3D Shape Retrieval Focused on Holes and Surface Roughness

Masaki Aono, Hitoshi Koyanagi, and Atsushi Tatsuma
*Department of Computer Science and Engineering, Toyohashi University of Technology, Hibarigaoka, Toyohashi, Aichi, Japan
E-mail: aono@tut.jp Tel: +81-532-44-6764

Abstract—Although quite a few 3D shape descriptors have been proposed for more than a decade, 3D shape retrieval has remained a still challenging research. No single 3D shape descriptor has been known to outperform all the different types of 3D shape geometries. In this paper, we propose a new 3D shape descriptor that focuses on 3D mechanical parts having holes and surface roughness by using Fourier spectra computed from multiple projections of distinct images.

Our proposed method makes it possible to explore potential real applications of 3D shape retrieval to manufacturing industries where the cost reduction of creating a new 3D shape from scratch is greatly appreciated.

Our method explicitly attempts to extract holes and surface roughness, as well as contours, lines, and circular edges as our proposed features from multiple projections of a given 3D shape model, and use them to retrieve 3D shape objects. We demonstrate the effectiveness of our method by using several 3D shape benchmarks, one of which is composed of many mechanical parts, and compare our proposed method with several previously known methods. The results are very encouraging and promising.

I. INTRODUCTION

3D shape retrieval has become popular for more than a decade, ever since Osada et al [1] published their work on shape distributions. More and more 3D data are available on the Internet as well as inside allied companies for manufacturing, architectural planning, medical treatment, education, entertainment, and many other miscellaneous purposes. Yet no single 3D shape descriptor to date has excelled proposed descriptors, given arbitrary collections of 3D shape models.

In this paper, we propose a 3D shape descriptor suited to search 3D mechanical parts, having holes and surface roughness. Holes are literally the holes often observed in small mechanical parts. Surface roughness represents the convexities and concavities of the surface that might account for sudden intensity variations, when rendering, located inside the contour of the projected shapes.

In what follows, we first describe related work in the next section. We then introduce our new features focused on holes and surface roughness. Specifically, we describe five base feature images, including Contour, Hole, Surface Roughness, Line, and Circle images, and how we generate them, followed by when and how Fourier transform is applied to compute our composite feature vector. Subsequently we introduce the dissimilarity computation under the assumption of our proposed features. Finally, we demonstrate our method through experiments in Experiment and Evaluation section, and summarize our results in the Conclusion.

II. RELATED WORK

Research on 3D shape retrieval has gained much popularity these days, ever since Osada et al [1] published one of the pioneering studies on 3D shape retrieval. Among their proposed models, D2 (a shape descriptor based on the histogram of distances between random two points on the surface) has served as a “Baseline” method for 3D shape retrieval. Kazhdan et al [2] propose a method in which a 3D shape is first transformed into a voxel representation, and then the voxel data is transformed into a power spectrum by means of spherical harmonics called a Spherical Harmonic Descriptor (SHD). The above two methods are just examples of 3D shape descriptors that have rotational invariance.

To achieve similar effects, there have been approaches to define features by rendering a large collection of projected images of each 3D shape viewed from almost all the imaginable directions [3][4]. Inspired by these early efforts, 3D shape descriptors based on a composite of several features such as DESIRE [5] and MFSD (Multi-Fourier Spectra Descriptor) [6] have been proposed. Recently, local 3D shape features such as Bag of Visual Words (BoVW) (a.k.a. Bag of Features (BoF)) have been proposed, along with supervised learning [7][8].

However, to our knowledge, most of the previous 3D shape descriptors failed to behave very well for 3D mechanical shapes such as Engineering Shape Benchmark (ESB) [9]. One reason for being incapable of capturing the good shape features of this type of mechanical part lies in the fact that minor characteristics (such as holes and surface roughness) in the original shape might have disappeared during the computation of features.

With respect to holes, there has been no previous research, to our knowledge, which explicitly employs holes as one of the shape features. Meanwhile, there has been research on detecting holes from 3D models. An example of such research has been done by Wang et al [10]. They constructed a connected graph of vertices, applied clustering of vertices to form sub-graphs, and then used the relationship between the planes enclosing holes and sub-graphs to detect holes.

A 3D shape descriptor using Hough transform was first reported by Zaharia et al [11] in 2001. They defined a
shape feature intrinsically invariant with respect to topological
derictions and geometric transforms. They define 48
dimensional feature vectors based on Hough transform, and
demonstrate the validity of their model using 3D Cafe data
set [12] and other miscellaneous data.

In this paper, we propose a new composite of features,
explicitly incorporating holes and surface roughness, as well
as features extracted from Hough transform.

III. NEW FEATURE FOCUSED ON HOLES AND SURFACE
ROUGHNESS

In this section, we introduce our proposed features, and how
we create them for an arbitrary 3D shape. The basic idea is
to extract the vector-based features frequently observed in 3D
CAD shapes of mechanical parts. Primary interests include
not only straight lines as vectors, but curved edges rendered
for holes and surface roughness. Surface roughness can be
represented by a set of pixels, usually a set of line segments,
where sharp intensity change occurs inside the contour of the
object as convexities and concavities, once the view projection
is determined. The idea of incorporating the surface roughness
into 3D shape features is to attempt to extract the region of
surface “bumpiness” as illustrated in Fig. 1.

In summary, we extract five edge-based images, namely,
Contour, Hole, Surface Roughness, Line, and Circle im-
geages, followed by transforming them into polar coordinates,
applying peripheral intensity enhancement [6], in order to
emphasize the shape perimeter and converting them to Fourier
spectra as our composite features.

In the following, we elaborate the process of obtaining our
proposed features.

A. Computing Five Base Feature Images

First of all, the ideal 3D features must capture inherent 3D
shapes, which are invariant to position, size, and orientation.
Making 3D shapes invariant to position, size, and orientation
requires the process called pose normalization. For this pur-
pose, we first employ our previously published pose normal-
ization methods called Point SVD and Normal SVD [13]. After

![Fig. 1. Illustration of surface roughness](image)

![Fig. 2. Depth-buffer image generation from multiple viewpoints after pose normalization of a given 3D shape](image)

![Fig. 3. Silhouette image generation by binarization from Depth-buffer image](image)

![Fig. 4. Ternary Flood-Fill image computation by applying Flood Fill algorithm](image)
are generated by applying the Canny edge detector to binary Background FF image, similar to the generation of binary Contour images. Incidentally, the generation of these two images (Contour and Hole images) can be done independently. It should be noted that binary Hole images might end up just black images if there are no holes in the projection of the 3D shape object concerned, but they are harmless in our proposed base features.

Binary Surface Roughness images, as the third of our five base feature images, are computed in two steps. In the first step, we extract binary Edge images from Depth-buffer images by applying the Canny edge detector. In the second step, Edge images are subtracted by Contour and Hole images, ending up binary Surface Roughness images. This process is illustrated in Figs. 7 and 8. The reason for showing two examples here is because the Surface Roughness image in the first example results in a circular shape, which might give the false impression that it might be the same as a Circle image to be discussed later. Surface Roughness images are introduced in order to represent boundaries where there are sharp intensity variations in rendering with depth-buffering.

The remaining two base features are Line and Circle images by applying the Hough transform [15] to Edge images, which are the intermediate products when computing Surface Roughness images. This process is illustrated in Fig. 9. It should be also noted that Circle images might be just black unless Edge images have circular shapes.

B. Fourier Spectra computed from Five Base Feature Images

For the above five binary images composed of different types of Edge-based images, we apply a dilation operator [15], one of the well-known morphological operators. Then, we convert dilated images into images in polar coordinates with parameters \(r\) and \(\theta\), to be robust against rotation. This is because in polar coordinate, a rotational difference is absorbed in a translational difference, which is later absorbed by a Fourier transform. After images are represented by polar coordinates, we separately apply Fourier transform to convert them into spectra, and construct our proposed features by filtering out high frequency components. The final stage is illustrated in Fig. 10.

IV. FEATURE ALIGNMENT BETWEEN A GIVEN QUERY AND 3D SHAPE MODELS

The 3D shape retrieval system with our proposed features is depicted in Fig. 11. As pre-processing we perform feature extraction for every 3D shape data in the database. In other words, all the 3D shape data are converted to Fourier spectra computed from polar coordinates of Contour, Hole, Surface Roughness, Line, and Circle images.
A. Dissimilarity Computation

Given an arbitrary 3D query shape model, we compute the Fourier spectra, and start feature alignment as dissimilarity computation.

Dissimilarity computation is carried out such that we compute Manhattan distance between features extracted from a query and features of 3D shape data stored in our database. We have tested a collection of a different number of views and a different combination of polar coordinate discretization parameters. Table I summarizes the result.

As is easily computed from Table I, the total number of dimensions of our proposed features is 1,536. Assume that we have \( n \) number of dimensions of a 3D feature vector \( f_1, f_2, \ldots, f_n \), and assume that a given 3D query is converted to a 3D feature vector \( q_1, q_2, \ldots, q_n \), the dissimilarity between 3D shape model \( M \) and a 3D query shape model \( Q \) is denoted
by the following equation:

\[ \text{dissimilarity}(M_k, Q_k) = \sum_{i=1}^{n} |f_{k,i} - q_{k,i}|, \]

where \( k \) is either Point SVD or Normal SVD. Thus, the final dissimilarity is given by the following equation:

\[ \text{dissimilarity}(M, Q) = \min( \text{dissimilarity}(M_{\text{PointSVD}}, Q_{\text{PointSVD}}), \text{dissimilarity}(M_{\text{NormalSVD}}, Q_{\text{NormalSVD}}) ) \]

V. EXPERIMENTS AND EVALUATIONS

In this section, we describe comparative experiments of our proposed method with some of the selected previous methods for 3D shape retrieval. To demonstrate the effectiveness of our proposed methods, we employ Princeton Shape Benchmark (PSB) [16], Architectural Shape Benchmark (ASB) [17], and Engineering Shape Benchmark (ESB) [9] as 3D shape data. The previous methods to compare are D2 [1], SHD [2], LFD [3], DESIRE [5], and MFSD [6], partly because we have access to these programs and partly because they are all categorized as unsupervised learning methods without relevance feedbacks, which do not require a training stage.

A. Evaluation Measures

The evaluation measures we selected include Recall, Precision, First Tier (1-Tier), Second Tier (2-Tier), and P@1 (Nearest Neighbor) [16], [18]. Let \( \text{rel}(x) \) be the number of objects that are relevant among the top \( x \) rankings, let \( K \) be the number of closest matches returned, and let \( C \) be the number of objects in the category belonging to a query. Then, the evaluation measures are given by the following formula:

\[
\begin{align*}
\text{Recall} &= \frac{\text{rel}(K)}{C} \\
\text{Precision} &= \frac{\text{rel}(K)}{K} \\
\text{First Tier} &= \frac{\text{rel}(C - 1)}{C - 1} \\
\text{Second Tier} &= \frac{\text{rel}(2(C - 1))}{C - 1}
\end{align*}
\]

\[
P@1 (\text{Nearest Neighbor}) = \text{rel}(1)
\]

\[
\text{DCG}(i) = \begin{cases} 
G(1) & i = 1 \\
\frac{G(i)}{\log_{2k} i} & \text{otherwise}
\end{cases}
\]

Discounted Cumulative Gain (DCG) [19] represents how well a retrieval system works at the top-\( k \) ranked lists. Generally speaking, if relevant results appear at the first top-\( k \) search results, the DCG is larger. In the above equation, \( G(i) \) stands for a gain vector, where the element of the vector represents the degree of relevance.

There are two ways of computing the degree of relevance, depending on how we compute the average of accuracy, given ground truth data with different categories. Micro-averaged values [20] are calculated by constructing a global contingency table and then calculating evaluation measures using these sums. We avoided macro-average, since macro-averaged scores are calculated by first computing evaluation measures for each category and then using their average. Some of the categories in PSB have only a few shape models, which ends up with the macro-average having a large variance across different categories.

B. Result with Princeton Shape Benchmark

The Princeton Shape Benchmark (PSB) is designed for general 3D shape objects, consisting of 907 training data with 90 classes, and another 907 testing data with 92 classes [16]. This benchmark is not particularly suited to our proposed method, because no explicit mechanical parts having holes are included. Nonetheless, our proposed method exhibits reasonably good search performance.

Fig. 12 shows averaged recall-precision graphs including the proposed method and several previous methods by using PSB. Our proposed method is almost equal to MFSD when “Recall” is smaller, and slightly inferior to MFSD when “Recall” is larger. Table IV summarizes the average behavior of other evaluation measures, including 1-Tier, 2-Tier, P@1, and DCG. It is noted that in terms of P@1, or the nearest neighbor, our proposed method turns out to be the best.

C. Architectural Shape Benchmark (ASB)

The Architectural Shape benchmark (ASB) [17] is composed of 3D shape objects related to architectural design, including “arm chairs,” “book shelves” and “double bed”
classes. ASB itself consists of two large classes; “form” class and “function” class. The former class categorizes 3D objects by shapes, while the latter class does so by functions. Naturally, we chose the former class for shape retrieval, where 2,257 models are included with 95 classes. Fig. 13 shows the averaged comparison result of our proposed method against several previous methods. Table III summarizes the average behavior of other evaluation measures, including 1-Tier, 2-Tier, P@1, and DCG. It is noted that our proposed method proves to be the best, except for the 2-Tier.

**TABLE III**

**Comparison of Our Proposed Method and Previous Methods in Terms of 1-Tier, 2-Tier, P@1, and DCG for ASB**

<table>
<thead>
<tr>
<th>Method</th>
<th>1-Tier</th>
<th>2-Tier</th>
<th>P@1</th>
<th>DCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed</td>
<td>37.8%</td>
<td>47.6%</td>
<td>76.7%</td>
<td>70.2%</td>
</tr>
<tr>
<td>MFSD</td>
<td>35.9%</td>
<td>48.3%</td>
<td>74.3%</td>
<td>69.8%</td>
</tr>
<tr>
<td>DESIRE</td>
<td>34.6%</td>
<td>46.6%</td>
<td>75.5%</td>
<td>68.9%</td>
</tr>
<tr>
<td>LFD</td>
<td>35.9%</td>
<td>45.2%</td>
<td>75.6%</td>
<td>69.0%</td>
</tr>
<tr>
<td>SHD</td>
<td>31.3%</td>
<td>41.7%</td>
<td>71.4%</td>
<td>66.4%</td>
</tr>
<tr>
<td>D2</td>
<td>23.4%</td>
<td>34.5%</td>
<td>59.6%</td>
<td>59.9%</td>
</tr>
</tbody>
</table>

D. Engineering Shape Benchmark (ESB)

The Engineering Shape Benchmark (ESB) [9] is known for its unique 3D data sets, and is a proven standard benchmark for 3D CAD models. It consists of 801 models classified into 42 categories of similar parts such as “Discs,” “T-shaped parts” and “Bracket-like parts.” Fig. 14 shows the averaged comparison result of our proposed method against several previous methods. It is obvious our proposed method outperforms other methods over all “Recall” values. This can be a proof that our proposed method is particularly suited to 3D mechanical parts with holes and surface roughness.

In our comparative experiments in Fig. 14, MFSD [6] and our proposed method are the two top methods in Recall-Precision graph. To demonstrate the effectiveness of our method, we take two example where holes and surface roughness have played important roles. Fig. 15 illustrates an example showing the top 10 search results with our proposed method and MFSD, given a query belonging to gear-like class objects. It should be noted that the proposed method has not omitted the gear-like jagged perimeters for all the top 10 search results, while MFSD has omitted the gear-like jagged perimeters by 70%. Fig. 16 illustrates another example, given a query belonging to slender-links class objects. In this query example, small holes are observed in the query, and the proposed method has not omitted objects with small holes for all the top 10 search results, while MFSD has omitted such objects by 50%.

Table IV summarizes the average behavior of other evaluation measures, including 1-Tier, 2-Tier, P@1, and DCG (Discounted Cumulative Gain). It turns out that in every evaluation measure, our method outperforms the previous methods. In addition, Table V summarizes the result with ESB, showing how each independent feature behaves in terms of these evaluation measures. It appears that as far as DCG is concerned, Contour, Surface Roughness, and Line images contribute to the search efficiency. Although Hole and Circle
images alone do not contribute to the search efficiency, they play a major role whenever circular shapes including holes are observed at a certain projection of a given 3D mechanical part.

VI. CONCLUSIONS

We have proposed a new 3D shape feature focused on holes and surface roughness, suited to 3D mechanical CAD parts. We defined five base feature images including Contour, Hole, Surface Roughness, Line, and Circle images. All five are binary images. Then we applied peripheral intensity enhancement to change them into grayscale images. After peripheral intensity enhancement, we converted them into polar coordinates, then applied Fourier transform to obtain Fourier spectra. Through comparative experiments, we demonstrated that our proposed method outperformed the previous methods in ESB (Engineering Shape Benchmark), which consists of 3D mechanical parts. In the future, we plan to investigate more about the optimal combination of features for 3D shape retrieval suited to another particular collection of 3D shape objects such as architectural and human data collections.

ACKNOWLEDGMENT

This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-In-Aid (C) 23500119, and was partially supported by the A-step FS-stage program (AS242Z01713H), Japan Science and Technology Agency (JST).

REFERENCES