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Abstract—The automatic speech recognition (ASR) perfor-
mance is degraded in noisy and reverberant environments.
Although various techniques against degradation of the ASR
performance have been proposed, it is difficult to properly
apply them in evaluation environments with unknown noisy and
reverberant conditions. It is possible to properly apply these
techniques for improving the ASR performance if we can estimate
the relationship between the ASR performance and degradation
factors including both noise and reverberation. In this study,
we here propose new noisy and reverberant criteria which are
referred as “Noisy and Reverberant Speech Recognition with the
PESQ and the Dn (NRSR-PDn)”. We first designed the “NRSR-
PDn” using the relationships among the D value, the PESQ
score, and the ASR performance. We then estimated the ASR
performance with the designed criteria “NRSR-PDn” in evalu-
ation experiments. Experimental evaluations demonstrated that
our proposed criteria make the well suited for robustly estimating
the ASR performance in noisy and reverberant environments.

I. INTRODUCTION

In recent years, robust speech recognition has become very
important in the field of distant-talking speech recognition
because robust speech capture and recognition are essential
for usable speech interfaces. In hands-free speech interfaces,
automatic speech recognition (ASR) performance is, however,
degraded due to noises and reverberations. Various techniques
have been proposed for preventing this degradation, including
spectral subtraction method [1] for noisy environments, and an
acoustic model adaptation with a transfer function for speech
recognition [2]. However, they have a difficulty to completely
prevent degradation in environments under unknown noisy and
reverberant conditions. It is possible to properly apply these
techniques for improving the ASR performance by estimating
the relationship between the ASR performance and degrada-
tion factors including both noise and reverberation. Estimation
methods of the ASR performance in noisy environments [3],
[4] have been proposed by using the perceptual evaluation of
speech quality (PESQ) score [5]. On the other hand, it can be
estimated in reverberant environments by using “Reverberant
Speech Recognition criteria with the Dn (RSR-Dn)” [6] which
are based on ISO3382 acoustic parameters [7]. However, a
method is still needed for robustly estimating ASR perfor-
mance in an environment with both noise and reverberation.

In the study reported here, we developed a method to design
criteria for use in accurately estimating the ASR performance
which is degraded due to noise and reverberation by using both
the D value calculated from the ISO3382 acoustic parameters
and the PESQ score.

II. CONVENTIONAL METHODS FOR ESTIMATING ASR
PERFORMANCE

A. ASR performance estimation in noisy environments
The methods [3], [4] for accurately estimating ASR perfor-

mance in noisy environments have been proposed by using
the PESQ score [5] which is calculated with noisy speech
samples. The PESQ score, which takes auditory-psychological
effects into account, is used to estimate the subjective quality
of speech distorted by ambient noise. To calculate the PESQ
score, the original and degraded speech are first transformed
into an internal representation by using a perceptual model.
A cognitive model then evaluates the difference between the
degraded and original speech and estimates the subjective
mean opinion score (MOS), which has range from 0.5 to 4.5.

B. ASR performance estimation in reverberant environments
To facilitate a reverberant speech recognition, we previously

developed the reverberant criteria RSR-Dn [6], which are
used to estimate ASR performance on the basis of the D
value calculated from the ISO3382 acoustic parameters [7],
which were formulated for measuring room acoustics. The
definition (D value) is particularly important in terms of the
balance between early and late arriving energies of an impulse
response. The D value represents the acoustic clarity and is
calculated using Eq. (1).

Dn =

∫ n

0

h2(t)dt/

∫ ∞

0

h2(t)dt, (1)

where h(t) is an impulse response and n is the border time be-
tween early and late arriving energies. The D value improves
under the condition of higher direct and early reflections and
degrades under the condition of higher late reverberations. We
had demonstrated that the average estimation error was less
than 5 % when these criteria were used in reverberant and
noiseless environments.



Fig. 1. Design of NRSR-PDn criteria for use in noisy and reverberant speech
recognition.

Fig. 2. Estimation of ASR performance using NRSR-PDn criteria.

III. DESIGN OF THE PROPOSED NOISY AND REVERBERANT
CRITERIA NRSR-PDn

In this section, Noisy and Reverberant Speech Recognition
with the PESQ and the Dn (NRSR-PDn) are proposed as
new noisy and reverberant criteria for ASR performance. The
NRSR-PDn are designed in four steps, as illustrated in Fig.
1. They are designed on the basis of the relationships among
the D value, the PESQ score, and noisy and reverberant ASR
performance. In particular, the multiple-regression analysis is
used to design the NRSR-PDn criteria based on correlation
with these calculated value.

Step 1: Prepare degraded speech samples
First, degraded speech samples are prepared as training

data to design the NRSR-PDn criteria used for estimating
ASR performance in noisy and reverberant environments in
following five steps.

1) Measure many impulse responses in a number of rever-
berant environments.

2) Create both real and artificial noise samples.
3) Measure speech samples in a clean environment.
4) Create reverberant speech samples which are convolved

with measured impulse responses and clean speech

samples.
5) Prepare degraded speech samples by adding noise sam-

ples and reverberant speech samples.
Step 2: Calculate reverberation time T60 and D value

Next, the measured impulse responses are used to calculate
the D value with Eq. (1) and the reverberation time T60.
Schroeder [8] developed a basic method of measuring rever-
beration by itegrating the square of the reverberation’s impluse
responses. The reverberation time is easily measured with his
method and is derived on the basis of Eq. (2) with impulse
response h(λ).

< y2d(t) > = N

∫ ∞

t

h2(λ)dλ, (2)

where < > is the ensemble average and N is the power of
the unit frequency of random noise. The reverberation time
for a reverberation curve < y2d(t) > is the time which takes
for the level of a sound to drop 60 dB below its original level
(conventionally notated as “T60”).

Step 3: Calculate ASR performance and PESQ score
The degraded speech samples prepared in Step 1 are used to

calculate the ASR performance and the PESQ score. The ASR
performance is acquired with a speech recognition engine, and
the PESQ score is calculated using clean and degraded speech
samples as described in Sec. II-A.

Step 4: Perform multiple-regression analysis with the D
value, the PESQ score, and ASR performance

Finally, multiple-regression analysis is used to design the
NRSR-PDn criteria using the D value and the PESQ score and
the ASR performance. The NRSR-PDn criteria are represented
from Eq. (3).

y(x1, x2;x3) = ax1 + bx2 + c, (3)

where y(x1, x2;x3), x1, x2, and x3 represent the estimated
ASR performance, the D value, the PESQ score, and the
reverberation time T60 respectively. Coefficients a, b, and c are
calculated by taking minimum error of the root mean square
in the multiple-regression analysis. Moreover, the NRSR-PDn

criteria are designed in each reverberant environment.

IV. USE OF NRSR-PDn TO ESTIMATE ASR
PERFORMANCE

The NRSR-PDn criteria are used to estimate ASR perfor-
mance in noisy and reverberant environments as illustrated
in Fig. 2. As shown in Fig. 2, we can estimate the ASR
performance with the NRSR-PDn in noisy and reverberant
environments in just three steps.

1) Measure an impulse response and the degraded speech
samples in a test environment.

2) Calculate T60 and D value with measured impulse
response, and the PESQ score with the degraded speech
samples.

3) Estimate the ASR performance using the calculated T60,
D value, PESQ score, and the NRSR-PDn.



(a) Japanese style room (T60=450 ms) (b) Conference room (T60=600 ms) (c) Lift station (T60=850 ms)

Fig. 3. Relationships among D value, PESQ score, and ASR performance in reverberant environments with the factory noise.

TABLE I
EVALUATION CONDITIONS

Speech ATR phoneme balance 216 words [9]
Speakers Two females and two males
Decoder Julius rev. 4.2.1 [10]
HMM IPA monophone model
Frame length 25 ms (Hamming window)
Shift length 10 ms
Noise White noise, pink noise, factory noise,

human speech like noise (HSLN)

V. EVALUATIONS

We designed the proposed criteria to estimate the noisy
and reverberant ASR performance. For estimation of the ASR
performance, we used an ATR phoneme-balanced set as the
speech samples that consists of 216 isolated Japanese words
[9] uttered by four speakers (two females and two males).
The recordings were conducted with 16 kHz sampling and
16 bit quantization. All impulse responses were measured
for distances rainging between 100 ∼ 5,000 mm. A border
time (n = 20 ms) of the D in Eq. (1) was used on the
basis of a previous study [6]. The conditions of the analysis
and recognition processes are also summarized in Table I.
Since ASR performance greatly varies with the recognition
task, the NRSR-PDn design and performance estimation were
conducted using the same recognition task. In other words, the
NRSR-PDn have to be trained for each different recognition
task.

A. Results of NRSR-PDn design

We designed the NRSR-PDn in three reverberant envi-
ronments such as japanese style room (T60 = 400 ms, 72
RIRs ), conference room (T60 = 600 ms, 120 RIRs ), and
lift station (T60 = 850 ms, 120 RIRs ). Figure 3 (a)∼(c)
shows the relationships among the D value, the PESQ score,
and the ASR performance for such three reverberant envi-
ronments with the factory noise. To design the NRSR-PDn,
we conducted multiple-regression analysis in each reverberant
environment as described in Sec. III Step 4. The correlation
coefficients obtained by conducting the regression analysis are
shown in Table II. As a result of Table II, we confirmed
that the NRSR-PDn are the suitable criteria for estimation
of noisy and reverberant ASR performance in comparison
with conventional criteria since correlation coefficients with

TABLE II
CORRELATION COEFFICIENTS

Reverberant criteria Reverberation time (T60)
RSR-Dn 450 ms 600 ms 850 ms
White noise 0.63 0.87 0.89
Pink noise 0.74 0.85 0.87
Factory noise 0.63 0.81 0.82
HSLN 0.72 0.87 0.90

Noisy criteria Reverberation time (T60)
PESQ score 450 ms 600 ms 850 ms
White noise 0.69 0.90 0.90
Pink noise 0.66 0.86 0.88
Factory noise 0.64 0.80 0.82
HSLN 0.66 0.89 0.91

Proposed criteria Reverberation time (T60)
NRSR-PDn 450 ms 600 ms 850 ms
White noise 0.80 0.91 0.92
Pink noise 0.80 0.90 0.91
Factory noise 0.79 0.84 0.85
HSLN 0.77 0.92 0.93

the NRSR-PDn are higher than that with conventional criteria
in all noisy and reverberant environments.

B. Results of ASR performance estimation

The performance of noisy and reverberant speech recogni-
tion was estimated using closed and open tests in the three
test environments such as laboratory (T60 = 450 ms, 72 RIRs
), corridor (T60 = 600 ms, 120 RIRs ), and standard stairs
(T60 = 850 ms, 56 RIRs ). In the closed test, we estimated
the ASR performance for an known reverberation condition
using the NRSR-PDn designed in the same environment. On
the other hand, in the open test, we estimated the recognition
performance for an unknown reverberant condition using the
NRSR-PDn designed in the different environment that had
the same reverberation time as the test environment. In this
experiment, we conducted estimation of the ASR performance
with each reverberant speech recognition with RSR-Dn and
PESQ score as conventional methods. Figure 4 (a)∼(c) shows
the average estimation error for reverberant environments with
the factory noise. The average estimation error (ASE) is
represented from Eq.(4).

ASE =
1

N

N∑
n=1

|yn − ŷn|, (4)



(a) Laboratory (T60=450 ms) (b) Corridor (T60=600 ms) (c) Standard stairs (T60=850 ms)
Fig. 4. Average estimation error in reverberant environments with the factory noise.

where yn and ŷn represent the actual and estimated ASR
performance under the utterance condition n respectively. N
is the number of utterance conditions in each noisy and rever-
berant environment. The ASE degrades under the condition
of accurate estimation of the ASR performance. The results
showed that ASE was less than 6 % for all environments
by using proposed criteria. Moreover, estimation performance
with NRSR-PDn was better than that with either D value
or PESQ in most noisy and reverberant conditions. Also,
there is same tendency in these reverberant environments with
other kinds of noise. This means that the NRSR-PDn provide
accurate estimation results, making them a particular strong
candidate for use in recognizing noisy and reverberant speech.

VI. CONCLUSIONS

This paper has described a method for estimating ASR
performance in noisy and reverberant environments based on
NRSR-PDn. We first designed the NRSR-PDn using the rela-
tionships among the D value, the PESQ, and the ASR perfor-
mance. We then estimated the ASR performance in noisy and
reverberant environments with the NRSR-PDn. Experiments
conducted in actual environments confirmed that our proposed
criteria provide accurate estimations, which makes them well
suited for use in recognizing noisy and reverberant speech. In
future work, we intend to optimize coefficients of the multiple-
regression analysis to more accurately estimate noisy and
reverberant ASR performance. Moreover, we try to conduct
estimation experiments of speech recognition performance in
different speech recognition conditions.
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