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Abstract—Acoustic source localization and tracking using a mi-
crophone array is challenging due to the presence of background
noise and room reverberation. Conventional algorithms employ
the steered response power (SRP) as the measurement function in
a particle filter based tracking framework. The particle weight is
updated according to a pseudo-likelihood derived from the SRP
value of each particle position. The performance of this approach
reduces in a noisy and reverberant environment. In this paper,
instead of evaluating the SRP value for each discrete particle
position, we propose to apply a regional SRP beamformer which
takes into account a circular region centered on each particle
position, in order to provide a more robust particle likelihood
evaluation. In addition, a proper mapping function is proposed to
transform the regional SRP value to the likelihood. Simulation
results show that the proposed method achieves robustness in
tracking a speech source in a noisy and reverberant environment.

Index Terms—Acoustic localization and tracking, particle filter,
steered response power, microphone array

I. INTRODUCTION

Acoustic source localization and tracking (ASLT) involves

estimating the position of an acoustic source using an array of

distributed microphones. Recently, ASLT has become an ac-

tive research area for applications including teleconferencing,

automatic camera steering and surveillance. Localizing and

tracking a speech source in an enclosed environment, however,

is challenging due to the presence of background noise, room

reverberation, sound interference and non-stationarity of the

speech signal [1]. Therefore, developing a robust localization

and tracking algorithm is necessary for real applications under

an adverse environment.

ASLT algorithms aim to exploit the relative temporal/spatial

information of the microphone received signals given the array

geometry. In general, localization algorithms can be classified

into two categories: single-step and dual-step approaches. The

single-step approach estimates the source position directly by

scanning a synthetic beamformer across all possible source

locations and finding the maximum power corresponding to

the source position estimate [2]. The dual-step approach,

on the other hand, estimates the time-difference-of-arrival

(TDOA) information across all microphone pairs in the first

step [3]. These TDOAs are then used to perform localization

in the second step by using a mapping from the TDOAs to

the source location estimate [4].

One of the disadvantages of the above approaches is that

the localization is performed independently across each time

frame. Recently, the Bayesian approach which takes into

account the temporal consistency of localization measurements

by incorporating the source-dynamic model has been pro-

posed [5]. The particle filter (PF), which does not require

the need to satisfy linearity and Gaussianity assumptions, is

one such approach that has been widely used for acoustic

source tracking [6]. In PF, the source position at each time

frame is defined by a state vector and propagated according

to a source-dynamic model. The posterior probability density

function (pdf) of the state vector is then updated by the

measurement at current time frame. It was observed that the

steered response power (SRP) beamformer can be used as a

measurement function and it achieves better performance than

TDOA-based measurement [7]. Instead of evaluating the SRP

over the whole region, the PF constrains the estimation to

within a relatively small number of positions (the particle set.)

Such technique is often referred to as the pseudo-likelihood
approach [7].

Although the pseudo-likelihood approach has been widely

adopted in recent literature [8], [9], it still suffers from the

effect of background noise and reverberation. In this paper, we

propose a new PF framework which incorporates a regional

SRP as its measurement function. Instead of evaluating the

SRP for each discrete particle position, the proposed method

takes into account a circular region centered around each

particle position [10] so as to provide a more comprehensive

evaluation of the likelihood function. The regional SRP value

is used to compute the likelihood via a nonlinear mapping. As

opposed to [10], the proposed method takes into account the

temporal consistency of the source position and incorporates

a source-dynamic model in the tracking scenario. Simulation

results show that the proposed method achieves a performance

that is more robust than that proposed in [8], [10] in a noisy

and reverberant environment.

II. REVIEW OF PF BASED TRACKING APPROACH

A. Particle Filter Framework
In ASLT, the state-space model is used to describe the

source position estimation problem in an iterative manner.
Given a pre-defined Cartesian coordinate system, the source
state vector is defined as αk = [xk, yk, ẋk, ẏk]

T at time frame



index k, where the first two elements xk and yk define the
source position rk = [xk, yk], ẋk and ẏk denote the source
velocity in x and y direction, respectively. We also define the
measurement variable zk = [x̂k, ŷk]

T which contains the prior
source position estimate. This variable zk may be also defined
by TDOA-based approach alternatively [7]. The state-space
model can therefore be represented as

αk = g(αk−1,uk), (1a)

zk = h(αk,wk), (1b)

where g(·) denotes the state-transition process, uk is the
process noise, h(·) denotes the measurement function, and
wk is the measurement noise. Similar to [7]–[9], we employ
the Langevin process which had been proposed as a source-
dynamic model for simulating a realistic human motion.
Equation (1a) can then be rewritten as

αk =

⎡
⎢⎣
1 0 aT 0
0 1 0 aT
0 0 a 0
0 0 0 a

⎤
⎥⎦αk−1 +

⎡
⎢⎣
bT 0
0 bT
b 0
0 b

⎤
⎥⎦uk, (2)

where uk ∼ N (μ,Σ) is the noise variable, T is the time
interval between consecutive frames while μ = [0, 0]T and
Σ = I2×2 denote the mean vector and covariance matrix,
respectively. The parameters a and b are defined as

a = exp(−βT ), (3a)

b = v̄
√

1− a2, (3b)

where v̄ is the steady-state velocity and β is the rate constant.

In this paper, we have used, similar to [8], v̄ = 0.8 m/s,
β = 10 Hz.

The bootstrap PF is commonly used in ASLT due to its

simplicity [6]. Defining p as the particle index and Np as

the total number of particles, the posterior pdf Pr(αk|zk) is

approximated using a set of particles of the state space with as-

sociated weights {α(p)
k , w

(p)
k }Np

p=1. Each particle goes through

a propagation followed by an update step. The bootstrap PF

is summarized in Table I and will be adopted in this paper.

The source position estimate r̂k corresponds to the first two

elements of the estimated state α̂k.

B. Steered Response Power Measurement

The key step in bootstrap PF-based acoustic source tracking
is to determine the measurement likelihood Pr(zk|αk) so that
a proper weight can be assigned to each particle. A pseudo-
likelihood approach which incorporates a SRP beamformer as
the measurement function has been proposed in [7]. More
specifically, the SRP beamformer defines the energy of an
assumed (look) position r′ as [2], [11]

P(r′) =
∑
ωl∈Ω

∣∣∣∣∣
M∑
i=1

Wi(ωl)Yi(ωl)e
jωlτi(r

′)

∣∣∣∣∣
2

, (4)

where i is the microphone index, M is the number of micro-

phones, Yi(ωl) is the frequency-domain received signal of the

ith microphone, ωl = 2πl/L is the angular frequency of the

lth frequency bin, L is the number of frequency bins, Ω is

the frequency range of interest such that Ω = [0, 6] kHz is

often chosen for a speech source [9], τi(r
′) = ‖r′ − rmi ‖2/c

is the time-of-arrival from r′ to the ith microphone, c is the

TABLE I: Summary of the bootstrap PF.

At time k − 1, a set of particles {α(p)
k−1, w

(p)
k−1}Np

p=1 is a

discrete representation of Pr(αk−1|zk−1).

For the kth frame:

1) Particle propagation: Propagate each particle

through the source-dynamic model described by (2),

α
(p)
k = g(α

(p)
k−1,uk).

2) Update: Each particle is then assigned a weight

according to its likelihood

w̃
(p)
k = w

(p)
k−1Pr(zk|α(p)

k ),

followed by a normalization step w
(p)
k =

w̃
(p)
k (

∑Np

i=1 w̃
(i)
k )−1.

3) Resampling: Resample the particles if the effective

sample size is below a threshold, Neff < Nt, where

Neff = (
∑Np

p=1(w
(p)
k )2)−1.

4) Result: The particle set {α(p)
k , w

(p)
k }Np

p=1 is obtained

for approximation of Pr(αk|zk). The state estimate

at the kth frame is α̂k =
∑Np

p=1 w
(p)
k α

(p)
k .

speed of sound, and Wi(ωl) is a weighting function. The

phase transform (PHAT) weighting Wi(ωl) = 1/|Yi(ωl)| is

commonly used in ASLT due to its robustness to reverberation

and noise [8], [12]. In general, the SRP beamformer is em-

ployed to scan the assumed source position r′ across the whole

surveillance region such that the source position estimate

corresponds to that having the maximum power. However,

this search process requires high computational complexity

for realistic applications.
The pseudo-likelihood PF approach mitigates this draw-

back based on the concept of “pseudo-likelihood.” In PF,
the likelihood Pr(zk|αk) defines the probability of obtaining
the measurement zk given the state αk. The SRP value,
representing the power for each discrete point, can be used
as an approximate version of this likelihood during the voiced
frame, i.e.,

Pr(zk|αk) =

{ Pγ(r′k), for voiced frame
UD(r′k), for unvoiced frame

, (5)

where r′k = [x′
k y′k]

T represents the first two elements of the

state vector αk, γ = 2 is a control parameter to regulate the

fusion of the SRP function to the likelihood [8], and UD(·) is

the uniform pdf over the considered enclosure domain D =
{xk, yk|xmin ≤ xk ≤ xmax, ymin ≤ yk ≤ ymax}.

By using the pseudo-likelihood PF approach, the SRP

evaluation Pγ(r′k) is thus constrained within a relatively small

number of positions (the particle set.) However, this approach

still suffers in terms of performance in the presence of back-

ground noise and reverberation due to the lack of robustness

for the SRP [7], [8]; noise and reverberation may flatten the

SRP spatial spectrum and cause the location corresponding to

the maximum power to deviate from the true source position.
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Fig. 1: Regional steered response power for a circle region.

The performance of ASLT algorithm can be improved if a

robust measurement function is adopted in the PF tracking

framework.

III. THE PROPOSED METHOD

A. Regional SRP Measurement

We propose to employ a regional SRP beamformer [10]

as a measurement function in order to mitigate the effect of

reverberation and noise. Due to the energy integration over a

square grid centered on an assumed position, the regional SRP

beamformer has shown to be more robust than the conventional

SRP [11] in a noisy and reverberant environment.
Evaluation of the regional SRP over a square grid proposed

in [10] requires the computation of the distance from the
center to each boundary along a certain direction. We however
consider a circular region centered on each particle, in order to
reduce the computational complexity given that the distance
from the center to the circular circumference is a constant.
Before defining the regional SRP function, we note that the
relationship between the conventional SRP function in (4) and
the GCC function is given by [13]

P(r′) =
∑
ωl

∣∣∣∣∣
M∑
i=1

Wi(ωl)Yi(ωl)e
jωlτi(r

′)

∣∣∣∣∣
2

= 2π

M∑
i=1

M∑
j=1

Ri,j(τi,j(r
′)), (6)

where

Ri,j(τi,j(r
′)) =

1

2π

∑
ωl

Ψi,j(ωl)Yi(ωl)Y
∗
j (ωl)e

jωlτi,j(r
′)

(7)

is the GCC function between the ith and jth microphones,

τi,j(r
′) = τj(r

′)− τi(r
′)

=
‖r′ − rmj ‖ − ‖r′ − rmi ‖

c
(8)

is the TDOA between the ith and jth microphones, and

Ψi,j(ωl) =
1∣∣Yi(ωl)Y ∗

j (ωl)
∣∣ (9)

is the PHAT weighting. Expanding (6) and removing the fixed
energy terms and symmetries [13], one can define a modified
SRP function for a discrete assumed position r′ in terms of
the summation of GCC functions:

Pm(r′) = 2π

M∑
i=1

M∑
j=i+1

Ri,j(τi,j(r
′)). (10)

where the superscript “m” in (10) denotes for the modified

SRP function. Equation (10) indicates that instead of using (4),

the power at r′ can also be computed from the summation of

GCC functions in which the TDOAs are determined by the

discrete assumed position.

Now, instead of considering r′, we take into account a
circular region C(r′) centered at r′, as illustrated in Fig. 1.
The regional SRP is defined by accumulating the power within
C(r′), i.e.,

Pc(r′) = 2π

M∑
i=1

M∑
j=i+1

∑
r′′∈C(r′)

Ri,j(τi,j(r
′′)), (11)

where the superscript “c” denotes for the circular region. It
has been shown in [10] that the GCC function for points
within a region takes only values in the TDOA range τi,j(r

′) ∈
[τ li,j(r

′), τhi,j(r
′)] for each microphone pair, where the TDOA

range limits τ li,j(r
′), τhi,j(r

′) are only determined by the region
boundary. In this paper, since we are considering a circular
region r′′ ∈ C(r′) in (11), τ li,j(r

′), τhi,j(r
′) can be determined

by the boundary of the circular region. In order to compute
these TDOA range limits, we first evaluate the TDOA gradient
along which the TDOA exhibits the highest rate of increase.
By taking the gradient of (8), the TDOA gradient ∇(τi,j(r

′))
at position r′ can be derived as

∇(τi,j(r
′)) = [∇x′(τi,j(r

′)),∇y′(τi,j(r
′))], (12)

where ∇x′(·) = ∂(·)/∂x′ such that

∇x′(τi,j(r
′)) =

1

c

(
x′ − xm

j

‖r′ − rmj ‖ − x′ − xm
i

‖r′ − rmi ‖
)
, (13a)

∇y′(τi,j(r
′)) =

1

c

(
y′ − ym

j

‖r′ − rmj ‖ − y′ − ym
i

‖r′ − rmi ‖
)
. (13b)

In (13), x′ and y′ denote the two-dimensional components of
r′ while xm

i and ymi denote the two-dimensional components
of the ith microphone location. The lower and upper limits of
the TDOA can be computed by considering the product of the
gradient magnitude and the distance along the gradient, i.e.,

τ l
i,j(r

′) = τi,j(r
′)− ‖∇(τi,j(r

′))‖ρ, (14a)

τh
i,j(r

′) = τi,j(r
′) + ‖∇(τi,j(r

′))‖ρ, (14b)

where ρ is the radius of the circular region. With the obtained
TDOA range limits, the regional SRP in (11) can then be
evaluated as

Pc(r′) = 2π

M∑
i=1

M∑
j=i+1

τh
i,j(r

′)∑
τi,j(r′)=τ l

i,j(r
′)

Ri,j(τi,j(r
′)). (15)

B. Distribution of Regional SRP Values

The regional SRP value computed from (15) cannot be
directly used as a measurement likelihood. We seek for some
mapping function M(·) to map the regional SRP value into
the likelihood Pr(zk|αk) that is within the range of [0, 1].

Pr(zk|αk) = M(Pc(r′k)). (16)

In order to develop a proper mapping function, we first analyze
the distribution of regional SRP values. Substituting (7) and (9)
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into (15), we obtain

Pc(r′) =
M∑
i=1

M∑
j=i+1

τh
i,j(r

′)∑
τi,j(r′)=τ l

i,j(r
′)

∑
ωl

e−jωlτi,j(r)+jωlτi,j(r
′),

(17)

where r is the true source position. Equation (17) is useful

for analysis of the distribution of the regional SRP values. We

split the whole surveillance area D into two areas.

Distribution of regional SRP values in the neighborhood
of source position: The neighborhood of source position is

defined as positions with distance from the true source position

being less than a threshold, i.e., ‖r′ − r‖ ≤ dt. In this

simulation dt = 0.2 m was used. For positions in this area,

Pc(r′) in (17) reaches the maximum due to the compensation

of phase delays of the received signals.
Distribution of regional SRP values in the clutter positions:

The clutter positions are defined as the positions which are at
some distant away from the source position such that ‖r′ −
r‖ ≥ dt. For those clutter positions, due to the unmatch in
the phase compensation, we assume that the phase follows a
uniform distribution [9], given by

O = e−jωlτi,j(r)+jωlτi,j(r
′)

= ejθ, θ ∼ U [−π, π). (18)

In addition, due to the identically independent distributions of
the phases and the sufficient number of summations for the
phases, we deduce, based on central limit theorem, that the
regional SRP power values for the clutter positions follow a
Gaussian distribution, i.e.,

Pc(r′) ∼ N (0, σ2), ‖r′ − r‖ ≥ dt. (19)

where σ2 is the variance of distribution of regional SRP values

in clutter positions.

Figure 2 shows the two distributions of the regional SRP

values in these two areas. The distribution of regional SRP

values in the neighborhood of source position is indicated by

the solid line, while the distribution of SRP values in clutter

positions is indicated by the dashed line. The figure shows

that the distribution of SRP values in clutter positions corre-

sponds approximately to a zero mean Gaussian distribution as

expected. The variance σ2 depends on the TDOA summation

boundary and number of microphone pairs used in (17). In

our simulation, σ2 = 25 was observed when M = 8 and

ρ = 0.1 m was used. On the other hand, the regional SRP

values corresponding to the neighborhood of source position

are generally higher than the values corresponding to the
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Fig. 3: Comparison of tracking results with T60 = 450 ms and
SNR = 10 dB. (a) Conventional PF-SRP tracking method [8]. (b) Proposed
PF-regional SRP tracking method.

clutter positions due to the phase compensation in (17). We

therefore choose a threshold to distinguish between these two

distributions of regional SRP values. In this work, we set an

ad-hoc threshold Pt = 20 in order to eliminate the effect of

clutter positions as much as possible. This threshold should

be modified accordingly if different M and ρ are used.
A normal cumulative distribution function (cdf) can be

applied as the mapping function:

M(Pc(r′k)) = Φ(Pc(r′k),Pt, σ
2
P), (20)

where Φ(·) is a normal cdf. As discussed, the threshold
Pt = 20 is chosen so that the regional SRP values of clutter
positions are mapped onto the lower end of Φ(·), while those
corresponding to the neighborhood of the source position are
mapped onto the higher end of Φ(·). The variable σ2

P is the
variance of the normal cdf which determines its steepness. In
this work, σ2

P = 12 was chosen and performs well in our
simulation. The likelihood Pr(zk|αk) thus can be defined as

Pr(zk|αk) =

{ M(Pc(r′k)), for voiced frame
UD(r′k), for unvoiced frame

. (21)

The remaining procedures follow the standard PF framework

in Table I. The position estimate at each iteration r̂k corre-

spond to the first two elements of the state estimate α̂k.

IV. SIMULATION RESULTS

Simulations were conducted in a room of dimension 5 m×
5 m× 2.5 m. Eight microphones were distributed 0.5 m away

from the perimeter of the room (see Fig. 3.) A 13 s speech

signal sampled at 16 kHz from the TIMIT database [14]

was used as a source signal. The microphone signals were

generated by the method of images [15]. White Gaussian noise

(WGN) at different signal-to-noise ratio (SNR) was added to

the microphone signals. The positions of speech source were

computed using a frame size of 1024 samples with Np = 80
particles. The radius of the circular region centered on each

particle was ρ = 0.1 m. The effective sample size threshold

in PF was Nt = 37.5.

The proposed method is compared with the conven-

tional PF-SRP tracking method [8] where the simple binary

voice/unvoice detector was implemented and the regional SRP

localization method without PF framework [10]. We quantify

their performance using ek = ||r̂k − rk||2, where r̂k is

the estimated position at the kth frame, and rk is the true

source position. The average tracking error ē = 1
K

∑K
k=1 ek
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Fig. 4: Variation of average tracking error with reverberation time for (a)
SNR = 10 dB and (b) SNR = 3 dB.

quantifies the performance across all audio frames, where K
is the number of frames.

Figure 3 compares the tracking results of the two PF based

tracking methods when T60 = 450 ms. Figure 3 (a) shows

that the performance of the conventional PF-SRP method [8]

is significantly affected by room reverberation. The particles,

indicated by the dotted points, are scattered around the surveil-

lance region due to the poor performance of the conventional

SRP measurements. The conventional PF-SRP method has an

average tracking error of 0.41 m. Figure 3 (b) shows the

performance of the proposed PF-regional SRP method. The

regional SRP measurements result in well-propagated parti-

cles which are concentrated along the true source trajectory.

The proposed method achieves an averaged tracking error of

0.10 m, indicating that it outperforms the conventional PF-

SRP method in this reverberant condition.

Figure 4 presents the average tracking error of the con-

ventional PF-SRP method [8], the regional SRP without PF

method [10] and the proposed PF-regional SRP method, for

various reverberation time. Two cases of SNR = 10 and

3 dB were examined. The performance of these three methods

reduces with reverberation time, as expected. The conventional

PF-SRP method and the regional SRP without PF method

consistently exhibit higher tracking error than the proposed

PF-regional SRP method. The lower SNR condition further

degrades the performance of the conventional methods. Due

to the improved regional SRP evaluation, the regional SRP

without PF method performs modestly better than the PF-SRP

method, even though it does not exploit the temporal consis-

tency of source positions. By incorporating the PF framework

and taking into account the temporal consistency of source
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Fig. 5: Comparison of tracking results with T60 = 450 ms and SNR = 10 dB
using randomly distributed microphones. (a) Conventional PF-SRP tracking
method [8]. (b) Proposed PF-regional SRP tracking method.

positions, the proposed PF-regional SRP results in a mean

error of less than 0.2 m, indicating that it outperforms both

of the two conventional methods for the environments being

examined. The improvement over the conventional methods

becomes more significant at lower SNR and higher reverberant

condition.

To further examine the validity of the algorithm in different

microphone array configuration, we consider microphones that

are randomly distributed as illustrated in Fig. 5. The remaining

parameters were the same as the previous simulations. The

conventional PF-SRP method [8], shown in Fig. 5 (a), results

in the particles scattered around the room enclosure and

poor performance is exhibited. The proposed PF-regional SRP

method, shown in Fig. 5 (b), can achieve good tracking

performance by reducing the tracking error from 0.49 m to

0.12 m. This simulation indicates that the algorithm is not

limited to the case where the microphones have to be placed

along the parameter of the room enclosure.

V. CONCLUSION

We propose a PF based acoustic source tracking framework

by using a regional SRP measurement function. Instead of

evaluating the power of discrete particle positions, the pro-

posed method takes into account a circular region centered

on each particle by accumulating the power within each

region to provide a more comprehensive likelihood evaluation.

Simulation results show that the proposed method achieves

lower tracking error than the conventional methods in a noisy

and reverberant environment.
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