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Abstract—It is well-known that human speech recognition
(HSR) is much more robust than automatic speech recognition
(ASR) [1], [2]. Given that HSR’s robustness to large acoustic
variability is extremely high, it is reasonable for researchers to
assume that humans are able to extract invariant patterns under-
lying input utterances [3]. Recently in developmental psychology,
it was found that infants are very sensitive to distributional
properties in the sounds of a language [4], [5]. Following this
finding, the first author proposed a speaker-independent or
invariant speech representation of each utterance, formed by
using distributional properties in the sounds of that utterance
[6], [7], [8]. This representation is called speech structure and
was tested in isolated word recognition experiments [7], [8].
This paper introduces another kind of sensitivity into speech
structure, that is sensitivity to language rhythm. Sonority-based
syllable nucleus detection is implemented and we extract local
and syllable-based structures as well as conventional global and
holistic structures. Isolated word recognition experiments show
that the recognition performance is improved with rhythm-
sensitive and local speech structures.

I. INTRODUCTION

In developmental psychology and speech science, a great
deal of knowledge regarding first language acquisition (LA)
has been accumulated. However, the underlying principles of
the learning process are not well-known yet. This is considered
to be because language is an extremely complex phenomenon.
In this situation, computational models play an important
role to deepen researchers’ understanding of LA [9] because
researchers can verify their own models quantitatively as well
as qualitatively through computer simulation. However, these
models can often explain only certain aspects of LA, not all.

One of the classical but still open questions in LA is
about how humans acquire the ability of super robust speech
recognition [2], [9]. Especially, [2] claimed that the current
ASR model lacks the ability to generalize, something that
human infants acquire easily. In training automatic speech
recognizers, a large speech corpus with high speaker variability
is often needed. In the case of infants’ LA, however, a majority
of speech samples exposed to infants are from their parents
and caretakers. We can say that ASR needs speaker-balanced
speech samples but it seems true that HSR has no problem with
speaker-biased speech samples. Another approach to training
ASR models with a relatively small corpus is speaker-adaptive

training [10]. In this approach, input speech features are nor-
malized and transformed to be features of the imaginary ref-
erence speaker who is assumed to have an average vocal tract
length. Recently, new computational models were proposed
for LA in [11], [12], where acoustic mapping or manifold
alignment was investigated among infants and adults. Speaker-
adaptive training in ASR models and these new computational
models in HSR are similar in that both approaches try to
transform speech features of a source speaker to those of a
target speaker. In speaker adaptive training, the target speaker
is the imaginary reference speaker and in the LA models, the
target speaker is an adult and the source speaker is an infant.

With regard to the speech variability problem in this paper,
we investigate a totally different speech model or speech
representation where the acoustic aspect of an utterance which
corresponds to speaker identity is removed effectively from
the speech acoustics. What remains can reasonably become a
speaker-independent or speaker-invariant representation, called
speech structure [6], [7], [8]1. Unlike the proposals made in
[11], [12], our model does not need any explicit mapping or
alignment between different speakers. Mapping is required in
[11], [12] because these models represent speech acoustics
with speaker identity still included. In acoustic analysis of
speech, the spectrum envelope is often extracted from the
power spectrum by removing pitch harmonics. So, the en-
velope pattern is pitch-independent. Similarly in our model,
speaker identity is removed from speech acoustics based on
mathematical equations to represent speaker identity in speech.

In our previous study [13], [14], we discussed this speech
model by associating its invariant properties to infants’ good
abilities to generalize because this model seems to be much
in accordance with recent findings of infants’ performance in

1The term of “speaker-independent” is often used to indicate statistical
independence. Since the theory of probability defines P (a) =

∑
b
P (a, b),

through collecting samples, any variable can be treated as a hidden variable.
Speaker-independent HMMs are trained by this strategy using a speaker-
balanced corpus to hide speaker identity in the distribution. In this paper,
we focus on another kind of independence, which should be referred to as
physical independence, where a variable can disappear by physically removing
or separating it from observations [16]. In speech analysis, phase and pitch
are often removed physically from observations. In this paper, we claim that
speaker identity can also be removed.



Fig. 1. Two different distributions of language sounds [4]

LA. Infants were found to be very sensitive to distributional
properties in the sounds of a language [4], [5]. In [13], [14],
we investigated this model as a model of infants’ spoken word
acquisition and in the current paper, we attempt to incorporate
into our model yet another parameter in infants’ sensitivity,
that is sensitivity to language rhythm [15]. Our new structural
model is evaluated in spoken word recognition experiments
and it shows better performance than our old model.

This paper is organized as follows. In Sect. II, recent
findings of infants’ sensitivity to distributional properties
of language sounds are explained and some related facts
and discussions found in dialectology and classical theory
of phonology are described. Our invariant speech structure
model is introduced in Sect. III and in Sect. IV, sonority peak
detection is technically implemented based on prior research.
Our proposal of syllable-based and local speech structures are
explained in Sect. V and they are tested in the task of isolated
word recognition experiments in Sect. VI Finally, Sect. VII
concludes this paper.

II. INFANTS’ SENSITIVITY TO DISTRIBUTIONAL
PROPERTIES IN SPEECH

Americans can discriminate [r] and [l] easily but Japanese
generally do not discriminate these two sounds. If infants in a
language environment can discriminate two sounds of x and y
and those in another language environment do not, one can
claim that infants’ language acquisition is affected by that
environmental difference. In [4], it was found that infants’
performance of sound discrimination is easily affected by
environmental differences in terms of distributional properties
of language sounds in the environments.

In [4], two groups of infants were placed in two different
sound environments just for several minutes. One environment
is characterized by a unimodal frequency distribution of speech
sounds and the other is by a bimodal distribution. Fig. 1 shows
both distributions. In this study, speech stimuli are a continuum
of [da] to [ta] and intermediate stimuli were generated by a
speech synthesizer. After several minutes’ familiarization to
these sound environments, the same sound pair of stimuli, that
are 1 and 8 in Fig. 1, were presented to the two groups of
infants. Experimental results showed that only the infants in
the bimodal distribution environment can discriminate these
two sounds and the authors concluded that infants are very
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Fig. 2. Dialect-specific vowel distributions in American English [17]
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Fig. 3. Vowel distribution patterns in three groups of Japanese speakers [18]

sensitive to distributional properties of language sounds in
the environment. In [5], infants’ sensitivity to distributional
properties was investigated again.

Sensitivity of infants to distributional properties of language
sounds when acquiring a language is easy to understand when
we consider dialectal differences in a language. Fig. 2 shows
several distribution patterns of six vowels of American English
dialects [17]. The vowels are plotted on an F1/F2 plane
after vocal tract length normalization. It is well-known that
different dialects show different vowel distribution patterns.
When infants are born and brought up in an geographical area,
they inevitably acquire the dialect pronunciation in that area.
It is reasonably evident that infants are very sensitive to the
sound distribution pattern in their process of LA.

On the other hand, to which aspect of speech are infants
insensitive? Fig. 3 shows Japanese vowel distributions of male
adults, female adults, and 10-year-old children [18]. It is also
well-known that formant frequencies strongly depend on the
vocal tract length of a speaker. Adults have lower formant
frequencies and children have higher formant frequencies. In
infant studies, it is often said that infants’ language acquisition
is based on their vocal learning, which includes vocal imitation
of utterances of their parents or caretakers. It should be noted
that their vocal imitation is not acoustic imitation. Infants do
not impersonate their parents or caretakers but they do learn
the sound distribution pattern. Considering this performance,
we can say that infants are not sensitive to absolute properties
in speech sounds but sensitive to relational or distributional
properties in them. Putting it in another way, infants are
sensitive to the sound system of a language.



Fig. 4. Jakobson’s structure of the French vowels and semi-vowels [20]

Fig. 5. Consonant and vowel triangles and related features [21]

Similar discussions can be found in classical phonological
literature. R. Jakobson proposed a theory of relational invari-
ance, called distinctive feature theory. In [19], he repeatedly
emphasized the importance of relational and systemic invari-
ance among speech sounds. “Physiologically identical sounds
may possess different values in conformity with the whole
sound system, i.e. with their relations to the other sounds.”
“We have to put aside the accidental properties of individual
sounds and substitute a general expression that is the common
denominator of these variables.” In [20], he drew the invariant
system of French vowels and semi-vowels, shown in Fig. 4.
The distinctive features were proposed to describe the relation
or difference between sounds. Two simple sound systems and
their related features are shown in Fig. 5.

What is the simplest definition of a (sound) system? Ge-
ometrically speaking, the shape of a three-point structure (a
triangle) can be defined by the length of the three edges of
the triangle. What about an n-point structure? In this case, the
length of all the edges including the diagonal edges can define
the shape of that structure, shown in Fig. 6. The distance
matrix extracted from an n-point structure is the simplest
definition of the shape of that structure. If the distance matrix
representing the sounds generated by a speaker and the matrix
representing the sounds of the same message generated by
another speaker is the same, we can say that those matrices are
speaker-invariant or speaker-independent and that infants seem
to be sensitive to the matrix properties because, geometrically
speaking, the matrix is one of the simplest definitions of
distributional properties. How can one measure the length of
an edge of an n-point structure in a speaker-invariant way?
This question is dealt with in the following section.

Recently in ASR studies, some researchers pay special
attention to the distinctive feature theory [22], [23], [24]. Here,
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Fig. 6. The distance matrix of a structure defines its shape.

features are often referred to as “attributes” [22], [23] and
the researchers tried to define the features acoustically and
detectors of the features or the attributes are used in the front-
end of ASR systems. R. Jakobson introduced the features to
describe the invariant relational properties qualitatively. In our
study, instead of searching for a good acoustic definition of
the features, the invariant shape of sounds which underlies an
input utterance is extracted and used for speech processing. We
understand that the features were introduced by R. Jakobson
to describe this invariant shape.

III. INVARIANT SPEECH STRUCTURE

A. Derivation of invariant speech structure

How to calculate distance between two sounds in a speaker-
invariant way? In this section, a mathematical solution pro-
posed in [6], [7], [8] is explained. Speaker difference is
modeled mathematically as space mapping in studies of voice
conversion. In [8], we proved that f -divergence between
two distributions is invariant with any kind of invertible and
differentiable transforms (sufficiency) and that any invariant
measure with respect to two distributions has to be written in
the form of f -divergence (necessity). fdiv is a distance metric
between two distributions, p1 and p2, and it is formulated as

fdiv(p1, p2) =
∮

p2(x)g
(

p1(x)
p2(x)

)
dx, (1)

where g(t) is a convex function for t > 0 [25]. If we take
t log(t) as g(t), fdiv becomes KL-divergence. When

√
t is

used for g(t), − log(fdiv) becomes Bhattacharyya distance.
Fig. 8 shows two spaces (shapes) which are deformed into
each other through an invertible and differentiable transform.
An event is described not as point but as distribution. Two
events of p1 and p2 in A are transformed into P1 and P2 in
B. Generally speaking, the two spaces are closed manifolds
and the invariance of f -divergence is always satisfied [8].

fdiv(p1, p2) ≡ fdiv(P1, P2). (2)

In [6], [7], [8], we have been using the Bhattacharyya
distance (BD) as one of the fdiv measures. If an input utterance
is represented as a BD-based distance matrix by using only the
distributions found in that utterance, the matrix is an invariant
representation of that utterance. Fig. 7 shows a procedure of
representing an input utterance only by BD. The utterance in a
feature space, such as cepstrum space, is a sequence of feature
vectors and it is converted into a sequence of distributions
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through automatic and unsupervised segmentation. Here, any
speech event is characterized as a distribution. The BD is
calculated from any pair of distributions and we can get an
invariant distance matrix for that utterance. This matrix-based
invariant representation is a speech structure.

Here, we should note that velocity vectors, relative changes
at each point on the time axis (See the right-hand side of
Fig. 7), are not good candidates for speaker-invariant features.
This is because vocal tract length normalization can be ap-
propriated as rotating a feature trajectory [26], [27] and the
direction of velocity vectors are strongly dependent on the
vocal tract length [27]. When the acoustic feature of interest
is a one-dimensional feature, such as fundamental frequency,
since rotation is geometrically impossible, velocity vectors
can become invariant features. Perception of relative and
directional changes in fundamental frequency is often called
relative pitch in musicology and, due to this, one can perceive
syllable names, not pitch names, of Do, Re, Mi,..., in a key-
invariant way. We can say that an fdiv-based distance matrix
is an extended concept of relative pitch, that will be relative
timbre. Because pitch is one-dimensional and timbre is multi-
dimensional, invariance can be found as directional and local
changes in the former but in the latter, it can be found only as
local contrasts and distant contrasts between acoustic events.
We can say our invariant structure is a general solution of
finding invariance in dynamics of multi-dimensional features.

Invariance and discrimination have a trade-off relation.
Models that are too invariant will reduce the performance of
discriminating different words. For example, [26] found that
change of cepstrum features by lengthening or shortening the
vocal tract can be approximated as a linear transformation.
If we assume a single Gaussian for each acoustic event in
Fig. 7, invariance is satisfied only with linear transformations.
Fig. 9 shows several examples of linearly transformed distri-
butions. Among these three sets of distributions, a common

Fig. 9. Feature modification by linear transformation. A common and invariant
underlying structure exists among these three sets of distributions.
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Fig. 10. Multiple Stream Structuralization (MSS) [7]

and invariant underlying structure exists. Among three sets of
vowel distributions in Fig. 3, we can find differences in their
sizes, which can be cancelled in our structure model, shown
in Fig. 9. Further, [26], [27] show that the transformation
matrix for vocal tract length change becomes a band matrix. To
obtain invariance only with band matrix transformations, we
proposed multiple stream structuralization (MSS) [7], where a
feature stream is divided into several sub-streams and for each
sub-stream, an fdiv-based distance matrix was calculated and
used for recognition. The structure for a sub-stream will be
called sub-structure. In Fig. 10, a three-dimensional structure
is decomposed into two two-dimensional sub-structures.

[9] gives a good survey of studies of computational models
of LA, where the models are divided into two paradigms, pho-
netic learning and lexical learning. In the former, it is claimed
that phonetic categories are first acquired and then used for
lexical learning. In the latter, word acquisition is hypothesized
to come first. In our speech structure, an utterance has to
be divided into several events by automatic and unsupervised
segmentation but they do not have to be classified. Therefore,
our speech structure is regarded as a model of lexical learning.
Based on findings in [4], [5], however, the distributional
properties can be associated with phonetic category learning.
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In [28], it is shown that acoustic details, which include
speaker information, are effectively used in human perception
of spoken words. Our structure model is speaker-independent,
where speaker identity is supposed to be removed, and this
is supported by other cognitive science studies. [29] shows
that, although infants pay attention to acoustic details of
input utterances at the very early stage, they start shortly to
generalize acoustic variations in the utterances, where they
can treat linguistically identical but acoustically very different
spoken utterances as identical messages. Further, [30] explains
interesting performances of an autistic boy. He can understand
easily what his mother says but it is difficult to understand
what anybody else says. It seems that he maps the acoustic
details of his mother’s utterances to meaning. It is widely
known that autistic individuals have difficulty in generalizing
sensory stimuli but have extremely good memory of detailed
aspects of the stimuli [31].

B. Use of speech structure for isolated word recognition

In our previous study [8], we tested our structure model in
isolated word recognition experiments which used a vocabu-
lary artificially designed for that experiment. The Japanese five
vowels (/a/,/i/,/u/,/e/,/o/) were arranged variously to produce
120 five-vowel sequences (words) such as /eoaui/. Conversion
from a feature sequence into a distribution sequence was
realized as HMM training with only the input utterance.
The 20-state HMM was adopted as reference topology and
any word utterance was characterized as a 20-distribution
sequence. Then, a 20×20 distance matrix was calculated and
it was used as a feature vector (structure vector) for that input
word utterance. Parameter estimation becomes very unstable
when only a single sample is used for HMM training. So, the
parameters were estimated with MAP adaptation. For word
template models, we built a statistical model for each word
by using structure vectors of that word, shown in Fig. 11. The
likelihood scores of an input structure vector were calculated
for the template models and used for word recognition. The
detail experimental setup is found in [8]. Results of word
recognition experiments are shown in Fig. 12, where word
utterances of very tall speakers and very small speakers were
artificially prepared as testing samples by using vocal tract
length warping [26]. The x-axis of Fig. 12 indicates the value
of the warping parameter. If it is negative, an input speaker
becomes taller and if it is positive, he becomes smaller. Three
methods were compared. A) word HMMs without model
adaptation, B) 17 sets of word HMMs trained in matched
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Fig. 12. Results of word recognition experiments [8]

conditions and C) structure models without model adaptation.
The baseline word HMMs are extremely weak when acoustic
mismatch takes place between training and testing conditions.
This performance degradation can be avoided by modifying
model parameters so that they are matched well with input
speakers. The performance in the case of B), matched condi-
tions, is drastically improved from that of word HMMs without
adaptation. Although the model parameters of our invariant
structure model are constant for any value of the warping
parameter, our model shows extremely robust performance,
which is comparable to that of the matched HMMs. We can
say that our structure models have a good ability to generalize.

After our initial trial of isolated word recognition using
speech structures, the structures were integrated into HMM-
based continuous digit recognition [32] and large vocabulary
speech recognition [33]. In these works, multiple hypotheses
were generated from the baseline recognizer and these hy-
potheses were re-ranked discriminatively by using structural
likelihood scores. Structural re-ranking improved the perfor-
mance in both cases. However, the development of the baseline
system required a huge amount of speech samples. Modeling
infants’ process of word acquisition based on their ability to
generalize, however, we focus on our invariant structure from
a different viewpoint, not hastily combining the structure with
the current ASR framework.

In the following sections, we modify our structure model so
that it will become more in accordance with experimental facts
found in infant studies. Here, we focus on language rhythm.

IV. SYLLABLE NUCLEUS DETECTION USING WAVEFORM
ENVELOPES

In this paper, we use the term of “rhythm” to indicate a
regulated succession of strong and weak elements [34]. If one
applies this definition directly to language, one will find a well-
known and language-universal principle of language rhythm,
the sonority sequencing principle [35], [36]. Sonority is an
auditory phonetic term describing the overall loudness of a
sound relative to others of the same pitch, stress and duration
[37]. Acoustically speaking, it is considered to be related to



the quality of being resonant. Each phone is considered to have
its own sonority value and [38] proposed a universal sonority
scale that categorizes phones according to their distinctive fea-
tures. Vowels have higher sonority and consonants have lower
sonority. Different sonority values are assigned to vowels and
unvoiced fricatives have minimum sonority. It is clear that a
syllable has a sonority peak at its syllable nucleus and its onset
and coda have lower sonority values. It is a language-universal
that any utterance is composed of a sequence of syllables, and
that each utterance has a sonority modulation pattern.

Following this principle, we attempt to detect sonority
peaks (syllable nuclei) and extract local or syllable-sized
structures around the detected syllable nuclei. These peak-
sensitive structures are called rhythm-sensitive structures in
this work and will be used in isolated word recognition
experiments. Although [38] defined the sonority value of each
phone theoretically, we cannot use this definition. Since our
structure model is a model of lexical learning, not phonetic
learning, phonetic categories should not be used to estimate
sonority of each segment in a given utterance. In previous
works [39], [40], [41], estimation of sonority or detection of
sonority peaks (valleys) were investigated directly from raw
acoustic features without phonetic classification. We follow
this strategy. In [42], unsupervised syllable boundary detection
methods were compared. One of the methods was proposed in
[43], which uses waveform envelopes for unsupervised syllable
boundary detection. By slightly modifying this method, we
implemented a method of syllable nucleus detection using
waveform envelopes. The procedure is as follows, explained
in Fig. 13 schematically.

1) Speech signals are input to a BPF (500 Hz to 1,500 Hz).
2) Then, full wave rectification and LPF (50Hz) are done

to obtain waveform envelopes.
3) Envelope peaks are detected as nucleus candidates.
4) Any candidate that does not satisfy the following con-

ditions are removed.
• The amplitude of the candidate is larger than a fixed

threshold.
• The candidate has the maximum amplitude among

the candidate peaks within a fixed time interval.
5) The resulting candidates are adopted as syllable nuclei.

Using 210 utterances of American English speakers (8 males
and 12 females) in the ERJ database [44], our syllable nucleus
detector was tested. Recall and precision of the detected
nuclei were calculated objectively and subjectively. Objective
calculation was done by using the vowel boundaries obtained
through forced alignment with an HMM-based speech rec-
ognizer and the transcripts attached to the ERJ database.
Because alignment errors were inevitable and some vowels
were reduced and unvoiced, which should have been judged
not to have a syllable nucleus, we asked a native speaker of
American English, the fourth author, to locate syllable nuclei
that she perceived in the utterances. These perceptual nuclei
were used as reference in subjective assessment. Tab. I shows
the performance of our detector. The detected syllable nuclei

Band pass filtering

Full wave rectification

Low pass filtering

Peak picking

Fig. 13. Syllable nucleus detection using waveform envelopes

TABLE I
PERFORMANCES OF OUR SYLLABLE NUCLEUS DETECTOR [%]

recall precision F-value
objective 74.2 80.7 77.3
subjective 85.7 92.3 88.9

will be used in the following sections to define and extract
rhythm-sensitive and local speech structures.

V. SYLLABLE-BASED LOCAL SPEECH STRUCTURE

A. Use of the detected syllable nuclei as landmarks

Fig. 7 and Fig. 11 show how to extract the invariant struc-
ture from an utterance and how to obtain a statistical structure
model from a set of utterances of one and the same word,
respectively. The (i, j) element of the matrix is a speech
contrast between the i-th event and the j-th event in the
utterance. Since structure extraction is done in an unsupervised
way, the linguistic instance of the i-th event can vary among
the utterances even when all of them are the same word. In
other words, how a feature sequence is aligned to its distri-
bution sequence can vary for each utterance. In this work, we
attempt to use syllable-based and rhythm-sensitive structures
to make our structure model more in accordance with infants’
behaviors. This attempt can be interpreted technically as a
solution of misalignment problem between a feature sequence
and its distribution sequence by using detected syllable nuclei
as salient landmarks.

B. Two kinds of syllable-based structures

After converting a feature sequence into a distribution
sequence, by using syllable nucleus detection results, it is
possible to detect distributions that have a syllable nucleus,
which will be referred to as nucleus distribution. For each of
the nucleus distributions, we can form a syllable-based and
local structure by using K (3≤K≤5) adjacent distributions
with its center being the nucleus distribution. This syllable-
based structure is called hereafter intra-syllable structure. It
is possible to define another kind of syllable-based structure,
which will be called inter-syllable structure. In this case, fdiv
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is measured between two distant syllables. Fig. 14 shows com-
parison between a conventional and global speech structure
and the two kinds of syllable-based and local speech structures,
intra-syllable and inter-syllable structures. The number of
intra-syllable structures in an utterance depends on the number
of automatically detected syllable nuclei. In the case of N
nuclei in an utterance, one will have N intra-syllable structures
and

(
N
2

)
inter-syllable structures in that utterance.

VI. ISOLATED WORD RECOGNITION EXPERIMENTS

A. Soft-decision on the number of syllables

For word recognition experiments, as in Fig. 11, a statistical
global word model was built for each word and a statistical
local syllable-based model was built for each syllable and each
syllable pair in the word. It should be noted that the number
of detected nuclei can vary depending on acoustic properties
of input utterances even when they are the same word. This
makes it difficult to carry out matching an input syllable-based
structure vector with syllable-based structure models. We took
the following solution to this problem.

In training the statistical structure model, global and local,
for each word, since the number of syllables in that word is
known, we adjusted thresholds of syllable nucleus detection
so that the number of automatically detected syllable nuclei
becomes identical to the number of syllables found in the
phonemic transcription of that word. Then, we can obtain a
word-based global structure model and syllable-based local
structure models for each word.

In testing the statistical structure models, since the number
of syllables of an input utterance is unknown, we adopted the
strategy of a variable number of syllables in that utterance.
For any input utterance, the number of nuclei was set to two
to five2. By adjusting the nucleus detection thresholds, we
detected two to five syllables in that utterance3.

2The number of syllables per word in the database used in our experiments
varies from two to five. This fact is given to our system.

3Syllable nucleus detection performances in Tab. I were obtained using a
fixed value for each threshold. We can run word recognition experiments using
these fixed values, where the number of syllables in an utterance is determined
before word recognition. Preliminary experiments, however, showed that the
number of syllables should not be treated deterministically.

TABLE II
EXPERIMENTAL CONDITIONS

sampling 16 bit / 16 kHz
window 25 ms length / 10 ms shift
features MFCC (12dim) + ∆MFCC
distribution single diagonal Gaussian
parameter estimation MAP adaptation
#states per HMM 20
#words in the vocabulary 212
#training speakers 15 males and 15 females
#testing speakers other 15 males and 15 females
#distributions in a local structure (K) 3 or 5
Width of a sub-stream (L) 1 or 2

B. Fusion of global and local likelihood scores

In the experiments, we use both a global structure and
local structures for any utterance. Then we can use multiple
likelihood scores. Fusion of these scores is done by

V = S + ω

(
1
N

N∑
n=1

Tn +
1
M

M∑
m=1

Um

)
, (3)

where S is the likelihood score from the global structure, and
Tn and Um correspond to the scores of the n-th intra-syllable
structure and the m-th inter-syllable structure, respectively. N
is the number of hypothesized syllables and M is the number
of hypothesized syllable pairs,

(
N
2

)
. ω is a weight of the

syllable-based likelihood scores to the global likelihood score.
The word that maximizes V is a result of word recognition.

C. Experimental conditions

In the isolated word experiments, we used a more realistic
set of word utterances, the phoneme-balanced 212 Japanese
word set [45], which is often used as spoken word samples in
the Japanese speech research community. Conditions of acous-
tic analysis and word recognition are shown in Tab. II. The
number of distributions per word was set to 20, irrespective
of the number of syllables (morae) in the input utterances. The
statistical structure model of a word, global or local, was built
as a Gaussian distribution estimated from structure vectors
(see Fig. 11 and Fig. 14) extracted from multiple utterances
of that word. To constrain invariance of the structure models,
we adopted multiple stream structuralization (MSS) [7]. Here,
a 12-dimensional cepstrum stream was divided into multiple
sub-streams of smaller dimensions, where dimensional overlap
was allowed between adjacent sub-streams. In the experiments,
we set the width of a sub-stream, L, to 1 or 2. The number
of distributions considered around a hypothesized syllable
nucleus, K, was set to 3 or 5.

D. Results and discussion

Results of the isolated word experiments are shown in
Fig. 15 as a function of ω, where larger ω means higher
sensitivity to local structures extracted around syllable nuclei.
ω=0 means word recognition only using global structures,
which corresponds to using our previous structure model.
The top figure shows the results using a global structure and
both intra-syllable and inter-syllable structures for each input
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Fig. 15. Word recognition results using global and local structures

utterance; the bottom shows the results using a global structure
and only intra-syllable structures. Colors indicate difference of
K and shapes of the marks indicate difference of L.

In every case, by introducing syllable-based structures with
adequate weights, the recognition performance is improved.
This clearly shows that modification of our structure model
based on rhythm-sensitivity or nucleus-sensitivity can improve
discrimination. We consider that our modified structure models
accord more with infants’ behaviors. When we interpret this
improvement from a technical viewpoint, rhythm-sensitivity
appears to solve the misalignment problem to some degree.

By comparing the two figures, it is very interesting that
not only intra-syllable structures but also inter-syllable struc-
tures can contribute to performance improvement. As far as
we know, such long-distance contrasts are not used in the
conventional ASR framework but our results show that they
are indeed beneficial. Logically speaking, long-distance con-
trasts or relations are defined only by capturing input stimuli
holistically. In the current ASR, both acoustic models and
language models can capture acoustic or linguistic phenomena
only locally. Extraction of holistic features or patterns will be
one of the key issues to make ASR closer to HSR.

However, weights that are too large (ω=20) for local struc-
tures lead to performance degradation. This indicates that the
elements in a structure matrix which are not related to syllable-
based structures can certainly contribute to discrimination.

Comparison between the case of L=1 and that of L=2
shows that better performances are obtained in the case of
L=1. This result is very reasonable because, in MSS, smaller
width of a sub-stream can increase discriminability while
decreasing invariance. Very similar results were obtained in
[7]. Discrimination and invariance have a trade-off relation.
As for K, the case of K=5 shows better results compared to
the case of K=3. The optimal value of K should depend on
the number of distributions used for modeling word utterances.
In this experiment, it is 20.

In this paper, isolated word recognition was carried out
by using only structural features. It is very interesting that
acoustic features corresponding to spectrum envelopes such
as MFCC are not used for recognition. As shown in Fig. 7,
only speech contrasts, some of which are distant contrasts,
are extracted as invariant features from speech dynamics. Our
model has a good ability to generalize but is not able enough
to discriminate because, as shown in Fig. 15, the recognition
rate is about 84%. If one wants to improve performance
for performance sake, the simplest solution is to combine
our structure model with the current ASR model [32], [33].
As told in Sect. III-B, we consider that this strategy is not
adequate if one wants to simulate infants’ process of word
acquisition through gaining ability to generalize. On the other
hand, it is also true that some speech sounds, such as unvoiced
consonants, are much less speaker-dependent than voiced and
resonant sounds, and these show smaller speaker variability.
Considering this fact, we will introduce the current ASR
framework only for processing speech segments with sonority
valleys. This is one of the future works.

As already mentioned in Sect. I, a computational model
can explain only certain aspects of LA. Our structure model
attempts only to explain human performance of robust speech
processing in the domain of isolated word recognition. In this
paper, the words were treated as given in a supervised way.
We’re planning to introduce our speech structure model to
unsupervised word discovery.

VII. CONCLUSIONS

Speech structure was originally proposed as a physically,
not statistically, speaker-independent representation of speech
and is implemented as an fdiv-based distance matrix among
feature distributions found in a given utterance. Since this
representation seems to be in accordance with recent findings
of infants’ sensitivity to distributional properties in a given
language, we introduced to speech structure yet another sensi-
tivity of infants, which is to language rhythm. Syllable nucleus
detection was implemented by using waveform envelopes and
from this, we defined two kinds of syllable-based local struc-
tures, intra-syllable and inter-syllable structures. Experiments
showed that a combination of global and local structures can
improve the performance. We conclude that our new structure
model accords more with infants’ behaviors.



REFERENCES

[1] R. K. Moore, “A comparison of the data requirements of automatic
speech recognition systems and human listeners,” Proc. INTERSPEECH,
2581–2582, 2003.

[2] S. Furui, “Generalization problem in ASR acoustic model training and
adaptation,” Proc. ASRU, 1–10, 2009.

[3] J. S. Perkell, D. H. Klatt, Invariance and variability in speech processes,
Lawrence Erlbaum Assoc. Inc., 1986.

[4] J. Maye, J. F. Werker, L. Gerken, “Infant sensitivity to distributional
information can affect phonetic discrimination,” Cognition, 82, B101–
B111, 2002.

[5] J. F. Werker, F. Pons, C. Dietrich, S. Kajikawa, L. Fais, S. Amano,
“Infant-directed speech supports phonetic category learning in English
and Japanese,” Cognition, 103, 147–162, 2007.

[6] N. Minematsu, “Mathematical evidence of the acoustic universal struc-
ture in speech,” Proc. ICASSP, 889–892, 2005.

[7] N. Minematsu, Y. Qiao, S. Asakawa, M. Suzuki, “Speech structure and
its application to robust speech processing,” Journal of New Generation
Computing, 28, 3, 299–319, 2010.

[8] Y. Qiao, N. Minematsu, “A study on invariance of f-divergence and its
application to speech recognition,” IEEE Trans. on Signal Processing,
58, 7, 3884–3890, 2010.

[9] O. Räsänen, “Computational modeling of phonetic and lexical learning
in early language acquisition: existing models and future directions,”
Speech Communication, 54, 975–997, 2012.

[10] T. Anastasakos et al. “A compact model for speaker-adaptive training,”
Proc. ICSLP, 1137–1140, 1996.

[11] A. R. Plummer, M. E. Beckman, M. Belkin, E. Fosler-Lussier, B. Mun-
son, “Learning speaker normalization using semisupervised manifold
alignment,” Proc. INTERSPEECH, 2918–2921, 2010.

[12] G. Ananthakrishnan, G. Salvi, “Using imitation to learn infant-adult
acoustic mappings,” Proc. INTERSPEECH, 765–768, 2011.

[13] N. Minematsu, S. Asakawa, Y. Qiao, D. Saito, T. Nishimura,
“Implementation of robust speech recognition by simulating infants’
speech perception based on the invariant sound shape embedded in
utterances,” Proc. Speech and Computer (SPECOM), 35–40, 2009.

[14] N. Minematsu and T. Nishimura, “Consideration of infants’ vocal
imitation through modeling speech as timbre-based melody,” in New
Frontiers in Artificial Intelligence, LNAI4914, 26–39, Springer, 2008.

[15] R. Mazuka, “The rhythm-based prosodic bootstrapping hypothesis of
early language acquisition: Does it work for learning for all languages?”
Gengo Kenkyu, 132, 1–15, 2007.

[16] N. Minematsu, “Human speech model based on information separation
and its application to speech processing,” Proc. Int. Symposium on
Chinese Spoken Language Processing, 477–482, 2010.

[17] W. Labov, S. Ash, C. Boberg, Atlas of North American English, Mouton
and Gruyter, 2005.

[18] S. Nakagawa, Y. Tohkura, and K. Shikano, Speech, hearing and neural
network, Ohmsha, Tokyo, 1990.

[19] R. Jakobson, L. R. Waugh, The sound shape of language, Mouton de
Gruyter, 2002.

[20] R. Jakobson, J. Lotz, Notes on the French phonemic pattern, Hunter,
N.Y. 1949.

[21] R. Jakobson, M. Halle, Preliminaries to speech analysis, MIT Press,
Cambridge, MA, 1952.

[22] C.-H. Lee, “From knowledge-ignorant to knowledge-rich modeling: a
new speech research paradigm for next generation automatic speech
recognition,” Proc. ICSLP, 2004.

[23] C.-H. Lee, M. A. Clements, S. Dusan, E. Fosler-Lussier, K. Johnson,
B.-H. Juang, L. R. Rabiner, “An overview on automatic speech attribute
transcription (ASAT),” Proc. INTERSPEECH, 1825–1828, 2007.

[24] T. Fukuda, T. Nitta, “Orthogonalized Distinctive Phonetic Feature Ex-
traction for Noise-robust Automatic Speech Recognition,” The Institute
of Electronics, Information and Communication Engineers (IEICE)
Transactions on Information and Systems, E87-D, 5, 1110–1118, 2004.

[25] I. Csiszar, “Information-type measures of difference of probability
distributions and indirect,” Stud. Sci. Math. Hung., 2, 299–318, 1967.

[26] M. Pitz and H. Ney, “Vocal tract normalization equals linear transfor-
mation in cepstral space,” IEEE Trans. Speech and Audio Processing,
13, 5, 930–944, 2005.

[27] D. Saito, N. Minematsu, K. Hirose, “Rotational properties of vocal tract
length difference in cepstral space,” Journal of Research Institute of
Signal Processing, 15, 5, 363–374, 2011.

[28] L. Lachs, K. McMichael, D. B. Pisoni, “Speech perception and implicit
memory: Evidence for detailed episodic encoding of phonetic events,” In
J. Bowers and C. Marsolek (eds.) Rethinking Implicit Memory, Oxford
Univ Press, 2000.

[29] R. S. Newman, “The level of detail in infants’ word learning,” Current
Directions in Psychological Science, 17, 3, 229–232, 2008.

[30] N. Higashida, M. Higashida, Messages to all my colleagues living on
the planet, Escor Pub., Chiba, 2005. (in Japanese)

[31] U. Frith, Autism: explaining the enigma, Wiley-Blackwell, 2003.
[32] M. Suzuki, G. Kurata, M. Nishimura, N. Minematsu, “Continuous digits

recognition leveraging invariant structure,” Proc. INTERSPEECH, 993–
996, 2011.

[33] M. Suzuki, G. Kurata, M. Nishimura, N. Minematsu, “Discriminative
reranking for LVCSR leveraging invariant structure,” Proc. INTER-
SPEECH, 2012.

[34] http://en.wikipedia.org/wiki/Rhythm
[35] E. Selkirk, “On the major class features and syllable theory,” In Aronoff

and Oehrle (eds.) Language Sound Structure: Studies in Phonology, 107–
136, MIT Press, 1984.

[36] G. N. Clements, “The role of the sonority cycle in core syllabifica-
tion,” In J. Kingston and M. E. Beckman (eds.) Papers in Laboratory
Phonology I: Between the grammar and the physics of speech, 283–333,
Cambridge University Press, 1990.

[37] D. Crystal, A dictionary of linguistics and phonetics, 4th edition,
Blackwell Publishers, Oxford, 1997.

[38] J. Blevins, “The syllable in phonological theory,” in John Goldsmith ed.
The handbook of phonological theory Blackwell Publishers, Cambridge
MA, 1995.

[39] G. Kawai, J. v. Santen, “Automatic detection of syllabic nuclei using
acoustic measures,” Proc. IEEE workshop on speech synthesis, 39–42,
2002.

[40] A. Galves, J. Garcia, D. Duarte, C. Galves, “Sonority as a basis for
rhythmic class discrimination,” Proc. Speech Prosody, 2002.

[41] A. Cros, D. Demolin, A. G. Flesia, A. Galves, “On the relationship
between intra-oral pressure and speech sonority,” Proc. INTERSPEECH,
2165–2168, 2005.

[42] R. Villing, T. Ward, J. Timoney, “Performance limits for envelope
based automatic syllable segmentation,” IET Irish Signals and Systems
Conference, 521–526, 2006.

[43] P. Mermelstein, “Automatic segmentation of speech into syllable units,”
JASA, 58, 880–883, 1975.

[44] N. Minematsu, Y. Tomiyama, K. Yoshimoto, K. Shimizu, S. Nakagawa,
M. Dantsuji, S. Makino, “Development of English speech database read
by Japanese to support CALL research,” Proc. Int. Conf. Acoustics,
557–560, 2004.

[45] Tohoku univ. and Matsushita 212 phonemically balanced word corpus.
http://research.nii.ac.jp/src/TM212.html


