

FB1525 INDICATES THE CASE OF USING FREQUENCY BAND BETWEEN

1.5 KHZ AND 2.5 KHZ.

FB1525 FB2535 FB2040 FB2080 Full band

JS dist. 0.226 0.257 0.262 0.256 0.034

III. LOCAL AND GLOBAL CHARACTERISTIC ANALYSIS OF

HNR

A. Dynamic characteristics of HNR

In continuous speech, the vibration of the vocal folds keeps

changing depending on the types of phonemes, e.g., onsets,

offsets, transient or weak voiced regions. This results in

the difference of dynamic characteristic between normal and

pathological speech. In the HNR contour of normal speech,

there are more peaks and valleys than that of pathological
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Fig. 1. HNR2040 contour of example utterances from normal ((a) and (b))
and pathological speech ((c) and (d)).



speech due to rapid changes in transition region.

Fig. 1 shows the examples of HNR contour in continuous

speech. As shown in the figure, it is expected that the degree of

dynamic characteristics in HNR contour can be a good feature

for discriminating normal and pathological speech. From this

observation, the time derivatives of HNR contour in voiced

region are calculated as follows:

ΔHNR(l) = HNR(l) −HNR(l − 1), (8)

where l is frame index. Dynamic feature (HNR delta) is

obtained by averaging the absolute value of time derivatives of

HNR contour over the voiced speech. HNR delta for normal

speech is expected to be higher than that of pathological

subjects.

B. Histogram-based global statistics of HNR

Normal speech sometimes shows low HNR values even

in voiced region due to various reasons such as prosody

variation depending on person or phoneme characteristics that

have harmonic components only in low frequency bands (e.g.,

nasal sound). Low HNR values in normal speech increase

uncertainty with those in pathological speech, which decreases

classification accuracy. Similar phenomenon can be observed

while using the HNR delta feature. Although rapid changes of

HNR contour in phoneme boundaries are occurred more fre-

quent in normal speech rather than in pathological speech, the
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Fig. 2. Histogram (top), cumulative distribution function (middle), and differ-
ence with respect to cumulative distribution function (bottom) between normal
and pathological subjects for HNR (left) and time derivatives of HNR (right).
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(b) Time derivative of HNR

Fig. 3. Jensen-Shanon divergence between normal and pathological distribu-
tion of (a) HNR and (b) time derivatives of HNR according to histogram rank.
The term 10div indicate the 10 divisions of feature rank.

HNR contour of normal speech still changes slowly in quasi-

stationary region. Left plots of Fig. 2 illustrate the histogram

of HNR (top), cumulative distribution function (CDF) of HNR

(middle), and HNR difference with respect to CDF (bottom)

between normal and pathological subjects in all voiced frames

of sentence. Similarly, right plots of Fig. 2 depict the ones for

time derivatives of HNR. From Fig. 2, it is clear that the degree

of overlap between normal and pathological distribution in

low rank is higher than in high rank. To assess the distance

of two distributions corresponding each rank, Jensen-Shanon

divergence is measured again between the two groups of

normal and pathological subjects. To calculate this, HNR and

time derivatives of HNR obtained from segmented frames in

each sentence are sorted, and are averaged after dividing into

ten groups.

To assess the distribution distance of normal and patholog-

ical speech in HNR and HNR delta (top in Fig. 2), Jensen-

Shanon divergence is measured. Results in Fig. 3 show that

the distances of some divisions in high rank are bigger than

one with using all features in both HNR and HNR delta. It

means that some divisions in high rank have better capability

than using all the features to classify normal and pathological

speech.

IV. PERFORMANCE EVALUATION

A. Experimental setup

Experiments for classifying normal and pathological speech

are conducted to evaluate the performance of the proposed
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Fig. 4. EERs for static and dynamic feature of HNR according to histogram
rank. Results without histogram rank are shown as horizontal line.

dynamic feature and histogram-based global statistics of HNR.

For HNR, aperiodic components are calculated from speech

signals at every 2.5 ms using a 5 ms Hanning window, then

HNR is extracted at every 10 ms. The voiced segments of

passage have been obtained using the pitch tracking method

[12]. The 10-fold cross validation is used to reduce the

influence of training tokens. Discrimination between normal

and pathological subject is conducted by means of SVM

with a radial basis function kernel. The distance of SVM

output is obtained, and in order to evaluate the classification

performance of normal and pathological subjects, equal error

rate (EER) is used.

B. Results and analysis

Fig. 4 and Table II show the EERs of HNR and HNR

delta by varying the histogram rank. Results in either static

or dynamic feature of HNR show that some divisions in high

rank have better performance than using all features to classify

normal and pathological speech. When using 90 to 100% rank

of HNR and HNR delta features, relative error for classifying

normal and pathological speech is improved by 8.7% and

7.0%,respectively, compared to using all of features. This

indicates that by selecting high rank features, i.e. high HNR

values in utterance for HNR and rapid changes in transition

region for HNR delta, the difference between normal and

pathological speech becomes prominent.

When the dynamic feature of HNR is combined with

conventional static feature, relative error for classifying normal

and pathological speech is improved by 7.1%, compared to

the conventional method using HNR only. The performance

of both static and dynamic features with high rank of feature

distribution (90 to 100%) shows the relative improvement of

error rate by 11.2%.

V. CONCLUSIONS AND FUTURE WORK

This paper proposed a method using dynamic characteristics

and histogram-based global statistics of HNR to normal and

TABLE II
EERS (IN %) IN FIGURE 4.

HNR HNR delta HNR & HNR delta

without 10div 19.6 18.7 18.2
with 10div (90 to 100%) 17.9 17.4 17.4

pathological speech using continuous speech. In such circum-

stances, the characteristics of speech signals dynamically vary

across phonemes. We obtained the time derivatives of HNR

and used the high rank part of feature distribution in both static

and dynamic feature to extract the pathology-specific informa-

tion. Experimental results showed that the proposed dynamic

feature provided complementary information to conventional

HNR feature.

We have limited dynamic feature as the simple time deriva-

tives of HNR in this work. In the future, we will explore

the potential of using “localized temporal characteristics”. For

example, we will use the duration of maintaining harmonics

to be monotonically increasing or decreasing.
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