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Abstract—We consider super-resolved free-viewpoint image
synthesis (SR-FVS), where a high-resolution (HR) image that
would be observed from a virtual viewpoint is synthesized
from a set of low-resolution multi-view images. In previous
studies, methods for SR-FVS were proposed on the basis of
reconstruction-based super-resolution (RB-SR). RB-SR uses mul-
tiple images to synthesize an HR image and thereby can naturally
be applied to SR-FVS, where multi-view images are given as the
input. However, the quality of the synthesized image depends
on observation conditions such as the depth of the target scene,
so sometimes the quality of SR-FVS can degrade severely. To
mitigate such degradation, we propose integrating learning-based
super-resolution (LB-SR), which uses knowledge learned from
massive natural images, into the SR-FVS process. In this paper,
we adopt sparse coding super-resolution (ScSR) as a LB-SR
method and combine ScSR with an existing SR-FVS method.

I. INTRODUCTION

Free-viewpoint image synthesis is the process of combining
a set of multi-view images to synthesize an image from a
new viewpoint where no camera is actually located. This
technology has been an active area of research [1], [2], [3],
[4], [5] because it can provide realistic 3-D visual experiences
by enabling users to select viewpoints freely and interactively.

Conventional methods for free-viewpoint image synthesis
generally consist of two steps. First, the 3-D structure of the
target scene is reconstructed from input images. Then, using
the reconstructed 3-D structure, the input images are registered
to the coordinate system of the target image and blended to
produce a new image. The blending operation in the second
step can obscure the errors of 3-D reconstruction by blurring
the image. However, this operation also blurs fine textures and
degrades the quality of the synthesized image.

To improve the image quality, several researchers [2],
[3], [4], [5] have recently replaced blending operation with
reconstruction-based super-resolution (RB-SR) [6], in which
a high-resolution (HR) image is reconstructed from multiple
low-resolution (LR) images. We refer to this task as super-
resolved free-viewpoint image synthesis (SR-FVS). Tung
et al. [2] super-resolved input multi-view images to generate a
complete 3-D model of a single object. For the same purpose,
Goldluecke et al. [3] synthesized texture maps using RB-SR.

Mudenagudi et al. [4] formulated a SR reconstruction of an
entire scene as a multi-label MRF-MAP problem and solved it
by graph cuts. Takahashi et al. [5] proposed a SR-FVS method
that uses adaptive regularization for RB-SR to handle depth
inaccuracies. It should be noted that all these methods use
RB-SR for image synthesis.

In RB-SR, the SR problem is formulated as an inversion
of an observation model, which describes how the LR images
are generated from the underlying HR image. Therefore, the
quality of the synthesized image depends on the observation
model. If the observed LR images contain sufficient informa-
tion to reconstruct the HR image, the quality will be high.
However, if some information is lost due to occlusions or
other factors1, the quality will degrade. This degradation is
undesirable for the reconstruction of the entire scene.

To mitigate such degradation, we propose integrating an-
other class of SR approach, learning-based SR (LB-SR), into
the RB-SR-FVS method [5]. LB-SR methods [7], [8], [9]
synthesize an HR image by reproducing image features learned
from a massive amount of natural images. Therefore, LB-
SR can mitigate degradations of RB-SR due to the lack of
information because such information can be compensated by
the learned features. Moreover, our method can also overcome
a limitation of LB-SR that it cannot recover features that
are not present in training images because such features can
be recovered with RB-SR as long as sufficient information
is present in the input LR images. In summary, our method
improves the quality of SR-FVS by utilizing RB-SR and LB-
SR in a complementary manner. We adopt sparse coding super-
resolution (ScSR) [8] as a LB-SR algorithm and combine
ScSR with an existing RB-SR-FVS method [5].

The rest of this paper is organized as follows. In Section II,
the RB-SR-FVS method [5] is introduced. In Section III, we
propose our SR-FVS method that integrates ScSR [8] into the
SR-FVS process. Experimental results are presented in Section
IV, followed by the conclusion in Section V.

1For example, it is well known that when pixel shifts between images (i.e.
disparity) are integers, all images contain the same information and thus RB-
SR cannot improve resolution [6].



Fig. 1. Flowchart of SR-FVS. In the reconstruction-based method [5], a basic interpolation is used in the process of generating an initial image from a LR
image (indicated by blue arrow). We substitute this interpolation with a LB-SR method.

II. RECONSTRUCTION-BASED SR-FVS METHOD

The configuration in the SR-FVS method [5] is as follows.
The input images are captured from viewpoints that are
arranged on the same plane. The goal of our method is to
generate an image that would be viewed from a new viewpoint,
referred to as the target viewpoint. In this paper, we assume
that the target viewpoint is located on the camera plane. We
also assume that camera parameters are estimated in advance.

The SR-FVS method [5] consists of two steps: depth
estimation and SR. In the depth estimation step, we estimate
a depth map and a reliability map, which represents per-
pixel reliability of the estimated depth, both from the target
viewpoint. A modified version of semi-global stereo matching
[10] is adopted. In the SR step, an HR image from the target
viewpoint is synthesized with RB-SR using the estimated
depth map and reliability map. In this paper, we leave the
depth estimation step unchanged from that in [5], but newly
combine ScSR [8] with the SR step. In the following text, we
explain the SR step of the original method [5] as a preparation
for our proposal.

A. View synthesis via RB-SR

An overview of the SR step is shown in Fig. 1. We first
generate an LR image viewed from the target viewpoint by
warping input images using the depth map and blending the
warped images. The LR image is next upsampled to the target
resolution by using a basic interpolation (e.g., bicubic interpo-
lation in [5]) to obtain an interpolated image. We assume that
the interpolated image is close to the underlying HR image,
and use this image as an initial guess for SR reconstruction.
Note that SR is not yet performed, and thereby, the effective
resolution of the interpolated image is not increased from that
of the LR image.

Then, an output HR image is synthesized via an inversion
of an observation model as follows. Let K be the number of
the LR images. Let X , X0, and Y k (1 ≤ k ≤ K) be 1-D
vector representations of the output HR image, the interpolated
image, and the k-th input image, respectively. The relation
between the k-th input image and the latent HR image X can
be expressed as

Y k = AkX, (1)

where Ak is a matrix that represents the observation model
for the k-th input image. Ak can be decomposed as

Ak = MBSk, (2)

where M and B are matrices that respectively represent
downsampling and blurring operations, which come from the
difference of pixel sizes between the LR and HR images. Sk

is a matrix that represents pixel shift (disparity) between the
input and target images and is computed from the estimated
depth map and camera parameters.2

The SR problem is formulated as a minimization of an
energy functionEr given by

Er(X)=
K∑

k=1

‖Yk−AkX‖22+μ(X−X0)
TW(X−X0), (3)

where μ is a positive weight and W is a diagonal matrix
that represents the reliability of depth estimation. An element
of W takes a small value when the estimated depth of the
corresponding pixel is reliable and a large value when the
estimated depth is unreliable. For details of W , please refer
to Appendix A.

The first term represents a reconstruction constraint, which
means that the HR image X should reproduce the observed
LR image Y k after applying the observation model Ak as
described in Eq. (1). The second term is a regularizer that
assumes the output image X resembles the initial image X0.
The matrix W determines the weight of the regularization
adaptively for each pixel by using the reliability of the depth.
When the estimate depth for a pixel is reliable, the weight of
regularization for that pixel is set to a small value to prioritize
the reconstruction constraint. Conversely, when the depth
estimation for a pixel is less reliable (e.g. around occlusion
boundaries), the weight is set to a larger value because the
observation model (the first term) is less reliable.

The quality of the synthesized image is mainly determined
by the observation model. When the observed LR images
have enough information to reconstruct the HR image, fine

2Occlusions are considered in constructing Ak . In short, if pixels of the
target HR image are occluded in the k-th LR image, the corresponding
columns of Ak are set to zero. The detailed procedure of occlusion handling
can be found in section 4.2 of [5].



details can be recovered with the reconstruction constraint (the
first term in Eq. (3)), so the quality of the resulting image
becomes high. However, when such information is lost during
the observation process, the reconstruction constraint cannot
improve the resolution, so the quality will severely degrade.
To mitigate such degradation, our method integrates a LB-SR
method, ScSR, into the process of SR-FVS.

III. PROPOSED METHOD

We integrate ScSR [8] into the RB-SR-FVS method [5]
introduced in the previous section. In short, our method uses
ScSR to generate an initial image for RB-SR (X0 in Eq. (3)).
More precisely, we first synthesize an LR image from the
target viewpoint, as explained in the previous section. Then we
apply ScSR to the synthesized LR image to generate an initial
image, instead of interpolation used in the previous section;
in fact, this is the only modification to the flowchart in Fig. 1.
We finally perform RB-SR by minimizing Eq. (3) to obtain
the output HR image.

Our method can mitigate a drawback of RB-SR that the
quality of SR-FVS depends on the observation model. This is
because when the reconstruction constraint is not effective, the
resulting image converges to the initial image, which is already
super-resolved by ScSR. Also, note that our method is less
subject to a limitation of ScSR that it cannot recover features
that are not present in training images. This is because RB-
SR can recover such features by using the reconstruction con-
straint. Therefore, our method improves the SR-FVS quality
by combining RB-SR and LB-SR in a complementary manner.

In the remainder of this section, we briefly introduce ScSR
and explain how ScSR can be utilized for SR-FVS.

A. Sparse coding super-resolution

ScSR is a LB-SR method designed for single image SR,
and thus, it was not originally designed for SR-FVS. The key
feature of ScSR is the use of a sparsity prior, which assumes
that patches of natural images can be represented as a sparse
linear combination of atoms of an appropriate dictionary.

ScSR consists of two steps: patch-wise SR and global
reconstruction. In the patch-wise SR step, patches are extracted
from an input LR image and then super-resolved via sparse
representation to obtain an HR image. In the global recon-
struction step, the HR image is refined with the reconstruction
constraint. In fact, the latter step is equivalent to the RB-SR
explained in Section II, and thus, it can be omitted. We use
only the first patch-wise SR step, which will be introduced
next, to generate an initial image for RB-SR.

B. Super-resolution via sparse representation

In the patch-wise SR step, we use two coupled dictionaries,
DH for HR patches and DL for LR patches, which are trained
in advance from natural image patches. Given an LR patch y,
we first compute a sparse representation of y with respect to
the LR dictionary DL. We denote the coefficients of the sparse

Fig. 2. Input images

representation as α. α can be computed via minimization of
an energy function, Es, given by

Es(α) = ‖Fy − FDLα‖22 + λ‖α‖1, (4)

where F is a feature extraction operator (e.g., derivative filter
in [8]) and λ is a weight for controlling the sparseness of α.

Using the computed coefficient α and the HR dictionary
DH , the HR patch x is computed as

x = DHα. (5)

This procedure is applied to all LR patches to produce the
initial image X0, which is used for RB-SR to obtain the output
HR image.

IV. EXPERIMENTS

A. Subjective evaluation

The four images shown in Fig. 2, which were taken from
“CD cases and a poster (unoccluded)” in the Stanford light
field dataset [11], were used as the input. The input viewpoints
were located at the corners of a 60 × 50mm rectangle. In
accordance with the notation of the database, the viewpoints
were indexed as 30, 32, 72, and 74. The original images were
650×515 pixels in RGB color. We converted them to grayscale
and then resized them to 325×258 pixels to generate the input
images. To reduce the image size, we first padded the original
image with an intensity of zero at the bottom edge by one
pixel and then averaged 2 × 2 pixels of the padded image to
produce a pixel of the resized image. From these LR images,
we reconstructed the HR image viewed from the center of the
rectangle, which was indexed as 52 in accordance with the
database notation.

A depth map and a reliability map, shown in Fig. 3, were
estimated by using the stereo matching method described
in [5]. The estimated depth map is very noisy around the
black background regions because it is inherently impossible
to reliably determine stereo correspondences. However, these



(a) Depth map (b) Reliability map

Fig. 3. Depth map and reliability map. Linear structures are visible in the
background due to the nature of the semi-global optimization used in [5].

errors do not affect visual quality of the resulting image
because colors of these regions can be determined as black
even if the estimated depths are erroneous.

We used dictionaries DL and DH trained with 69 images,
which are available at the website of the authors of ScSR [8].
We set μ = 3.0× 10−19 in Eq. (3) and λ = 0.2 in Eq. (4).

We compared four SR-FVS methods: (a) without SR (bicu-
bic interpolation of the LR image), (b) RB-SR only (equivalent
to [5]), (c) LB-SR only, and (d) RB-SR and LB-SR (our
method). The SR-FVS results are shown in Fig. 4.

We first focus on the region around the CD case (middle
column of Fig. 4). The result without SR (a) was very blurry.
For example, letters on the upper part of the CD case were
not readable. With LB-SR only (c), these letters were still
unreadable, although some textures became clear. This is
because these letters were missing in the training images. In
contrast, the methods with RB-SR ((b) and (d)) produced much
better results, and the letters were much more clearly visible.
These results confirm the effectiveness of RB-SR.

Next, let us look at the region around the illustration of a
lamp (right column of Fig. 4). Similarly to the above, the result
without SR (a) was blurry. With RB-SR only (b), although
the result looked much better, it still contained aliasing. For
example, jaggies were observed at the edges around the lamp
illustration. This indicates that information to reconstruct these
edges was missing in the input images, and thus, RB-SR alone
could not improve the resolution. These artifacts were not
present in the results from the methods with LB-SR ((c) and
(d)). Therefore, LB-SR was also effective for SR-FVS.

In summary, some parts are improved by RB-SR, while
other parts are improved by LB-SR, and our method received
benefits from both of the approaches. Thereby, our method
produced the best results among these four methods.

B. Quantitative evaluation

We also quantitatively evaluated the quality of the synthesis.
We used five multi-view image datasets; the CD cases (used
in the previous experiment), Humvee, Bunny, Bulldozer, and
City datasets. The CD cases, Humvee, Bunny and Bulldozer
datasets were taken from the Stanford light field dataset [11],
and the City dataset was taken from the Multi-View Image
Database of University of Tsukuba, Japan. Configurations and
parameters for each dataset are summarized in Table I. We

generated an HR image view from a virtual viewpoint using
four input images, as described in the previous subsection. The
ground-truth images for the datasets (except for the CD cases
dataset) are shown in Fig. 5.

We calculated the PSNR values against the ground-truth
images to evaluate the image quality. As for the CD cases,
Humvee, Bunny, and Bulldozer datasets, the background re-
gions are entirely black. Around these regions, pixel colors
can be determined as black regardless of what kind of SR is
used, and thus these pixels are not suitable for our evalua-
tion. Therefore, we excluded these regions when calculating
PSNR. More precisely, we segmented objects by hand and
removed the pixels which were more than 10 pixels out of
the object boundaries. As for the City dataset, we excluded
24 pixels from the image boundaries to avoid the effect of
non-overlapping regions between the input images.

The calculated PSNR values are shown in Table II. It is
obvious that (d) RB-SR and LB-SR consistently produced the
best results among the four methods, because this method
comprises the advantages of RB-SR and LB-SR. The improve-
ment of the proposed method over (b) RB-SR and (c) LB-SR
may seem to be slight. This is because most of the details
in the image can be recovered either by RB-SR or by LB-
SR, and thus only the small portion of the image receives the
benefit from the proposed method that combines RB-SR and
LB-SR. This improvement contributes little to the PSNR of
the entire image. Yet, when focusing on the improved parts,
the effectiveness of our method is apparent, as shown in the
previous experiment.

Next, let us compare (b) RB-SR only and (c) LB-SR only.
(b) was better for the CD cases dataset and (c) was better for
the other datasets. These results can be explained by different
characteristics of RB-SR and LB-SR. RB-SR uses information
from input images, thus RB-SR is suitable when input images
contain much information to reconstruct a latent HR image. On
the other hand, LB-SR uses learned features, thereby LB-SR
performs well when an HR image can be well expressed using
these features. Therefore, to generate a high-quality image
for both cases, both RB-SR and LB-SR are necessary. These
results also support the effectiveness of our method.

V. CONCLUSION AND FUTURE WORK

We proposed a novel SR-FVS method that utilizes RB-
SR and LB-SR in a complementary manner. We integrate
ScSR [8] into the existing SR-FVS method [5]. We confirmed
the effectiveness of our method through experiments.

Our primary future work is to speed up computation. In our
unoptimized MATLAB implementation, it took about 5 min-
utes to generate a single image for the CD cases dataset. Most
of the computation time was taken to find sparse representation
for each image patch (optimization of Eq. (4)). Such patch-
wise computations can be executed in parallel using Graphics
Processing Unit (GPU). Actually, some researchers [12], [13]
have demonstrated that objective functions that are similar to
Eq. (4) can be efficiently optimized using GPU. Therefore, we
are now planning to implement our method on GPU.
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Fig. 4. SR-FVS results. (a) without SR, (b) RB-SR only [5], (c) LB-SR only, (d) RB-SR and LB-SR (proposed method), (e) ground truth. Left column: whole
image, middle column: close-up around CD case (indicated by the red rectangle), right column: close-up around illustration of lamp (indicated by the blue
rectangle). Best viewed on screen.



TABLE I
CONFIGURATIONS OF DATASETS. INPUT VIEWPOINTS AND TARGET VIEWPOINT ARE DISPLAYED ACCORDING TO DATABASE NOTATION.

Datasets CD cases Humvee Bunny Bulldozer City
LR image size (pixels) 325× 258 256× 256 384× 288 160× 120
HR image size (pixels) 650× 515 512× 512 768× 576 320× 240

Input viewpoints 30, 32, 72, 74 119, 121, 151, 153 (7, 7), (7, 9), (9, 7), (9, 9) (1, 6), (1, 8), (3, 6), (3, 8)
Target viewpoint 52 136 (8, 8) (2, 7)
μ (in Eq. (3)) 3.0× 10−19 5.0× 10−13 1.0× 10−12 3.0× 10−19 5.0× 10−13

λ (in Eq. (4)) 0.2

Humvee Bunny Bulldozer City

Fig. 5. Datasets used for quantitative evaluation.

TABLE II
PSNR VALUES (dB) OF SYNTHESIZED IMAGES.

Dataset CD cases Humvee Bunny Bulldozer City
(a) without SR 28.30 29.80 35.43 28.36 31.73
(b) RB-SR only 30.00 31.32 38.11 31.02 33.02
(c) LB-SR only 29.75 31.37 39.22 30.58 32.67

(d) RB-SR and LB-SR (proposed) 30.68 32.19 40.41 32.18 33.30
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APPENDIX A: RELIABILITY MAP

To evaluate reliability of the estimated depth at a pixel −→p ,
the SR-FVS method [5] uses the matching cost at the estimated
depth Smin(

−→p ). Smin(
−→p ) takes small values for pixels where

the images are precisely aligned and the estimated depths are
considered to be reliable. In contrast, Smin(

−→p ) takes large
values around occlusion boundaries, for example, where the
estimated depths are likely to be erroneous. On the basis of this
idea, W is constructed as follows. Let w(−→p ) be a diagonal
element of W which correspond to the pixel −→p . w(−→p ) is
defined as

w(−→p ) = max(Smin(
−→p )k, wmin), (6)

where k and wmin are chosen empirically. In our experiments,
we set k to 6 for the CD cases and Bulldozer datasets, and 4
for the other datasets. wmin was set to 10 for all datasets.


