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Abstract—Speaker verification suffers from significant per-
formance degradation with emotion variation. In a previous
study, we have demonstrated that an adaptation approach
based on MLLR/CMLLR can provide a significant performance
improvement for verification on emotional speech. This paper
follows this direction and presents an emotional adaptive training
(EAT) approach. This approach iteratively estimates the emotion-
dependent CMLLR transformations and re-trains the speaker
models with the transformed speech, which therefore can make
use of emotional enrollment speech to train a stronger speaker
model. This is similar to the speaker adaptive training (SAT) in
speech recognition.

The experiments are conducted on an emotional speech
database which involves speech recordings of 30 speakers in
5 emotions. The results demonstrate that the EAT approach
provides significant performance improvements over the baseline
system where the neutral enrollment data are used to train
the speaker models and the emotional test utterances are ver-
ified directly. The EAT also outperforms another two emotion-
adaptation approaches in a significant way: (1) the CMLLR-
based approach where the speaker models are trained with
the neutral enrollment speech and the emotional test utterances
are transformed by CMLLR in verification; (2) the MAP-based
approach where the emotional enrollment data are used to train
emotion-dependent speaker models and the emotional utterances
are verified based on the emotion-matched models.

I. INTRODUCTION

Speaker verification, or voiceprint recognition (VPR), is
widely used in applications such as personal information secu-
rity check. Despite the significant advance achieved in recent
decades, many issues remain unaddressed yet, e.g., the serious
performance degradation with adverse environments, dynamic
channels and high intra-speaker variations. This paper focuses
on a particular intra-speaker variation, i.e., the variation caused
by human emotion.

Emotion is an intrinsic nature of human-beings and may
change the rendering forms of speech signals significantly.
Compared to other intra-speaker variations such as the speech
rate and the tones, emotion tends to cause more substantial
changes on speech properties, such as harmonic forms, for-
mant structures and the entire temporal-spectral patterns. For
speaker verification systems based on the Gaussian mixture
model-universal background model (GMM-UBM) architec-
ture [1], these changes lead to considerable difficulties for
the UBM/GMMs trained with neutral speech to handle test
utterances in different emotions, which in turn results in a
serious performance degradation.

A multitude of researches have been conducted to address
the emotion variation. The first category involves analysis
of various emotion-related acoustic factors, e.g., prosody
and voice quality [2], pitch [3], [4], duration and sound

intensity [4]. The second category involves various emotion-
compensation methods for models and scores. An early inves-
tigation was supported by the European VERIVOX project [5],
[6], where the researchers proposed a ‘structured training’
which elicits enrollment speech in various speaking styles. By
training the speaker models with the elicited multi-emotional
speech, the authors reported reasonable performance improve-
ments. This method, however, is unfriendly and unacceptable
in practice. Wu et al. [3] presented an emotion-added model
training, where a few amount of emotional data were used
to train emotion-dependent models. In addition, [7] compared
three types of speaker models (HMM, circular HMM and
suprasegmental HMM), and concluded that the suprasegmental
HMM is the most robust against emotion changes. Finally,
some score normalization and transformation approaches have
been proposed to improve emotional speaker verification [8],
[9].

In a previous study [10], we proposed an adaptation ap-
proach based on the maximum likelihood linear regression
(MLLR) [11] and its feature-space variant, the constrained
MLLR (CMLLR) [12]. The basic idea is to project the
emotional test utterances to neutral utterances by a linear trans-
formation, so that they can be verified with the neutral-trained
speaker models. We demonstrated that the MLLR/CMLLR-
based adaptation can provide significant performance improve-
ments on emotional test speech, and that the CMLLR-based
approach is more effective than the MLLR-based approach.
This paper follows this direction and presents a novel emotion
adaptive training (EAT) approach. This approach iteratively
estimates the emotion-dependent CMLLR transformations and
re-trains the speaker models with the transformed speech,
which therefore can make use of emotional enrollment speech
to train a stronger speaker model. A major difference between
the EAT approach and the previously proposed CMLLR adap-
tation approach is that the former applies the transformation
on both the training and the test data, while the latter applies
the transformation on the test data only.

The rest of the paper is organized as follows: we first give
a brief analysis for emotional speech signals and review the
CMLLR technique in Section II. Section III presents the EAT
approach. The experiment is reported in Section IV, followed
by the conclusions and the future work in Section V.

II. EMOTION VARIATION AND CMLLR
This section presents a brief analysis on spectral characteris-

tics of emotional speech signals, and then gives a quick review
of the CMLLR technique. Note that a comprehensive analysis
on emotional speech is not the intention of the paper; instead,
we just give a rough and intuitive idea about how emotion



change impacts on speech signals, and so motivates the linear
adaptation approach. Dedicated study about the impact of
emotion change on speech signals can be found in [2], [3],
[4], [5], [6], [13].

A. Emotion impact on speech signals
To have an intuitive idea about how emotion changes impact

on speech signals, we choose a group of speech segments
which were recorded with the same person. The segments
are identical in text but are different in emotions. We studied
five emotions: neutral, happy, sad, anxious and angry. The
spectrograms of these segments are plotted in Figure 1.

(a) Neutral

(b) Happy (c) Sad

(d) Anxious (e) Angry

Fig. 1. Spectrograms of speech segments in five emotions.

We observe clear difference among the five spectrograms:
the happy and the angry show clearer energy and formant
structures than the neutral, while the anxious and the sad go to
the opposite. Comparing the happy and the angry, it seems that
the happy tends to extend the energy and formant patterns to
the high frequency area, while the anger constrains the energy
within a low frequency area. In addition, the happy tends
to exhibit more significant contrast between speech and non-
speech signals. Another pair of emotions, the anxious and the
sad, are similar in energy distributions and formant structures,
though the latter exhibits more vague speech patterns. These
changes in spectrograms have been observed in other segment
groups and can be regarded to be general.

Due to the significant change in spectral patterns with
different emotions, it is clear suboptimal if we use a speaker
model trained with neutral speech to verify test speech in other
emotions. We therefore seek for an emotion-dependent model
Ms,e where s stands for the speaker and e stands for the
emotion. Training Ms,e directly requires enrollment data for
each speaker s and each emotion e, which is often infeasible.
We thus resort to an emotion-dependent transformation We
which can be trained with a set of training speakers, and then
applied to test speech of any speaker in verification. This can
be formulated as follows:

p(X;Ms,e) ≈ p(We(X);Ms)

where X denotes the test speech, and p(X;M) denotes the
probability of X modeled by M . Note that We is speaker
independent, and therefore can be pre-trained at system design
and then applied in system operation. For simplicity, we prefer
a linear transformation, which motivates the CMLLR-based
adaptation.

B. Review of CMLLR
The MLLR adaptation approach was first proposed by the

Cambridge group to deal with channel mismatch and session
variability [11], [14]. Its feature-space variant, the constrained
MLLR, has been developed to learn transformation on feature
vectors [12]. A major advantage of the CMLLR is that the
covariance matrices are implicitly adapted besides the mean
vectors without increasing the number of training parameters,
which often leads to additional gains, as has been demonstrated
in our previous study [10]. Another advantage of the feature-
space transformation is that it can be used to formulate the
EAT approach that we will present in the next section. We
therefore focus on the CMLLR.

Define a transformation matrix W = [b A] that projects
an input speech signal xi as follows:

x̂i = Axi + b =Wξi

where A is a rotation matrix and b is a bias term. ξi = [1 xi]
T

is the extended observation vector. The optimal W can be
attained by maximizing the following likelihood function

Q(W ;X,M) =
∑
i

log(p(Wξi;M)) (1)

with respect to W , where M = {µc, σc} represents the GMM
based on which the CMLLR is conducted. This leads to the
following iterative solution:

WT
l = G(l)−1(αpl + k(l)) l = 1, 2, 3, ..., L (2)

where Wl is the l-th column of W , and pl is the extended
cofactor vector [0 cof(Al,1) ... cof(Al,L)]

T . G(l) and k(l) are
the accumulative statistics, defined by:

G(l) =
∑
i

ξiξ
T
i

∑
c

rc,i
σc,l

k(l) =
∑
i

ξi
∑
c

rc,iµc,l

σc,l

where c indexes the Gaussian components, and rc,i is the
effective occurrence defined as follows:

rc,i =
N (xi;µc,σc)∑

mN (xi;µm,σm)
. (3)

Finally, µc,l and σc,l are the l-th dimension of the mean and
diagonal variance vectors of the c-th Gaussian component, re-
spectively. The factor α is solved from the following equation
and the root that maximizes the likelihood function is selected:

α2pTl G
(l)−1pl = αpTl G

(l)−1k(l) − β = 0

where
β =

∑
i,c

rc,i.



III. EMOTIONAL ADAPTIVE TRAINING

A. CMLLR for speaker verification
In the previous study [10], we investigated the possibility of

using the CMLLR to transform the emotional test utterances so
that they can be verified by the neutral-trained speaker models.
Specifically, we chose a training set which involves the training
speakers {Sn}. For each speaker Sn in {Sn}, the speaker
model Mn was trained with his/her neutral enrollment speech
via the maximum a posteriori (MAP) estimation based on the
UBM. For each emotion e, the test utterances in emotion e of
every speaker Sn in {Sn}, denoted by Xn,e, were collected
to learn a CMLLR transformation We by maximizing the
following likelihood function:

Q(We) =
∑
n

Q(We;Xn,e,Mn)

where Q(W ;X,M) has been defined in (1). Note that the
likelihood function of each speaker is based on his/her own
neutral-trained speaker model Mn. Once We is trained, it is
straightforward to be applied to test utterances1. We have
demonstrated that this CMLLR-based adaptation approach,
although simple, can lead to significant performance improve-
ment for emotional verification when compared to the baseline
system where the emotional test utterances are verified with
the neutral-trained speaker models directly [10].

B. Emotional adaptive training
An obvious limitation of the CMLLR-based adaptation

approach is that the transformations are applied to the test
utterances only. This means that the emotional data cannot
participate in speaker model training, even though they are
available at enrollment. A natural extension is that we can
apply the pre-trained {We} to adapt the emotional enrollment
speech data if possible, and then use the transformed data to
re-train the speaker models. This usually leads to a stronger
speaker model due to the increased volume of training data.

In order to apply transformations onto the enrollment data,
we need to estimate a set of transformations {We} based on
a single ‘pseudo neutral’ model for each speaker in {Sn}.
We choose an iterative approach: first estimate {We} on the
neutral-trained speaker models {Mn}, and then apply the
transformed training speech to re-train {Mn} via MAP. The
re-trained models are then used to re-estimate {Mn}. This
process continues until the convergence criterion is reached.
Note that to ensure that the obtained transformations work
consistently with the neutral-trained speaker models (which
are not iteratively trained with emotional speech) at the
enrollment stage, the neutral speech data participate the re-
training without transforming. We call this iterative adaptation
approach the ‘emotion adaptive training’, or EAT. The same
approach has been successfully employed in speech recogni-
tion to deal with speaker variability, in the name of cluster
adaptive training (CAT) [15] or the SAT [16]. Note that the
goal of the EAT is to estimate a set of transformations {Mn}
with the training data {Sn}, and the learned transformations
are applied to adapt the enrollment speech at the enrollment
stage. These transformations can certainly be applied to the
test utterances at the verification stage as well.

For a clear presentation, we separate the EAT-based ap-
proach into three steps: transformation learning, enrollment
training and speaker verification, as illustrated in Figure 2.
The details are listed as follows:

1The emotions of the training and test utterances are assumed to be known
in this study.

Training
Speech

Enrollment
Speech
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Fig. 2. The EAT-based framework.

• Transformation Learning: Define a training set, iter-
atively train the transformation {We} and the speaker
model {Ms}, following the EAT algorithm.

• Enrollment Training: For each new enrollment k, apply
{We} to transform all the enrollment speech and use the
transformed speech data to train the speaker model Mk.

• Speaker Verification: For each test utterance in emotion
e alleged to be speaker k, first apply We to transform the
speech features, and then score the transformed speech
on model Mk.

IV. EXPERIMENTS

A. Database
We perform the experiments on an emotional speech

database CSLT-ESDB which was recorded in CSLT, Tsinghua
University. The recording was conducted with a carbon-button
desktop microphone. The sampling rate is 16kHz and the
sample size is 16 bits. There are 30 Chinese speakers (15 males
and 15 females) in total. For each speaker, a speech segment of
60-90 seconds in the neutral style was recorded for enrollment;
in addition, 100 test utterances were recorded in each of the
five emotion states: neutral, happy, sad, anxious and angry.
Every test utterance involves approximately 15 words and lasts
about 5 seconds. These utterances were designed such that all
the Chinese syllables are covered as many as possible.

B. Baseline systems
The speaker verification system was designed based on

the GMM-UBM framework. The conventional 16-dimensional
Mel frequency cepstral coefficients (MFCCs) plus the first or-
der temporal derivatives are used as the acoustic features, and
the utterance-based cepstral mean and variance normalization
(CMVN) was applied to reduce the channel variation. The
UBM was trained on 5 hours of neutral speech (30 males and
30 females). The speaker models are GMMs, and were trained
based on the UBM via MAP. Both the UBM and GMMs
consist of 1024 Gaussian components; the covariance matrices
are set to be diagonal, and are shared by the corresponding
Gaussian components of the UBM and the GMMs.

We set up three baseline systems. The first baseline (NMAP)
uses the neutral speech to train the speaker model, and
then verifies the emotional test speech directly; the second
baseline (EMAP) assumes that emotional data are available
at enrollment, and uses the emotional enrollment data to
train emotion-dependent speaker models via MAP; the third
baseline (CMLLR) trains the speaker models with the neutral
speech, and employs the CMLLR to adapt the emotional test
speech in verification, as presented in our previous work [10].
We choose speech data of 10 speakers from the CSLT-ESDB
as the training set, which is used to learn the transformations



EER%
Neutral Happy Sad Anxious Angry

NMAP 2.19 12.50 16.56 13.26 15.69
EMAP - 8.06 6.74 6.20 9.57
CMLLR - 10.50 14.94 12.39 14.20

TABLE I
THE BASELINE EER RESULTS.

in the third baseline. The remaining 20 speakers are used for
testing. The performance is evaluated in terms of the equal
error rate (EER).

The results are reported in Table I. Note that we assume
the neutral utterances do not need any special treatment in
verification, so the result on the neutral speech is only reported
for the NMAP system. We first observe that in the NMAP
system, the mismatched emotions (i.e., happy, sad, anxious
and angry) lead to tremendous performance degradation when
conducting verification with the neutral model. This degrada-
tion is particularly serious for the angry emotion, which may
partly be attributed to the considerable lost of speech formant
patterns in the signal, as has been shown in Figure 1. With the
EMAP or the CMLLR, the performance on the emotional test
speech is significantly improved, due to the matched training
and the emotion transformation respectively. Comparing the
EMAP and the CMLLR approaches, we find that the former is
more effective than the latter, probably due to the component-
based adaptation with the EMAP. However, we notice that
the assumption of the EMAP is that the emotional data are
available at enrollment, which may not be the case in practice,
and thus constrains its application.

C. EAT results
We employ the EAT to improve the speaker model training

with the emotional enrollment speech. As in the CMLLR
system, we choose 10 speakers to train the transformations
in the EAT style, and then apply the obtained transformations
at the enrollment and/or the verification stages. The test set
involves 20 speakers. We evaluate two scenarios: in the first
scenario, the emotional data are not available at enrollment,
and so the speaker models are trained with the neutral speech
and the transformations are applied at the verification stage
only; in the second scenario, the emotional data are available
at enrollment, and so the transformations are applied at both
the enrollment stage and the verification stage.

The EER results are reported in Table II. We first observe
that the performance of the EAT without emotional data at en-
rollment (non-emotional enrollment, NE) is comparable with
the performance of the CMLLR baseline. This indicates that
the transformations learned with the EAT are similar to those
learned based on the conventional CMLLR. If the emotional
data are available at enrollment (emotional enrollment, EE),
however, the EAT leads to significant gains: the EERs are
not only lower than those obtained with the NMAP system
and the CMLLR system, but also lower than those obtained
with the EMAP system. This indicates that the transformation-
based adaptation may be even better than the emotion-matched
model training. This advantage of the emotional enrollment
EAT is probably due to the increased training data obtained
by the MLLR transformations.

V. CONCLUSIONS

We presented an emotional adaptive training approach to
address the emotion variation in speaker verification. By
transforming the enrollment data, the EAT may learn stronger

EER%
Happy Sad Anxious Angry

EAT-NE 10.56 14.86 12.19 14.31
EAT-EE 5.38 6.36 5.37 7.88

TABLE II
THE EER RESULTS WITH EAT. ‘NE’ MEANS ‘NON-EMOTIONAL
ENROLLMENT’ AND ‘EE’ MEANS ‘EMOTIONAL ENROLLMENT’.

speaker models if emotional data are available. The experi-
ments on a 5-emotion database demonstrated that the EAT ap-
proach provides highly significant performance improvement,
and even outperforms the emotion-matched model training.
Future work involves thorough investigation of the transfor-
mations on various emotions, and study of transformations on
eigen voices. Particularly, we need to collect more emotional
data to train robust transformations and ensure the statistical
significance.
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