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Abstract—In this paper, we propose a method for performing a
non-stationary noise reduction and dereverberation method. We
use a blind dereverberation method based on spectral subtraction
using a multi-channel least mean square algorithm has been
proposed in our previous study. To suppress the non-stationary
noise, we used a blind source separation based on an efficient
fast independent component analysis algorithm. This method is
evaluated using a mixed sound of speech and music, and achieves
an average relative word error reduction rate of 41.9% and 7.9%
compared with a baseline method and the state-of-the-art multi-
step linear prediction-based dereverberation, respectively, in a
real environment.
Index Terms: hands-free speech recognition, blind derever-
beration, blind source separation, multi-channel least mean
square, generalized spectral subtraction

I. INTRODUCTION

In a distant-talking environment, background noise and
reverberation drastically degrade speech recognition perfor-
mance because of a mismatch between the training and
test environments. Current approaches to robustness issues
for automatic speech recognition (ASR) in noisy reverberant
environments can be classified as speech enhancement, robust
feature extraction, or model adaptation methods. Several pre-
vious studies have focused on speech enhancement, especially
multi-channel speech is often used. As conventional method to
suppress the background noise, blind source separation based
on independent component analysis (ICA) was proposed [1],
[2], [3]. In this technique, a set of original signals are retrived
from their mixtures based on the assumption of their mutual
statistical independence. For suppressing the reverberation,
[4] proposed the method was based on constructing the null
subspace of the data matrix in the presence of colored noise
and employing a generalized singular-value decomposition
or generalized eigenvalue decomposition of the respective
correlation matrices. In [10], an adaptive multi-channel least
mean square (MCLMS) algorithm was proposed to blindly
identify the channel impulse response in time domain. A novel
dereverberation method was proposed that utilized long-term

Fig. 1. Schematic diagram of our method

multiple-step linear prediction [5]. This enabled the linear
prediction coefficients to be estimated in a time domain and the
amplitude of late reflections to be suppressed through spectral
subtraction in a frequency domain.

In our previous study, we proposed a blind dereverbera-
tion method based on generalized spectral subtraction (GSS)
employing the adaptive MCLMS algorithm in a frequency
domain, and this method was effective in several reveberant
environments [6]. However, dereverberation method is not
effective in environment that there are background noise and
reverberation simultaneously. Assuming stationary noise, we
proposed a blind denoising and dereverberation method that
combines noise reduction and dereverberation based on GSS
[7]. However, whereas GSS-based noise reduction is effective
for stationary noise, it is not effective against non-stationary
noise such as music.

In this paper, we present a non-stationary noise reduction
and dereverberation method, and evaluate this method using
a mixed sound of speech and music. To suppress the non-
stationary noise, we use blind source separation based on
ICA by applying Efficient FastICA (EFICA) [3], an improved
version of the popular FastICA algorithm [2]. A schematic
diagram of our proposed method is shown in Fig. 1. At first,
blind source separation based on EFICA is used to demix
the speech and music. Next, GSS-based blind dereverberation
reduces the late reverberation using the impulse responses



estimated from the demixed speech. Thereafter, the early
reverberation is normalized by cepstral mean normalization
(CMN) at the feature extraction stage.

II. OUTLINE OF BLIND SOURCE SEPARATION

In this section, we briefly explain ICA-based blind source
separation. Let W be the demixing matrix trained from the
observed signal X such that the demixed signal Y can be
written as Y = WX. Here, X is an M ×N matrix and W is
an M ×M matrix, where M is the number of mixed signals
and N is the number of samples in each signal.

FastICA [2] is one of the most popular algorithms for
estimating the demixing matrix W. In this paper, we use the
improved EFICA algorithm [3]. EFICA combines symmetric
FastICA with an adaptive choice of nonlinearities g, which
are fixed in FastICA. The algorithm consists of: (1) Running
the original symmetric FastICA. (2) Adaptively choosing the
different nonlinearities gk. (3) Refining or fine-tuning each
of the source components found by one-unit FastICA. In this
paper, we use the source separation tool T-ABCD [9] which
implements the EFICA algorithm.

III. OUTLINE OF BLIND DEREVERBERATION

A. Dereverberation based on GSS

If speech s[t] is corrupted by convolutional noise h[t], the
observed speech x[t] becomes x[t] = h[t] ∗ s[t], where *
denotes the convolution operation. If the length of the impulse
response is smaller than the analysis window length T used
in the short-time Fourier transform (STFT), the STFT of the
distorted speech equals that of the clean speech multiplied by
the STFT of the impulse response h[t]. However, if the length
of the impulse response is greater than the analysis window
size, the STFT of the distorted speech is usually approximated
by

X(τ, ω) ≈ S(τ, ω)H(0, ω) +

D−1∑
d=1

S(τ − d, ω)H(d, ω) (1)

where τ is the frame index, H(ω) is the STFT of the impulse
response, S(τ, ω) is the STFT of the clean speech s, D is the
number of reverberation windows, and H(d, ω) denotes the
part of H(ω) corresponding to the frame delay d.

In [6], we proposed a dereverberation method based on GSS
to estimate the STFT of the clean speech Ŝ(τ, ω) based on
Eq. (1). To estimate the spectrum of the impulse response
for the GSS, the MCLMS algorithm was extended to identify
the impulse responses in the frequency domain. The estimated
spectrum of clean speech may not be very accurate due to
estimation errors in the impulse response, especially the earlier
parts. In addition, an unreliable estimated spectra in previous
frame causes further estimation error in the current frame.
In this paper, we reduce late reverberation using GSS and
normalize early reverberation by CMN at the feature extraction
stage.

Assuming, for simplicity, that the phases of different frames
are non-correlated, the estimated spectrum X̂(τ, ω) obtained
by reducing the late reverberation becomes

|X̂(τ, ω)|2n ≈ max
{
|X(τ, ω)|2n

− α ·
∑D−1

d=1 {|X̂(τ − d, ω)|2n|Ĥ(d, ω)|2n}
|Ĥ(0, ω)|2n

, β · |X(τ, ω)|2n
}

(2)

where |X̂(τ, ω)|2n = |Ŝ(τ, ω)|2n|Ĥ(0, ω)|2n, |Ŝ(τ, ω)|2 is the
estimated spectrum of clean speech, Ĥ(τ, ω) is the STFT
of the impulse response obtained by the frequency-domain
MCLMS algorithm (discussed in Sec. 3.2), α is the noise
overestimation factor, β is a spectral floor parameter to avoid
negative or underflow values, and n is an exponent parameter.

B. Blind Estimation of Impulse Responses

In this section, we explain the blind estimation of impulse
response spectra Ĥ(d, ω) using Eq. (2). In [10], time-domain
MCLMS was proposed as a technique for blindly estimating
the impulse responses of each channel. In this paper, we use
a variable step-size unconstrained MCLMS (VSS-UMCLMS)
algorithm to extend from the time domain to the frequency
domain.

In the absence of additive noise, we have the following rela-
tion between the correlation matrix and the impulse response.

RXiXi
(τ + 1)Hj(τ) = RXiXj

(τ + 1)Hi(τ) (3)

i, j = 1, 2, · · · , N, i ̸= j

RXiXj
(τ) = E[Xi(τ)X

T
j (τ)] (4)

Xi(τ) = [Xi(τ), Xi(τ − 1), · · · , Xi(τ −D + 1)]T (5)

Hi(τ) = [Hi(τ, 0), · · · , Hi(τ, d), · · · , Hi(τ,D − 1)]T (6)

where i is the channel number, Xi(τ) is the spectrum of the
observed signal in frame τ , Hi(τ) is the spectrum of the
impulse response in frame τ , and Hi(τ, d) is the spectrum of
the impulse response in frame τ corresponding to the frame
delay d.

Transposing the right-hand side of Eq. (3) and combining
terms over all channels, we obtain Eq. (7).

RX+(τ + 1)H(τ) = 0 (7)

H(τ) = [H1(τ)
T ,H2(τ)

T , · · · ,HN (τ)T ]T (8)

RX+(τ) =
∑

i̸=1 RXiXi
(τ) −RX2X1 (τ) · · · −RXNX1 (τ)

−RX1X2 (τ)
∑

i̸=2 RXiXi
(τ) · · · −RXNX2 (τ)

...
...

. . .
...

−RX1XN
(τ) −RX2XN

(τ) · · ·
∑

i̸=N RXiXi
(τ)

 (9)

Eq. (7) uses the true impulse response in the absence of
additive noise. When additive noise is present or the estimated
impulse response is used, however, the observed estimation
error is given by Eq. (10).

R̃X+(τ + 1)Ĥ(τ) = E(τ + 1) (10)



where R̃X+ is the matrix of Eq. (9) calculated using a noisy

observed signal and E is the estimation error. Ĥ is adaptively
trained by minimizing the cost function obtained from the esti-
mation error. The learning equation in unconstrained MCLMS
is as follows:

Ĥ(τ + 1) = Ĥ(τ)− 2µR̃X+(τ + 1)Ĥ(τ) (11)

where µ is the step-size. Multi-channel impulse responses can
be estimated by updating Eq. (11).

The VSS-UMCLMS algorithm automatically determines the
step-size µ in Eq. (11). This is updated according to Eq. (12).

µopt(τ + 1) =
ĤT (τ)∆J(τ + 1)

||∆J(τ + 1)||2
(12)

where

∆J(τ + 1) ≈
2R̃X+(τ + 1)Ĥ(τ)

||Ĥ(τ)||2
(13)

The impulse response spectra can be blindly estimated using
VSS-UMCLMS.

IV. EXPERIMENTS

A. Evaluation data

A. Simulated mixed sound of speech and music
We simulated multi-channel distorted speech signals by com-
bining speech and music that had been recorded separately in
a real environment. Table I gives the recording conditions and
content. One hundred utterances from the Japanese Newspaper
Article Sentences (JNAS) corpus, uttered by five male speakers
seated on chairs A to E in Fig. 2, were recorded by a multi-
channel recording device. The heights of the microphone array
and the utterance position of each speaker were about 0.8 m
and 1.0 m, respectively. We used a nine-channel microphone
array (Fig. 2) and a pin microphone to record speech in
distant-talking and close-talking environments, respectively.
The average signal-to-noise ratio (SNR) of the speech was
about 21 dB. Monaural music was played by a Logicool LS11
2.0 Stereo Loudspeaker on the table and recorded by a multi-
channel recording device. The recorded music, which was
categorized as hard rock and did not include a singing voice,
was added to the speech at an SNR of 10 dB and 20 dB for
each channel.
B. Real mixed sound of speech and music
To evaluate our proposed method in a real environment,
we recorded multi-channel speech that was simultaneously
degraded by music and reverberation. One hundred utterances
from the JNAS corpus, uttered by one male speaker seated on
chair A in Fig. 2, were recorded by a multi-channel recording
device. We played music continuously until all utterances were
finished. The other recording conditions were the same as for
the simulated mixed sound recordings. The average SNR of
the speech was about 3.4 dB.

TABLE I
CONDITIONS FOR RECORDING.

microphone SONY ECM-C10
A/D board Tokyo Electron device

TD-BD-16ADUSB
recording room size [m] 7.1(D) × 3.3(W) × 2.5(H)
number of utterances 100 utterances
sampling frequency 16 kHz
quantization bit rate 16 bits
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Fig. 2. Illustration of recording settings and microphone array

B. Experimental setup

Table II lists the speech recognition conditions. The acoustic
models were trained with the Acoustical Society of Japan’s
(ASJ) speech database of phonetically balanced sentences
(ASJ-PB) and the JNAS. In total, around 20,000 sentences
(clean speech) uttered by 132 male speakers were used. Table
III gives the conditions for SS-based denoising and derever-
beration. The parameters shown in Table III were determined
using the simulated noisy reverberant speech. The number of
reverberant windows was set to D = 6 (192 ms). For the
proposed SS-based dereverberation method, the clean power
spectrum for each frame was incrementally estimated by the
clean power spectra of preceding non-overlapping frames, as
this study used a frame shift of half the frame length. The

spectrum of the impulse response Ĥ(d, ω) was estimated to
allow each utterance to be recognized. We used the open-
source Julius large vocabulary continuous speech recognition
(LVCSR) decoder [11], which is based on word trigrams and
triphone context-dependent hidden Markov models (HMMs).

TABLE II
CONDITIONS FOR SPEECH RECOGNITION.

sampling frequency 16 kHz
frame length 25 ms
frame shift 10 ms
acoustic model 5 states, 3 output probability

left-to-right triphone HMMs
feature space 25 dimensions with CMN

(12MFCCs + ∆ + ∆power)

TABLE III
CONDITIONS FOR GSS-BASED DEREVERBERATION.

analysis window Hamming
window length 32 ms
window shift 16 ms
noise overestimation factor α 0.1
spectral floor parameter β 0.15
exponent parameter n 0.1



C. Experimental results
The speech recognition results from the proposed method

are shown in Figs. 3 and 4. There were obtained using two
channels (Mic. 1 and 2 in Fig. 2) and four channels (Mic. 6,
7, 8, and 9 in Fig. 2) for the blind estimation of impulse
response and delay-and-sum beamforming, respectively. In
Figs. 3 and 4, “CMN only”, “EFICA”, “EFICA+MSLP”, and
“EFICA+MCLMS” denote results from conventional CMN,
blind source separation based on EFICA, the combination
of EFICA with blind dereverberation based on multiple-step
linear prediction (MSLP) [5], and the combination EFICA
with blind dereverberation based on MCLMS (our proposed
method). Dereverberation utilizing MSLP shows good perfor-
mance under various reverberant environments. In this paper,
delay-and-sum beamforming was performed for all methods.

In Figs. 3 and 4, “Real (w/o music)”, “Simulated (20
dB)”, and “Simulated (10 dB)” indicate speech without mu-
sic and the simulated mixed sound of speech and music
added at an SNR of 20 dB and 10 dB, respectively. The
speech recognition performance of “CMN only” was dras-
tically degraded owing to the noisy reverberant conditions
and the fact that CMN does not suppress the music or
late reverberation. “EFICA” improved the speech recognition
performance significantly compared with “CMN only” under
all conditions, and “EFICA+MSLP” further improved the
performance compared with “EFICA”. Our proposed method
(“EFICA+MCLMS”) outperformed all of the other methods,
including “EFICA+MSLP”, especially when using two chan-
nels. With two channels in the simulated environment at an
SNR of 10 dB, our proposed method achieved an average rel-
ative word error reduction rate of 48.2% and 12.4% compared
with “CMN only” and “EFICA+MSLP”, respectively.

“Real (with music)” indicates the real mixed sound of
speech and music. The speech recognition performance of
“CMN only” with this real mixed sound was again consid-
erably degraded for the reasons mentioned previously. When
using two channels, “EFICA” did not offer any improvement
over “CMN only” because of the smaller SNR than in the
simulated speech, the smaller number of microphones, and
the shorter distance between the microphone pair. Conse-
quently, “EFICA+MSLP” and “EFICA+MCLMS” achieved
only a small increase in word recognition accuracy. On the
other hand, when using four channels, “EFICA” improved the
speech recognition performance significantly compared with
“CMN only”. “EFICA+MCLMS” gave a marked improvement
over “EFICA”, and also outperformed “EFICA+MSLP”. When
using four channels, our proposed method achieved an average
relative word error reduction rate of 41.9% and 7.9% compared
with “CMN only” and “EFICA+MSLP”.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a method that combined blind
dereverberation based on MCLMS with blind source separa-
tion based on EFICA under a reverberant environment with
non-stationary noise. To evaluate our proposed method, we
prepared simulated and real mixtures of speech and music. The
results showed that our proposed method was more effective
than combining EFICA with the state-of-the-art MSLP. In
future work, we intend to extend our proposed method to deal
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Fig. 3. Word accuracy using two channels for LVCSR
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Fig. 4. Word accuracy using four channels for LVCSR

with real-world speech data, including overlapping speech that
involves multiple persons speaking simultaneously.
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