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Abstract—Picture-in-picture (PiP) is a feature of some televi-
sion receivers and video devices, which allows one main program
to be displayed on the full screen while one or more sub-
program displayed in inset windows. Currently most TV/video
devices require users to specify where and how large to place
the sub-program over the main program display. This process
is however not user-friendly as it involves a manual process and
once specified, the size and the location of the sub-program will
be fixed even when they block some key visual information from
the main program. We propose an automatic and adaptive PiP
technology that makes use of computational modeling of visual
saliency. For each frame of the main program, a saliency map
is computed efficiently which quantifies how probable a display
region of the main program contains useful information and will
attract humans’ attention/eyes. The sub-program can thus be
adaptively resized and placed to the display region that contains
the least useful information. Preliminary experiments show the
effectiveness of the proposed technology.

I. INTRODUCTION

Picture-in-picture (PiP) is a feature of some media devices
that allows users to watch two programs at once. Typically
one main program is displayed in full screen while one sub-
program is concurrently played in inset window within the
main program display. The sub-program usually has no sound,
but allow users to keep track of what’s happening on the
second/more channels. In earlier days, the PiP technology
was designed for some high-end television sets, where two
independent tuners or signal sources are needed to supply a
main program and a sub-program, respectively. In recent days,
some new media such as Blu-ray Disc also include the PiP
technology, allowing viewers to watch more than one media
sources at the same time.

PiP technology has been studied for many years, ranging
from the earlier hardware design [1], [2] and the recent
low-level software processing such as transcoding [3], [4],
[5]. On the other hand, the high-level design of intelligent
PiP technology lags far behind. In particular, the current
PiP technology usually provides an interface through which
users can specify how large and where to place the sub-
program. Once specified, the inset window will be at a fixed
position with a fixed size. Such manual pre-specification of
the inset window is instead not a good experience to users.
More importantly, the inset window of fixed size and fixed
position could block some key visual information from the

main program from time to time. An alternative and more user-
friendly approach is to remove the user-specification process
and at the same time, the sub-program will adapt their size and
positions so that useful information from the main program
will not be blocked.

We propose an automatic and adaptive PiP technology that
exploits computational modeling of visual saliency. For each
frame of the main program, a saliency map is computed that
tells how probable each region of a video frame contains
important information and will attract viewer’s attention/eyes.
The sub-program can thus be resized and placed to the region
that contains the least salient information. In particular, we
use four corners of the display screen as candidate regions
based on the guideline that the sub-program should not be
placed at the center of the display screen. The display corner
with the least salient information is thus selected to place the
sub-program. Experiments show very promising results.

II. ADAPTIVE PIP TECHNOLOGY

This section describes the proposed adaptive PiP technology.
In particular, we will divide this section into three subsections,
which deal with computational modeling of visual saliency,
adaptive specification of the size and position of the sub-
program, and discussion, respectively.

A. Computational Modeling of Visual Saliency

Computational modeling of visual saliency aims to build a
saliency map for an image or video frame, and it has a wide
range of applications in adaptive image/video compression,
visual search, etc. [6]. It has been drawing increasing research
interest in recent years thanks to the advances in eye-tracking
devices, with which human fixations can be recorded while a
subject is freely viewing a scene or image.

Quite a number of saliency models have been reported in
recent years [9]. We adopt the saliency model by S. Lu et al.
[8]. The model computes saliency from image co-occurrence
histogram (ICH) and shows very good performance in ef-
ficiency and prediction accuracy. Consider a single-channel
integer image I . Let K = {1, 2, · · · , k} be a set of k possible
image values within I (k is 256 for a 8-bit integer image). H ,
the ICH of the image I is defined as follows:

H =
[
h(m,n)

]
,m, n ∈ K (1)



Fig. 1. The ICH based saliency model predicts the human fixations accurately.
For the three images from the AIM dataset [7] in the first column, columns 2
and 3 show the corresponding fixational maps and saliency maps, respectively.

where H is a symmetric square matrix of size k × k. An
ICH element h(m,n) is the co-occurrence frequency of image
values m and n within a square neighborhood window of size
z. H is constructed as follows. For each image pixel with a
value of m, all image pixels within the local neighborhood
window are examined one by one. If a neighboring pixel has
a value of n, the ICH element h(m,n) is increased by one.
The ICH is built after all image pixels within I are examined
as described above.

A probability mass function (PMF) P can then be deter-
mined through normalizing H by its sum. Since saliency is
usually negatively correlated with occurrence/co-occurrence,
an inverted PMF P is computed as follows:

p(m,n) =

 0 if p(m,n) = 0
0 if p(m,n) > U
U − p(m,n) if p(m,n) ≤ U

(2)

where p(m,n) denotes an element of P . As defined in
Equation 2, elements of P are set to 0 when there are no
corresponding pixel value pairs within the image or when the
corresponding P elements are larger than a certain threshold
(i.e. they are common and therefore inconspicuous). The
threshold U denotes a uniform distribution whose value is the
inverse of the average of non-zero elements within P [8].

Saliency can then be computed from P . For each image
pixel at location (i, j), the corresponding image saliency
S(i, j) is computed as follows:

S(i, j) =

i+z∑
i′=i−z

j+z∑
j′=j−z

p
(
x(i, j), x(i′, j′)

)
(3)

where z denotes the size of the neighborhood window, which
is the same as used for the ICH construction. The notations
x(i, j) and x(i′, j′) denote image values at locations (i, j)
and (i′, j′), respectively and p

(
x(i, j), x(i′, j′)

)
is therefore

the element of P indexed by x(i, j) and x(i′, j′).
Fig. 1 shows the saliency maps that are produced by the

saliency model in [8]. For the sample images from the AIM
dataset [7] shown in the first column, the second column
shows the corresponding fixational maps that are built through
smoothing of the eye fixations that are collected from 20
subjects for each image. The third column shows the computed
saliency maps that predict the human eye fixations accurately.
The adaptive sub-program specification will be done based on
the saliency maps to be discussed in the next subsection.

B. Adaptive Sub-Program Specification

The sub-program is usually placed at one of the four corners
of the main program so that it will have less effect on the
overall picture of the main program. We follow this tradition
and the problem is simplified by two sub-problems, namely,
which corner to place the sub-program and how large the sub-
program should be set within the main program.

In our proposed technique, the aspect ratio of the sub-
program is fixed so as to present the sub-program naturally.
The size of the sub-program can thus be determined by a
predefined threshold Ts as follows:

fmax(
ws

wm
,
hs

hm
) = Ts (4)

where ws, hs, wm, hm denote the width and height of the sub-
program and main program, respectively. The term fmax() is
a standard maximum function, which ensures that the sub-
program will not have an ultra-large width or height when it
has an ultra-large or ultra-small aspect ratio. Ts is the pre-
defined threshold and we set it at 1/4 in our system.

Based on the principle that the image region with smaller
saliency is less attractive and contains less useful information,
the sub-program is placed to the main program corner that has
the smallest saliency as follows:

CN = argmin(Scn), cn = 1, · · · , 4 (5)

where Scn is a four-element vector and each vector element
is the mean saliency at one corner of the main program which
is computed as follows:

Scn =

∑h
i=1

∑w
j=1 S(i, j)

w × h
, cn = 1, · · · , 4 (6)

where w and h denote the width and height of one corner
of the main program. S(i, j) denotes the saliency at (i, j) as
computed in Equation 3.



Fig. 2. Prediction accuracy of our proposed technique where the graph on the left shows the majority vote probability from the 8 subjects and the predicted
probability by our proposed technique whereas the graph on the right shows the probability of the first 2 majority votes and the probability of the first two
predicted corners (with the least saliency).

C. Discussion

The saliency of the main program needs to be computed
as efficient as possible. There are two ways to speed up
the computation process based on the saliency model in [8].
First, each frame of the main program can be down-scaled
before the saliency computation. This has little effects on the
computed saliency because the ICH based model is tolerant to
the image scale variation. In particular, optimal saliency can
often be computed when images are at 0.3-0.5 of the original
image scale based on the public dataset in [7]. Second, the
computation can be reduced significantly by setting a small
neighborhood size z. Study in [8] shows that the variation of
z also has little effects on the computed saliency.

In addition, the main program corner with the smallest
saliency could change frequently among the four corners
depending on the contents of the main program frames. On the
other hand, the position of the sub-program cannot be changed
from one corner to another frequently because frequent change
is visually disturbing to users/viewers. A threshold Tc needs
to be set as follows that controls the change of the position of
the sub-program:

Sleast

Scurrent
< Tc (7)

where Sleast and Scurrent denote two elements of Scn in
Equation 6, which correspond to two main program corners
that have the least average saliency and have the sub-program
placed, respectively. Sleast and Scurrent will therefore be the
same when the current main program corner (where the sub-
program is placed) has the smallest average saliency. On the
other hand, the sub-program will be placed to a new corner
when Sleast is much smaller than Scurrent as controlled by
the user-defined threshold Tc.

III. EXPERIMENTS

A. Experiment Design

Preliminary experiments have been conducted based on the
AIM dataset [7] that consists of 120 natural images of different
characteristics. The evaluation is based on how accurate the
proposed technique can predict the humans’ judgment. In
particular, each of the 120 natural images is first presented
to eight naive subjects in sequence and for each subject, 1-
2 corners of the presented image are voted for sub-program
placement. As a result, 8-16 votes are collected for the four
corners of the image under study, which results in a four-bin
histogram h where each bin represents the number of votes at
the corresponding image corner.

The prediction accuracy is evaluated based on our tech-
nique’s predictions and humans’ judgment as follows:

Acc1 =

∑120
i=1(hi(pi))∑120

i=1(fmax(hi))
(8)

where fmax(x) denotes the maximum function and hi denotes
the voting histogram of the i-th image. The term pi denotes
the predicted corner by our proposed technique that has the
least saliency. Therefore, Acc1 evaluates how accurate our
technique can predict the majority vote by the 8 subjects (over
the 120 images). Considering that there are often more than
one good corner for sub-program placement (each subject is
actually allowed to vote two corners), another accuracy Acc2
can be evaluated based on the first two predicted corners, i.e.,
the first two corners with the least saliency, as follows:

Acc2 =

∑120
i=1(hi(pi) + hi(p

′
i))∑120

i=1(fmax(hi) + fsmax(hi))
(9)

where fsmax(x) returns the second maximum element of the
argument vector x and p′i denotes the predicted main program
corner that has the second least saliency.



Fig. 3. Sub-program images are placed properly based on the visual saliency:
For the five images in the first column from the AIM dataset [7], columns 2
and 3 show the corresponding composite images where sub-program images
(randomly selected from the AIM dataset) are placed at the least and the most
salient main program corners, respectively.

B. Experimental Results

Experiments show that the proposed technique predicts the
humans’ judgment accurately. For the 120 images tested, the
average prediction accuracy reaches up to 81% for Acc1
and 89% for Acc2, respectively. Figs. 2a and 2b show the
prediction accuracy Acc1 and Acc2 of the 120 individual
images, respectively. As Fig. 2 shows, the prediction by our
technique matches perfectly with the majority votes for many
of 120 image studied, especially for the case of Acc2. At the
same time, there are also around 10-20 images that are not
predicted accurately based on the proposed technique.

Fig. 3 shows examples where the first column show five
sample images from the AIM dataset [7]. The second and
the third columns show the composite images where the sub-
program images (randomly picked from the AIM dataset) are
placed at the least salient and the most salient main program
corners, respectively. In particular, the first three images have
perfect matching between our technique’s prediction and the
subjects’ judgment. The last image has the worst matching
because all 8 subjects voted the bottom-left corner as the
best corner for sub-program placement. The fourth image lies
between where most votes put the bottom-left corner as the

best placement corner but 2 votes choose the bottom-right
corner. As Fig. 3 shows, overall sub-program placed at the
least salient corner (shown in the second column) blocks less
useful information and presents a more natural view compared
with sub-program placement at the most salient corner (shown
in the third column).

C. Discussion

Some work will be further exploited. One aspect is to test
the proposed technique over a larger dataset and at the same
time recruit more subjects for user study. The correlation
between our technique’s prediction and the subjects’ voting
results over a larger scale will give a more comprehensive
picture. Another aspect is to test the proposed technique on
real video data. Some new evaluation metrics need to be
designed because it is an extremely time-consuming process
to carry out subject voting on video frames. We will study
these topics in our future work.

IV. CONCLUSION

This paper presents an automatic and adaptive PiP tech-
nology that makes use of computational modeling of visual
saliency. For each frame of the main program, a saliency map
is computed efficiently which quantifies how probable a dis-
play region of the main program contains useful information
and will attract humans’ attention/eyes. The sub-program can
thus be adaptively resized and placed to the display region that
contains the least useful information. Preliminary experiments
show the effectiveness of the proposed technology. Experi-
ments on a public dataset show that the prediction accuracy
reaches up to 88% compared with human subjects’ voting.
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