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Abstract—Language model is an essential component of a
speech recogniser. It provides the additional linguistic infor-
mation to constrain the search space and guide the decoding.
In this paper, language model is incorporated in the keyword
spotting system to provide the contexts for the keyword models
under the weighted finite state transducer framework. A context
independent deep neural network is trained as the acoustic
model. Three keyword contexts are investigated: the phone to
keyword context, fixed length word context and the arbitrary
length word context. To provide these contexts, a hybrid language
model with both word and phone tokens is trained using only
the word n-gram count. Three different spotting graphs are
studied depending on the involved contexts: the keyword loop
graph, the word fillers graph and the word loop fillers graph.
These graphs are referred to as the context dependent (CD)
keyword spotting graphs. The CD keyword spotting systems
are evaluated on the Broadcasting News Hub4-97 F0 evaluation
set. Experimental results reveal that the incorporation of the
language model information provides performance gain over the
baseline context independent graph without any contexts for
all the three CD graphs. The best system using the arbitrary
length word context has the comparable performance to the full
decoding but triples the spotting speed. In addition, error analysis
demonstrates that the language model information is essential to
reduce both the insertion and deletion errors.

I. INTRODUCTION

Speech has been used as the primary approach of informa-
tion exchange and social communications for human beings
since prehistory. In addition to human-human interaction,
spoken language communication is adopted in human-machine
interaction as well. Compared to the conventional way of
human-computer interaction, e.g., keyboard strokes, mouse
clicks, speech is a much more straightforward way. With
the ubiquitous mobile devices, speech manifests its another
appealing advantage of offering the hand-free communication
scheme between the users and the devices. One of the well-
known such applications is the “voice search” by both Mi-
crosoft Bing and Google search. They can already meet the
requirement of recognising and understanding simple speech
search queries. For these voice search engines, it is more
important to reliably spot the keywords than to get the full
transcriptions of the spoken utterance.

The task of key word spotting (KWS) is to search for various
query words or terms in a large collection of heterogeneous
audio archives rapidly and accurately. KWS thus provides
a satisfactory audio mining solution for spoken document
retrieval tasks. Therefore, it is widely used in the on-line

applications like real-time stream monitoring, as well as offline
tasks like data mining and indexing.

Most of the current keyword spotting systems uses the sub-
word models, for example, the phone or syllables to represent
the keyword models and the fillers models based on the Hidden
Markov Models (HMM). The detection of the keywords de-
pends solely on the acoustic models. In other words, no context
of the keywords is modelled. On the other hand, for the ASR
system, language model is a standard component to constrain
the Viterbi search and provides the context information for the
decoder. For the keyword spotting tasks, the introduction of the
language model information also has two potential benefits: it
can provide a better model for the non-keyword speech and
a statistical context for the keywords. Incorporating simple
language model information to weigh the non-keyword models
has shown to enjoy significant improvement [1], [2], [3] .
In [2], the language model was used to provide the transition
probabilities for the sub-grammars. Similarly, in [3], a bigram
syllable/keyword language model was built using the training
transcriptions to serve as the transition probabilities between
the keywords and the syllable fillers. In this paper, we aim
to investigate the context dependent keyword spotting systems
with the context information provided by the language model.
Three different language model contexts are investigated in-
cluding the phone to keyword context, the fix-length word
context, and the arbitrary length word context. The context
configurations used in this paper are given below:

• Context independent: This configuration is the common-
est used in the current keyword spotting literature. No
context of the keywords are modelled. The keyword
spotting system depends solely on the acoustic models.
The graph is shown in Figure 2. The fillers/background
models are the monophone loops.

• Phone to keyword context: A straight-forward approach
of incorporating context to the context independent graph
is to weigh the transitions between the background mono-
phones and the keywords, as well as the keyword to
keyword transitions using the language model scores.
This is very similar to the work in [3] where syllables
are used as fillers and syllable to keyword transitions
are weighted using a hybrid syllable/keyword language
model.

• Fixed length word to word context: Inspired by the usage
of the language model in the ASR system, we propose to



add higher word level contexts to the keyword spotting
network in Figure 3. Instead of using the monophone
fillers or the syllable fillers, two word fillers are used. The
transitions between the left/right fillers and the keyword
models are weighted by the word language model. The
context expansion length shown in Figure 3 is fixed as
three. In other words, only the immediate left and right
word are used as the contexts of the middle keyword.
The additional contexts given by the language model can
guide the search to help the detection of the keyword.

• Arbitrary length word to word contexts: As a generalisa-
tion of the fixed length word context, the left and right
context length can be with arbitrary lengths as shown in
Figure 4. This is realised by using two word loops as the
left and right contexts of the middle keyword.

The acoustic model used in this paper is a context indepen-
dent deep neural network (DNN) [4], [5]. The training targets
are obtained from the forced alignment with monophone
states. The weighted finite state transducer (WFST) [6] is
used to implement all the spotting networks and decoding.
A hybrid language model with both word and phone tokens is
trained using only the word n-gram count. Through the WFST
composition, the hybrid language model can be incorporated
into various context dependent keyword spotting networks to
provide all the necessary contexts.

The remaining of the paper is organised as follows: a
literature review is firstly given in section 2. The overview
of a keyword spotting system is given in section 3. The
components of a typical keyword spotting network and how
they can be represented as WFSTs are given in section 4. The
incorporation of the context information is presented in section
5. The training of the hybrid language model is detailed in
section 6. The keyword spotting performance is evaluated in
section 7 followed by a detailed error analysis in section 8.
Section 9 summarises the findings and concludes the paper.

II. RELATED WORK

The earliest work on KWS mainly uses template-based
dynamic time-warping (DTW) techniques [7], [8]. The major
limitation for these approaches is that the spotting is forced
to adhere to some local time duration constraints of the
keyword templates. With the development of Hidden Markov
Models (HMM) for speech recognition, they are also widely
adopted for the keyword spotting task. Depending on how
the keyword models are modelled, the HMM based keyword
spotting systems can be roughly categorised as whole-word
based, sub-word based and large vocabulary based. Whole
word based approach is one of the earliest HMM based model
for keyword spotting [9], [10]. The keywords are modelled
as HMMs trained from the utterances of the keywords. The
garbage model is also modelled as an HMM trained with
non-keyword speech data. The training of the keyword model
assumes there is enough training data containing the keywords,
which is not always available. Consequently, sub-word based
word spotters are introduced [1], [11]. In these systems, the
keywords are modelled as a concatenation of corresponding

sub-words, e.g., phones, syllables. The garbage model is
modelled as a loop of all the sub-word models. This approach
does not require the training data to contain the keywords thus
solving the main issue of the word based systems. However,
since both the keyword and garbage models use the same sub-
word units, the garbage model has the potential of modelling
all the words including the keywords. Hence, the tuning
of insertion penalties is often needed although this can be
somehow circumvented by using carefully designed garbage
models [11]. The large vocabulary continuous speech recog-
nition (LVCSR) based approaches rely on some additional
linguistic constraints to improve the spotting performance [12].
The keyword spotting is performed on either the lattices [13],
[14] or the transcriptions [2] generated by a LVCSR system.
The limitation of this approach is that its computational cost
implied by the large vocabulary decoding.

In addition to the HMM based systems, hybrid neural
network (NN) and Hidden Markov Models [15], [16] are used
to estimate the state posteriors of the HMMs for the keyword
spotting tasks. Compared to the HMM based approach, NNs
do not make any independent assumptions on the statisti-
cal distributions. They accommodate discriminative training
naturally. They also tend to offer a much more compacted
model. More recently, recurrent neural networks (RNNs) are
used in the keyword spotting tasks. Long short-term memory
(LSTM) RNNs or Bidirectional LSTM (BLSTM) networks are
shown to be a promising technique for improving the keyword
spotting performance by modelling temporal contexts [17].

High-level linguistic information through recognition gram-
mars can provide some contexts for the keyword and constrain
the search space. Incorporating such prior knowledge has been
shown to improve the spotting performance significantly com-
pared to the non-grammar constrained approaches. However,
they are mostly used for fixed or well-defined queries [18], [2],
where these queries can be easily described by a set of word
sequences and represented using some finite state grammars.
In [18], a finite state grammar (FSG) is constrained to a set of
most frequently appeared query patterns in an auto-attendant
system. In the similar vein, “sub-grammars” combined with a
non-keyword model are used in [2] to describe the queries for
their event spotting system.

III. CONTEXT DEPENDENT KEYWORD SPOTTING
OVERVIEW

The keyword is usually known beforehand for the keyword
spotting task. Therefore, KWS can be seen as as a special case
of speech recognition with a vocabulary size of two, namely,
the keyword(s) and the non-keyword. The general framework
of a typical keyword spotting system is shown in Figure 1.
For unconstrained KWS, the input sequence is assumed as an
unconstrained sequence of background and extraneous speech
modelled by the left filler followed by the keywords and then
followed by another unconstrained sequence of background
and extraneous speech modelled as the right filler. In addition,
a background model is also usually adopted to model all the
non-keyword speeches to increase the spotting robustness.



Fig. 1. General framework of keyword spotting.

TABLE I
Illustration of KWS with different contexts

Word sequence Of POLITICAL SCIENCE
Correct phone sequence /ah/ /v/ /p/ /ah/ /l/ /ih/ /t/ /ah/ /k/

/ah/ /l/ /s/ /ay/ /ah/ /n/ /s/
Context independent /ah/ /v/ /p/ /l/ /ah/ /t/ /k/ /ah/ /l/ /s/

/ay/ /n/ /s/
Phone to keyword context /ah/ POLITICAL /s/ /ay/ /n/ /s/
Fix length word to word context /ah/ POLITICAL SCIENCE
Arbitrary length word to word con-
text

OF POLITICAL SCIENCE

In our paper, the following formula is used in our WFST
based keyword spotting system:

Lleft + L(KW ) + Lright − Lbkg ≥ β (1)

where L is the log likelihood obtained from the acoustic
model, β is a threshold. Moving the background model score
to the RHS, we have:

Lleft + L(KW ) + Lright ≥ β + Lbkg (2)

The LHS corresponds to the upper path of Figure 1 and the
RHS corresponds to the lower path. Therefore, the keyword
spotting task becomes simply choosing the best path in the
decoding network. Since negative log weights are used in the
WFST framework, the threshold β can be well represented
as the insertion penalties imposed on the background model
transitions as shown in the lower path of Figure 1.

Context information from the language models can be
incorporated into the network to aid the keyword spotting as
discussed in the introduction. Useful contexts include phone
to word context and word to word context. Table III shows an
example of how the context information can help the keyword
spotting. The table shows the keyword spotting results of
the keyword “POLITICAL” in the phrase “OF POLITICAL
SCIENCE” with different context information provided by the
language model. The context independent KWS system de-
pends solely on the acoustic scores during Viterbi search. The
phone sequence of “/p/ /l/ /ah/ /t/ /k/ /ah/ /l/” has the highest
acoustic score and is the output of the context independent
keyword spotting system. The correct pronunciation “/p/ /ah/

/l/ /ih/ /t/ /ah/ /k/ /ah/ /l/” does not have the highest acoustic
score. Therefore, the corresponding keyword “POLITICAL”
is missed. With the phone to word context, the context of
“POLITICAL /s/” is provided by the hybrid language model.
Although the correct pronunciation of “/p/ /ah/ /l/ /ih/ /t/ /ah/
/k/ /ah/ /l/” is not on the best decoding path in terms of acoustic
scores, the context of “POLITICAL /s/” from the language
model will raise the total score of the sequence “/p/ /ah/ /l/ /ih/
/t/ /ah/ /k/ /ah/ /l/ /s/” so that it is higher than the sequence of
“/p/ /l/ /ah/ /t/ /k/ /ah/ /l/ /s/”. In this way, the missed keyword
“POLITICAL” is recovered. In a similar vein, for the word to
word context, the contributing context is the language model
score of the word sequence “OF POLITICAL SCIENCE”. All
these contexts can be incorporated using different keyword
spotting networks. Although they all use a monophone loop as
the background model as shown in the lower path of Figure 1,
these networks differ from each other by the upper path of the
keyword graphs.

IV. WEIGHTED FINITE STATE TRANSDUCERS FOR KWS

All the main components of a keyword spotting system can
be represented as WFSTs as described below:
• Keyword spotting network W . This network is used to

constrain the search space so that only keywords are
produced and non-keywords are mapped as empty or
some other tags. Figure 1 is a typical topology of a
keyword spotting network W . The context information
is also incorporated in W . For example, word to word
transition, monophone to word transition and monophone
to monophone transition in W are weighed using the
probabilities provided by the language models.

• Language model G. The language model is used to
provide the transition probabilities for W as the context
information for the keywords. The language model must
accommodate phone n-grams, word n-grams as well as
the hybrid phone/word n-grams. In this paper, the hybrid
word/phone language model is built using only the word
n-gram counts to provide the phone to phone context,
word to word context, and the hybrid word/phone context.

• Lexicon L. We use sub-word models for the keywords.
Therefore, L is used to map the words in W and G to
monophone sequences according to a lexicon.

• Acoustic Model H . The HMM topologies for all the sub-
word models are encoded in H .

The composition operation [6] of the WFST can be used to
combine the individual components. Meanwhile, optimisations
such as determinisation and minimisation can reduce the
network size dramatically thus make the keyword spotting
quite efficient.

V. CONTEXT DEPENDENT KEYWORD SPOTTING
NETWORKS WITH LANGUAGE MODEL CONTEXTS

In this section, we will elaborate how the language model
contexts can be incorporated to the keyword spotting net-
work. Depending on different contexts, three keyword spotting
networks W are investigated, namely, the keyword loop, the



fixed length word context graph and the arbitrary length word
context graph.

The context independent network W which is widely used
in the keyword spotting literature is given in Figure 2. It is a
loop of both keywords and the background monophones. The
keyword spotting depends only on the acoustic scores alone
to choose between the keywords and the background models.

Fig. 2. Context independent keyword spotting graph. There is no word
language model context used. The keyword spotting depends solely on the
acoustic model. The dashed transitions denote the background model.

A. Keyword loop network: phone to word context

A straight-forward way of incorporating the contexts for
the context independent graphs in Figure 2 is by weighting
the transitions between the background monophone loops
and the keywords. The filler is represented as monophone
loops. The context information used here is the transition
probability between the monophone fillers and the keywords
obtained from the language model G. The incorporation of
the language model can be realised by a composition of
G with the context independent network W in Figure 2. It
is important to note that the language model G will need
to consider phone n-grams, word n-grams as well as the
hybrid phone/word n-grams. The composition of G ◦ W is
a WFST with monophone and keyword as both input and
output. The monophone/keyword sequence is referred to as
“hybrid sequence” in the following discussions. The lexicon
WFST L is a mapping from keyword to its pronunciations. To
accommodate the monophone loops, the lexicon also contains
dummy entries mapping from monophones to themselves by
viewing the monophones as a special case of “words” with
a single phone in their pronunciations. By composing L with
G◦W , we have a WFST mapping from monophone sequences
to hybrid sequences. A further composition with the acoustic
model H provides the final network H ◦ L ◦ G ◦W for the
keyword spotting task.

B. Fixed length word context network: fixed length word to
word context

Two filler models, left and right, are introduced in the word
graph as shown in Figure 3 to provide the immediate left and
right contexts for the middle keyword with a fixed context
length of three. The filler models contain all the non-keywords
in the word list. In addition to the two fillers, a monophone
loop is used as the background model to compete with the
keyword and filler model. The language model G is used to

Fig. 3. Word graph. Two fillers (node 1 to 2 and node 3 to 4) together with the
language model scores are used to provide the contexts for the keywords (node
2 to 3) in the upper portion of the graph. The lower portion is a monophone
loop as the background model to speed up the spotting. The context length
is three.

provide the transition probabilities between the background
monophones to words, as well as the transitions between the
word fillers and the keywords. The composition of G ◦W is
a keyword spotting graph with language model probabilities
mapping from all the hybrid sequences to keywords and
non-keyword tags. A further composition with the lexicon
model L ◦ G ◦W provides a mapping from the monophone
sequences to the keywords and non-keyword tags. Finally,
H ◦ (L ◦G ◦W ) transduces from monophone state indices
to keyword and non-keyword tags. It is then used together
with the acoustic model to perform keyword spotting.

C. Arbitrary length word context network: arbitrary length
word to word context

Only the immediate left and right contexts are used in
Figure 3. As a generalisation, arbitrary word length contexts
can be incorporated as shown in Figure 4. Similarly, the back-
ground model is a monophone loop. Arbitrary context length
in Figure 4 is obtained through the left and right non-keyword
loop fillers denoted as node 1 and 2. They are potentially
more powerful than the fixed-length contexts. However, this
may come at the cost of a potentially slower decoding speed
since the search can ignore the background model and do a full
decoding using only the upper portion of the decoding graph.
The final decoding network H ◦(L ◦G ◦W ) is obtained same
as the fixed length context network.

VI. THE HYBRID PHONE AND WORD LANGUAGE MODEL

The previous section presents three different approaches of
incorporating language model contexts. The phone to word



Fig. 4. arbitrary length word to word contexts. The two non-keyword loops
denoted as node 1 and 2 are the contexts used to detect the middle keywords.
The dashed transitions are the background monophone loops.

context is used through a keyword loop network with the
background monophone loop. The context is accommodated
by the phone to word language model scores. The word to
word contexts are incorporated through the left and right word
fillers with the word language model scores. In other words,
the language model G not only needs to provide the word to
word scores, but also the phone to word scores. Therefore,
a hybrid monophone and word language model G must be
trained. However, there does not exist a principled way of
estimating the hybrid sequence directly from the training data
since the language model training corpus is usually word
based. We then propose to estimate the hybrid language model
based on the word n-gram counts.

We use SRILM 1 to build a bigram and trigram word
language model using the Gigaword corpus and the TDT
3 [19] transcription. The bigram counts and trigram counts are
kept so that the hybrid word and monophone counts can be
accumulated to build the hybrid word/phone language model.

A. Bigram hybrid counts accumulation

To accumulate the bigram hybrid phone/word counts from
the word bigram counts, there are two possible scenarios:

C(p, w2) =
∑

w1∈We(p)

C(w1, w2) (3)

C(w1, p) =
∑

w2∈Ws(p)

C(w1, w2) (4)

where C(·) is the count of the n-gram, We(p) denotes a set of
words whose pronunciation ends with phone p, Ws(p) is a set
of words whose pronunciation starts with phone p. The count
of the word bigram “w1w2” is then added to both C(p, w2)
and C(p, w2) hybrid bigram counts. For example, the bigram
count of the word bigram “POLITICAL SCIENCE” should
be added to the bigram counts for the hybrid sequence “/l/
SCIENCE” and “POLITICAL /s/” according to equation 3
and equation 4 respectively.

1http://www.speech.sri.com/projects/srilm/download.html

B. Trigram hybrid counts accumulation

To accumulate the trigram hybrid phone/word counts, there
exists six cases:

C(p1, p2, w3) =
∑

w1∈We(p1p2)

C(w1, w3)

+
∑

w1∈We(p1)

∑
w2∈Wp2

C(w1, w2, w3)
(5)

C(w1, p2, p3) =
∑

w2∈Ws(p2p3)

C(w1, w2)

+
∑

w2∈Wp2

∑
w3∈Ws(p3)

C(w1, w2, w3)
(6)

C(p1, w2, p3) =
∑

w1∈We(p1)

∑
w3∈Ws(p3)

C(w1, w2, w3)(7)

C(w1, p2, w3) =
∑

w2∈Wp2

C(w1, w2, w3) (8)

C(w1, w2, p3) =
∑

w3∈Ws(p3)

C(w1, w2, w3) (9)

C(p1, w2, w3) =
∑

w1∈We(p1)

C(w1, w2, w3) (10)

The notation is similar to the bigram case, where Wp2 denotes
a set of words whose pronunciations contains only one single
phone p2 in the lexicon, Ws(p1p2) is a set of words whose first
two phones in its pronunciation are p1p2. Similarly, We(p2p3)

is a set of words whose pronunciations ends with p2p3. Given
a word trigram “PRESIDENT BILL CLINTON”, its count
should be accumulated to the hybrid count of “/n/ /t/ BILL”
(equation 5), ‘PRESIDENT /b/ /ih/” (equation 6), “/t/ BILL
/k/” (equation 7), “PRESIDENT BILL /k/” (equation 9), “/t/
BILL CLINTON” (equation 10). In addition to the previous 5
cases, the word trigram count of “OF A FEW” should be added
to the hybrid trigram count of “OF /ah/ FEW” (equation 8).

C. Training the hybrid language model

Take note that the hybrid counts only have interleaved phone
and word sequences after the accumulation. To include the
word sequences, the original word bigram and trigram counts
are also used. To accommodate the phone to phone transitions,
the phone bigram and trigram counts are also used. The phone
bigram and trigram counts are obtained from a phone level
Gigaword corpus by expanding all the word tokens in the
original Gigaword corpus to phone sequences according to
a lexicon. With the three sets of counts, namely, the hybrid
phone/word n-gram counts, the word n-gram counts and the
phone n-gram counts, the hybrid language model can then be
built. One may notice there is over-counting in this language
model, since the phone counts and hybrid counts are related
to the word counts. Moreover, the phone to phone counts and
hybrid word/phone counts are usually much larger than the
word to word counts, as the number of phones is significantly
much smaller than the words. Therefore, scaling of the three
language model scores is needed. In log domain, which is



adopted by the WFST framework, the scaling can be achieved
by imposing the insertion penalties of the phone to phone and
phone to word transitions.

VII. EXPERIMENTAL RESULTS

In this section, the keyword spotting performance is reported
for all three networks in terms of both accuracy and efficiency.
The accuracy is evaluated using F-measure and the spotting
speed using real-time (RT) factors. Take note that insertion
penalties need to be tuned for various configurations in order to
achieve the best performance. The results are all based on the
best configuration after the tuning of the insertion penalties.
The real-time factors are obtained by running the keyword
spotting using the best configurations of all the three networks
on the same machine. The machine has 8 G memory, 8 core
Intel i7-2600 CPU @ 3.40GHz.

Context independent hybrid DNN/HMM is used as the
acoustic model. The features are the standard 39-dimensional
PLPs consisting of 13 static coefficients (12 PLP plus one
C0 energy term) and the first and second derivatives. For the
training of DNNs, up to five hidden layers with 1024 hidden
units are trained. The input window size of the DNN input
layer is 15 frames, rendering 585 input units. The output
units are used to discriminate all the monophone states. The
phone set has 40 phones and each phone is modelled as a
3-state left-to-right HMMs. Therefore, there are 120 output
units. A baseline GMM/HMM system is needed to align the
training data to get the training targets for the fine-tuning of
the CI DNN. The baseline GMM/HMM system used has 4500
triphone state clusters and each state cluster is modelled with
20 Gaussian mixtures. Forced-alignment using the baseline
model is performed on all the training data to provide the
monophone state targets for the CI DNN.

The DNN model is trained with TNet 2 using GPUs on
the 100 hours of the Topic Detection and Tracking - Phase
3 (TDT3) corpus [19]. The DNN training involves both pre-
training and fine-tuning. The weights after the pre-training are
used as the initial weights for fine-tuning the context indepen-
dent DNN with 120 targets. The fine-tuning uses stochastic
gradient descent (SGD) to minimise the cross-entropy between
the labels and the network output. There are several important
parameters for the pre-training of the DNN including the batch
size, cache size, the learning rate for the Gaussian RBM layer,
learning rate for the binary RBM layer, momentum and the
weight cost. In all our experiments, these parameters are set
as in Table II:

TABLE II
Parameter Settings for DNN Pre-training

batch size cache size momentum weight cost
256 32768 0.0 0.0

learnrate gauss iteration gauss learnrate binary iteration binary
0.001 100 0.08 50

2http://speech.fit.vutbr.cz/software/neural-network-trainer-tnet

TABLE III
Keyword Statistics

# Syllables Keywords
1 BILL VOTE POOLS HOUSE STATES
2 CLINTON CAMPAIGN DEBATE RE-

FORM COUNTRY OFFICE CONGRESS
UNITED

3 PRESIDENT ELECTION GOVERNMENT
WASHINGTON FEDERAL CANDIDATE
SENATOR

4 AMERICAN POLITICAL REPUBLICAN
DEMOCRATIC

The keyword spotting networks are implemented under the
WFST framework using Kaldi 3. The language models are
trained with SRILM. The word language model is trained
using the Gigaword English corpus interpolated with a lan-
guage model trained on the TDT3 training transcription with
a bigram perplexity of 286.307. The vocabulary size used for
the language model training is 58K. The full decoding word
error rate on the Hub4-97 set with the bigram word language
model is 23.74% on the F0 portion of 177,432 frames lasting
roughly half an hour of speech. The F0 portion of the Hub4-
97 (LDC98S71, LDC98T28) broadcasting news evaluation
set contains mainly the native, planned speech with a clean
background.

The keywords are chosen from the Hub4-97 F0 portion
related to the topic of “president election”. There are totally
303 keyword tokens in the F0 evaluation set. The number of
syllables of the keywords vary from 1 to 4. The number of
tokens for the keyword with arbitrary syllable lengths is 37,
109, 114, 48 respectively as shown in Table III:

The spotting accuracy is reported using F-measure ex-
pressed as:

Recall =
#keywords retrieved

#keywords
(11)

Precision =
#keywords retrieved
#tokens retrieved

(12)

F =
2× Recall× Precision

Recall + Precision
(13)

The performance is reported according to the number of the
syllables of the keywords.

A. Baseline: context independent KWS

We first evaluate the KWS performance without any context
as in the current KWS literature. The graph used is shown in
Figure 2. There is no language model information involved, the
KWS depends solely on the acoustic models. The performance
is reported in Table IV:

The context independent KWS is able to achieve 221 hits
out of the 303 tokens. Note the RT factor is only 0.13, which
means it takes only 7.8 seconds to process a one-minute long
utterance. The small RT factor should attribute to the WFST
representation of the keyword spotting graph.

3http://kaldi.sourceforge.net/



TABLE IV
KEYWORD SPOTTING PERFORMANCE WITHOUT CONTEXTS

#Syllables Recall Precision F-value Hit RT
1 0.78 0.53 0.63 29 -
2 0.69 0.74 0.71 75 -
3 0.73 0.8 0.77 80 -
4 0.77 0.65 0.73 37 -

Overall 0.73 0.72 0.72 221 0.13

B. KWS with phone to keyword context
The keyword spotting performance with the phone to key-

word contexts from the hybrid language model is shown in
Table V:

TABLE V
KWS WITH PHONE TO KEYWORD CONTEXTS

#Syllables Recall Precision F-value Hit RT
1 0.65 1.0 0.79 24 -
2 0.69 0.8 0.74 75 -
3 0.81 0.73 0.77 88 -
4 0.9 0.62 0.74 43 -

Overall 0.76 0.75 0.75 230 0.13

Compared to the baseline configuration without any con-
texts, 9 more tokens are successfully retrieved. Therefore, there
are 9 less missed keywords and 10 less false alarms.

Comparing Table V and IV, we can see that adding the
phone to keyword contexts helps the detection of the long
words with 3 or 4 syllables. Without any context information,
the keyword spotting depends solely on the acoustic model
which is not always reliable. Therefore, there are high chances
that one of the phones may be miss-recognised thus resulting
in a missed keyword. However, with the help of the hybrid lan-
guage model, these recognition errors may be corrected since
these wrongly recognised words may have a very low language
model score thus their total scores are suppressed during the
search. For example, the keyword “POLITICAL” is missed
5 times in the baseline. After incorporating the contexts, 4 of
them are recovered. In an utterance, the keyword is recognised
as the phone sequence of “/p/ /l/ /ah/ /t/ /k/ /ah/ /l/” where /ih/
is missed after /t/ rendering the keyword to be missed for
the baseline. Due to the context of “POLITICAL s” which
comes from the word sequence “POLITICAL SCIENCE”, the
keyword “POLITICAL” is recovered. Another example is that
the word sequence “THE STATE HOUSE” is recognised as
“THUS TAY HASS” because the phone /aw/ in “HOUSE” is
wrongly recognised as /ae/ resulting in the keyword “STATE”
and “HOUSE” to be missed. All these misses are corrected
after incorporating the language model information. Efficiency
wise, adding the phone to word language model context does
not sacrifice the keyword spotting speed, the RT factor is the
same as the baseline of 0.13.

C. KWS with fixed length word contexts
As shown in the last section, the incorporation of the phone

to word contexts improves the keyword spotting accuracy com-

pare to the baseline. In this section, more complex contexts
are used. The keyword spotting graph is shown in Figure 3.
Two word fillers are used as the left and right contexts for the
keywords. The length of the context expansion is three as only
the immediate left and right words are used for the detection
of a keyword. The keyword spotting performance is given in
Table VI:

TABLE VI
KWS PERFORMANCE OF FIXED LENGTH WORD CONTEXT

#Syllables Recall Precision F-value Hit RT
1 0.59 0.88 0.71 22 -
2 0.79 0.84 0.82 87 -
3 0.8 0.81 0.75 87 -
4 0.92 0.64 0.75 44 -

Overall 0.79 0.79 0.79 240 0.25

Compared to the phone to word contexts in Table V,
the fixed length word contexts recover 10 more tokens. The
improvement mainly comes from the two-syllable words. The
keyword “REFORM” is missed 7 times with the phone to
keyword contexts. The number is reduced to only 1 with the
fixed length word context. In one utterance, “REFORM” is
wrongly recognised as “/er/ /f/ /ao/ /r/ /b/” because of the
coarticulation influence of the previous word “FINANCE”
and the following word “PROPOSAL”. This may indicate the
phone to word context alone is not robust enough. On the other
hand, the word “FINANCE” AND “PROPOSAL” are used as
the word contexts for the keyword “REFORM”. Therefore,
the keyword is recovered with the fixed length word context
provided by the language model score. The detection speed is
two times slower compared to both the baseline and the phone
to word context. This is expected since the word context is
significantly more complex than the phone to word context and
the resulting spotting graph is also much larger. Nevertheless,
the spotting speed is still very fast with a RT factor of 0.25
only.

D. KWS with arbitrary length word contexts

To further increase the context complexity, the spotting
graph in Figure 4 is used to accommodate an arbitrary number
of contexts of the keyword by using two word loops as fillers.
The graph is even more complex than the fixed length word
contexts configuration. On one hand, the graph has the poten-
tial of a full decoding if the search goes through only the upper
portion of the graph without visiting the lower monophone
garbage model. On the other hand, the decoding can also be as
efficient as the one in Figure 2 if only the monophone loop is
used to search for all the non-keyword words. Therefore, with
the network in Figure 4, we have the flexibility of achieving
a satisfactory spotting performance while enjoying a high
spotting speed. The balance of this trade-off can be obtained
from the scaling of the word language model score and the
monophone language model score. Recall from section VI-C
that scaling is needed for the hybrid language model. The



scaling can be achieved by imposing an insertion penalty on
the monophone loop transitions.

From the word graph shown in Figure 4, if the lower portion
of the monophone loop is removed, the graph becomes a
full decoding graph. This serves as a reference point for the
keyword spotting system in terms of both the spotting speed
and the accuracy. The keyword spotting speed should not fall
behind this reference point; otherwise, there is no need of
performing the spotting task, i.e., we just need to wait for the
full decoding to finish.

The performance of the full decoding is given in Table VII:

TABLE VII
KWS WITH FULL DECODING

#Syllables Recall Precision F-value Hit RT
1 0.89 0.94 0.92 33 -
2 0.91 0.94 0.92 99 -
3 0.84 0.94 0.88 91 -
4 0.98 0.96 0.97 47 -

Overall 0.89 0.94 0.92 270 0.9

As expected, the full decoding has a much better spotting
accuracy but with a much slower decoding speed. The full
decoding accuracy is the upper bound for our keyword spotting
systems. The RT factor of the full decoding should serve as
a lower bound. The decoding graph for the varying length
word context is more than 4 Gigabytes because of the the left
and right word loop fillers, which is almost 2 times larger
than the full decoding graph and the one in the fixed length
word context. Decoding with the graph with such a large size
graph almost consumes all the memories and causes a lot of
IO operations which is not desirable. Therefore, we prune
the decoding graph so that the resulting graph is the same
size as the full decoding and the fixed length word context.
The pruning threshold is chosen as 29 which means all the
paths with the weight larger than the best path by 29 are
pruned. In addition, tuning of the insertion penalty is needed
to achieve a balanced trade-off between the spotting accuracy
and efficiency. We choose the insertion penalty of -0.5 as it
has the best trade-off between the efficiency and the accuracy.
The detailed performance is reported in Table VIII.

TABLE VIII
KWS WITH ARBITRARY LENGTH WORD CONTEXTS

#Syllables Recall Precision F-value Hit RT
1 0.76 0.93 0.88 29 -
2 0.84 0.92 0.88 92 -
3 0.81 0.96 0.88 88 -
4 0.96 0.91 0.93 46 -

Overall 0.84 0.93 0.89 255 0.29

Compared to the full decoding, 15 more keywords are
missed. However, the spotting efficiency is greatly improved
with a RT factor of only 0.29 comparable to the full decoding
of RT 0.9. In other words, the speed is three times faster than

the full decoding. In addition, we also attempt to adjust the
search beams of the full decoding so that it has the same
RT factor as the arbitrary length contexts configuration, the
F-value of the full decoding with RT factor of 0.29 is 0.85.
Compared to the arbitrary length contexts configuration, 21
more tokens are missed. This clearly shows the advantage of
the arbitrary length contexts over the full decoding. Compared
to the fixed length word contexts, the arbitrary length contexts
configuration offers a significant performance boost: 15 more
tokens are recovered. In one utterance, the keyword “BILL”
is missed with the fixed length word contexts because it is
wrongly recognised as “/b/ /ah/”. The immediate left and
right contexts of the keyword are “DAY” and “CLINTON’S”.
Obviously the right context helps much more than the left
context. However, even with these contexts, “BILL” is still
not recovered. If we allow more contexts in the arbitrary
length word contexts configuration, the keyword “BILL” can
be successfully recovered as “RECENT ELECTION DAY
BILL CLINTON’S” is a much stronger context than “DAY
BILL CLINTON’S”.

E. KWS performance comparison of various contexts

The performance of the various keyword spotting networks
are summarised in Table IX in terms of both accuracy (F-
values) and efficiency (RT-factors).

TABLE IX
PERFORMANCE COMPARISON OF VARIOUS CD KWS NETWORKS

Baseline Keyword Word Word loop Full
loop fillers fillers decoding

RT factors 0.13 0.13 0.25 0.29 0.9
F-values 0.73 0.75 0.79 0.89 0.92

The baseline context independent network has the fastest
speed with a RT factor of 0.13. Adding the phone to word
contexts using a keyword loop has the same RT factor as
the baseline with a better spotting accuracy. Incorporating
the fixed length word contexts increases the network size
dramatically compared to the keyword loop. Therefore, it has
a slower decoding speed which is only half of the baseline and
the keyword loop network. The arbitrary length word context
using the word loop fillers has an even larger network thus
decreases the spotting speed further. However, the RT factor
difference between the fixed and arbitrary word length contexts
is quite small (0.25 vs 0.29). The full decoding has the worst
RT factor of 0.9 which is almost three times slower than the
word contexts and 7 times slower than the baseline. Accuracy
wise, compared to the baseline context independent network,
adding the language model context information is essential for
better spotting accuracies. The arbitrary length word context
has the best accuracy without sacrificing the speed too much
compared to the fixed length word context. The performance
is comparable to the full decoding but with a three times faster
decoding speed.



VIII. ERROR ANALYSIS

In this section, we will examine the errors for both the word
graph with and without the language model information. The
context independent graph in Figure 2 is used as the baseline
configuration without any contexts. The best configuration
of the arbitrary length word contexts in Table VIII is used
to demonstrate the advantages of the incorporation of the
language model contexts. To do this, a forced-alignment is
performed on the Hub4-97 F0 portion with a well trained
triphone GMM/HMM model. The forced-alignment gives the
time information for each occurrence of the keywords as the
ground truth. The keyword spotting results are then aligned
with the ground truth to get the types of errors. If the difference
of the middle points between a putative keyword occurrence
and the ground truth falls within a threshold number of frames,
the putative hit is deemed to be correct. If no keyword is in
the ground truth within the putative time interval, the putative
hit is a false alarm. If the spotter failed to detect one keyword
in the ground truth, the keyword is treated as a deletion error.

If no language model is used to provide the context in-
formation, the spotting depends solely on the acoustic model
scores. It is well known that the acoustic scores are not
always reliable. For the keyword spotting task, the unreliable
acoustic scores can cause even a more severe problem: a single
wrongly recognised phone will cause the whole word to miss,
incurring a deletion error. With the language model contexts,
this problem can be greatly circumvented. Examples are given
in the previous experiment sections.

As for insertion errors, there are mainly five types:
Type 1: Derived words. For example, “AMERICAN” can

be easily recognised as “AMERICA”, “VOTE” as
“VOTES”, etc.

Type 2: The keyword is part of a longer word. For example,
the word “COUNTRY” is the same as the “CONTRI”
in the word “CONTRIBUTION”, “ELECTION” is
part of “SELECTION”, “BILL” in “BILLION”.

Type 3: The keyword is acoustically similar to another
word. The keyword “POOLS” sounds very similar
to “LOOPHOLES”.

Type 4: The keyword spans multiple short words. The word
“OFFICE” is wrongly inserted in place of the word
sequence “OFF ITS”.

Type 5: All the remaining errors due to some serious recog-
nition errors. For example, “AMERICAN” is inserted
in place of the word sequence “OUT ASSAULT”.

The five types of insertion errors for each CD KWS system
is given in Table X:

TABLE X
ERROR TYPES OF VARIOUS CD KWS NETWORKS

Error Type 1 2 3 4 5 Total
Context Independent 57 13 6 1 16 93

Keyword Loop 64 4 4 1 8 81
Word fillers 42 3 3 0 8 64

Word loop fillers 13 0 2 0 8 23

From the table, we can see the performance gain of the
keyword loop network over the baseline attributes to the
recovery of type 2, type 3 and type 5 errors although it has a
larger value of type 1 errors. The fixed word length context in
the word filler network helps the correction of the type 1, type
2, and type 3 errors. For the arbitrary length word context in
the word loop filler network, all types of errors of the baseline
system are corrected to a significant amount.

Type 1 error is the most common insertion error which has
57 instances out of the total 93 insertion errors of the baseline
graph without contexts. The arbitrary length word context
graph reduces the insertion errors from 93 to 23. The improve-
ment mainly comes from the recovery of the case 1 errors.
The reason is that the derived words of the type 1 errors are
mainly because of the plural or adjective forms of a keyword
stem. With the context information in the language model,
these derived forms can be easily distinguished from the stem.
For example, the keyword “PRESIDENT” is inserted in place
of all occurrences of its adjective form “PRESIDENTIAL”,
rendering 13 insertions. With the language information, 12
of them are resolved. Another example is the insertion of
the keyword “REPUBLICAN” in place of “REPUBLICANS”.
There are 5 such errors in the baseline configuration. With the
arbitrary length word contexts, all of them are recovered. From
the above analysis, we can see that adding the language model
information to a word graph can significantly reduce both the
high insertion errors from the phone graph and the deletion
errors from the word graph without language model.

IX. CONCLUSION

The incorporation of language model into keyword spotting
to provide contexts for the keywords is investigated for three
different context configurations: phone to keyword contexts,
fixed length word contexts and arbitrary length word contexts.
A hybrid language model with both words and phones tokens
are trained on the word n-gram counts to provide all the
contexts. A spotting graph is designed for each of these context
configurations: keyword loop graph for the phone to keyword
contexts, left and right word fillers for the fixed length word
contexts and a left and right word loop fillers for the arbitrary
length word contexts. Compared to the baseline configuration
without any language model contexts, the keyword spotting
performance is improved by the introduction of the language
model for all the context configurations. Among the three con-
text dependent keyword spotting graphs, the one with the fixed
length word context outperforms the keyword loop context
in terms of accuracy. As a generalisation of the fixed length
word context, the arbitrary length word context provides the
best performance among the three context dependent keyword
spotting configurations. Efficiency wise, the keyword loop
context has the same RT factor as the baseline graph without
any context. It is also twice faster than the fixed length word
contexts and the arbitrary length word context. Compared to
the full decoding, the arbitrary length word context has a
comparable spotting performance but has a spotting speed
which is three times faster.



Future work can be extended to see whether the context
information provided by the language model can help the
spotting for informal speeches, or under noisy conditions.
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