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Abstract—Observing that a typical primary path in Active
Noise Control (ANC) system is sparse, i.e., having a few signifi-
cant coefficients, we propose an adaptive learning which promotes
the sparsity of the concatenation of the adaptive filter and the
secondary path. More precisely, we propose to suppress a time-
varying sum of the data-fidelity term and the weighted ℓ1 norm
of the concatenation by the adaptive Douglas-Rachford splitting
scheme. Numerical examples demonstrate that the proposed
algorithm shows excellent performance of the ANC by exploiting
the sparsity and has robustness against a violation of the sparsity
assumption.

I. INTRODUCTION

Active noise control (ANC) [1], [2], [3], [4], [5] is a

technique to cancel the unwanted noise based on the principle

of superposition. The unwanted noise is filtered through the

primary acoustic path after observed by the reference micro-

phone. The anti-noise signal from the secondary speaker is

generated by the reference noise filtered through an adaptive

filter of which learning algorithm has been studied extensively,

e.g. [6], [7], [8], [9], [10], [11], [12] because it affects directly

the anti-noise performance.

Recently, in the adaptive learning, sparsity of the desired

coefficients of the adaptive filter was utilized to improve

performance of the ANC [13], where the sparsity implies that

only a few coefficients are significant and other coefficients

are zero (or near zero). In [13], the sparsity is presumed by

employing a long adaptive filter length, and is exploited in

the adaptive learning by adopting a convex combination of

the update of the standard adaptive filter and the so-called

proportionate-type update.

In this paper, motivated by observations in [14] and [15]

that typical acoustic paths are sparse in practical situations, we

propose an effective use of an inherent sparsity of the primary

acoustic path to improve performance of the adaptive learning

further. To exploit this sparsity, we adopt a time-varying

sum of the weighted ℓ1-norm of the concatenation of the

adaptive filter and the secondary path, as a sparsity promoting

term, and the data-fidelity term to measure consistency with

observations. To suppress the time-varying sum in an online

way, we derive an adaptive learning algorithm by applying

the adaptive Douglas-Rachford splitting (ADRS) scheme [16].
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21300091,24800022).
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Fig. 1. A model of the feed-forward ANC.

Although the update of the ADRS scheme consists of two

auxiliary convex minimization problems, we derive computa-

tionally efficient closed form solutions for the two auxiliary

problems by reformulating the minimization of the time-

varying sum into a higher dimensional minimization problem

and by using special structure of the concatenation. Moreover,

thanks to the flexibility of the ADRS scheme, we can also

extend the proposed algorithm to exploit simultaneously the

sparsity of both the primary path and the desired adaptive filter

coefficients.

A numerical example for a sparse primary path demon-

strates that the proposed algorithm achieves best performance

of the ANC compared with popular conventional algorithms.

In addition, a numerical example for a dense primary path

shows that the proposed algorithm is robust against a vio-

lation of the sparsity assumption by achieving a comparable

performance for a sparsity-unaware algorithm.

A preliminary version of this paper appeared as a technical

report [17].

II. PRELIMINARIES

A. Feed-Forward Active Noise Control

Let R and N denote the sets of all real numbers and

nonnegative integers, respectively. Denote the set N \ {0} by

N
∗ and transposition of a matrix or a vector by (·)t. Suppose

that we observe the output (ek)k∈N ⊂ R (i.e., ek ∈ R, ∀k ∈ N)

ek = (p∗
k)
txk − (s∗k)

tyk + vk (1)

at the error microphone (See Fig. 1), where k ∈ N denotes

the time index, the reference noise (xk)k∈N ⊂ R (with

xk := [xk, xk−1, . . . , xk−N1+1]
t ∈ RN1) is filtered through

the unknown primary acoustic path p∗
k ∈ RN1 (of tap

length N1 ∈ N∗) between the reference noise source and

the error microphone, the anti-noise signal (yk)k∈N ⊂ R



(with yk := [yk, yk−1, . . . , yk−N2+1]
t ∈ R

N2) is filtered

through the unknown secondary acoustic path s∗k ∈ RN2 (of

tap length N2 ∈ N∗), and (vk)k∈N ⊂ R is the observation

noise at the error microphone. In general, the anti-noise signal

(yk)k∈N ⊂ R is generated by the reference noise (xk)k∈N

filtered by an adaptive filter hk ∈ RN0 :

yk = htkxk.

A major goal of the active noise control is to create a zone of

silence in the vicinity of the error microphone by designing

adaptively hk with the knowledge on (xi, ei)
k
i=0 and initial

estimate h0 ∈ RN0 .

An observation in the case of time-invariant p∗
k and s∗k, i.e.,

(p∗
k, s

∗
k) = (p∗, s∗) for any k ∈ N∗, leads to an underlying

linear model for active noise control. Assume that there exists

a desired filter h∗, which minimizes E[e2k], i.e.,

h∗ ∈ argmin
h∈RN0

E[((p̃t∗ − htS̃∗)x̃k + vk)
2], (2)

where1 x̃k and vk are considered as random variables, and

h
t
S̃∗ implies the concatenation of the adaptive filter and the

secondary path. Then by denoting the resulting error signal as

nk we obtain a standard linear model of h∗:

p̃t∗x̃k = ht∗S̃∗x̃k − vk + nk.

Fortunately, we can eliminate unknown p̃∗ and vk by (1):

ek + st∗yk = ht∗S̃∗x̃k + nk.

Since the complete knowledge of s∗ is unavailable in general,

an initial offline estimation (or an online modeling of s∗)

has been utilized (see e.g. [2], [3], [4], [18], [19]). Hence

we can replace s∗ and S̃∗ by its estimate s ∈ RN2 and its

corresponding Toeplitz matrix S̃, which results a linear model:

ek + styk = ht∗S̃x̃k + nk. (3)

This suggests that we can apply standard adaptive filtering

techniques to the linear model (3). In fact, a direct application

of the least mean squares (LMS) algorithm [8] to the model (3)

reproduces the modified filtered-x LMS (MFxLMS) algorithm

[9].

In this paper, for simplicity, we assume that the primary and

secondary paths are time-invariant, and also that an estimation

s is obtained a priori, while the entire discussion can be

extended to a time-varying case straightforwardly.

1x̃k := [xk, xk−1, . . . , xk−(N0+N2)]
t ∈ RÑ , Ñ := N0 + N2 − 1,

p̃∗ ∈ RÑ and s̃∗ ∈ RÑ are impulse response of which length are extended
by zero padding, i.e.,

p̃∗ := [p
(0)
∗ , p

(1)
∗ , . . . , p

(N1−1)
∗ , 0, 0, . . . , 0]t,

s̃∗ := [s
(0)
∗ , s

(1)
∗ , . . . , s

(N2−1)
∗ , 0, 0, . . . , 0]t,

and S̃∗ ∈ RN0×Ñ is a Toeplitz matrix of which the first row is s̃∗ and the
first column is (s(0), 0, . . . , 0)t ∈ RN0 in such a way that the multiplication

S̃∗x̃k represents the convolution of s̃∗ and x̃k .

B. Adaptive Douglas-Rachford Splitting Scheme

Define the inner product 〈x,y〉 := xty and its induced

norm ‖x‖ :=
√

〈x,x〉 for all x,y ∈ RN . We consider the

situation where the time-varying cost function Θk : R
N →

(−∞,∞], k ∈ N, can be decomposed into the sum of two

functions, i.e.,

Θk(h) := ϕk(h) + ψk(h), (4)

where ψk : R
N → (−∞,∞] and ϕk : R

N → (−∞,∞] are

proper lower semicontinuous convex functions (see e.g. [20]).

To suppress the time-varying function Θk in an online way,

the adaptive Douglas-Rachford splitting (ADRS) scheme [16]

was proposed2.

Scheme 1: (Adaptive Douglas-Rachford Splitting

Scheme) For an arbitrary initial vector g0 ∈ RN and any

sequences γk ∈ (0,∞), tk ∈ (0, 2) (k ∈ N), generate a

sequence hk ∈ RN (k ∈ N) by

hk := proxγkψk
(gk) (5)

with

gk+1 := gk + tk
[

proxγkϕk
(2hk − gk)− hk

]

, (6)

where, in general, a mapping proxγf : R
N → RN defined by

proxγf(x) :=argmin
z∈RN

(

γf(z) +
1

2
‖x− z‖2

)

, ∀x ∈ R
N

for γ > 0 and a proper lower semicontinuous convex function

f , is called the proximity operator [21] of f of index γ > 0.

Fact 1 (Properties of Scheme 1): Suppose that the func-

tions ϕk and ψk satisfy the qualification condition3 for every

k ∈ N.

Then the sequences (hk)k∈N and (gk)k∈N generated by

Algorithm 1 satisfy the following

(i)

{
∥

∥

∥
hk+1 − proxγk+1ψk+1

(g∗
k+1)

∥

∥

∥
≤ ‖gk+1 − g∗

k+1‖

‖gk+1 − g∗
k‖ ≤ ‖gk − g∗

k‖

for all g∗
k+i ∈

(

proxγk+iψk+i

)−1

(Ω∗
k+i) with Ω∗

k+i :=

argmin
h∈RN

Θk+i(h) (i = 0, 1).

(ii) Suppose that there exists a N ′ ∈ N such that Ω∗ :=
∩i≥N ′Ω∗

i 6= ∅, ψi = ψ, and γi = γ for all i ≥ N ′.

Then we have
∥

∥hk+1 − proxγψ(g∗)
∥

∥ ≤ ‖gk+1 − g∗‖ ≤ ‖gk − g∗‖

for all k ≥ N ′ and all g∗ ∈
(

proxγψ
)−1

(Ω∗).

2Note that the original ADRS scheme has an adaptively defined matrix
Qk which improves convergence performance significantly. However, for
simplicity, we consider the case of Qk as the identity matrix in this paper.

3Qualification condition [22]: The set
⋃

λ>0

{λx | x ∈ dom(ϕk)− dom(ψk)}

is a subspace of RN , where

dom(ϕk)− dom(ψk)

:={x1 − x2 ∈ R
N | ∀(x1,x2) ∈ dom(ϕk)× dom(ψk)}.



(iii) Suppose that ϕk = ϕ, ψk = ψ (i.e., Ω∗
k = Ω∗) and

γk = γ for all k ∈ N. Then by using (tk)k∈N satisfying
∑

k∈N
tk(2− tk) = ∞, we have

∥

∥hk − proxγψ(g∗)
∥

∥ ≤ ‖gk − g∗‖
k→∞
−→ 0

for some g∗ ∈
(

proxγψ
)−1

(Ω∗).

Note that Fact 1(ii) implies a monotone decrease of a sequence

of upper bounds (‖gk − g∗‖)k∈N of the distance4 d(hk,Ω∗)
without assuming ϕi = ϕ for any i ≥ N ′. This property is

useful for adaptive filtering applications.

III. PROPOSED METHOD

We propose a sparsity-aware adaptive learning algorithm of

h∗ in the frame of the ADRS scheme, based on the fact that

the concatenation htS̃ is desired to approximate the primary

acoustic path (see (2)) and to be sparse. More precisely, we

suppress the time-varying sum of the data-fidelity term and a

sparsity promoting term of the concatenation

min
h∈RN0

fk(〈S̃x̃k,h〉) + λk‖S̃
t
h‖wk

1 (7)

with a vector wk := (w
(k)
1 , w

(k)
2 , . . . , w

(k)

Ñ
)t ∈ RÑ of

nonnegative coefficients for weighting the concatenation,

‖ · ‖wk

1 : RÑ → R, z̃ = (z̃1, z̃2, . . . , z̃Ñ ) 7→
Ñ
∑

i=1

w
(k)
i |z̃i|,

fk : R → R, r 7→ (ek + styk − r)2,

and a regularization parameter λk ≥ 0. Since the proximity

operator of the latter term in (7) is hard to compute directly, we

introduce an equivalent problem of (7) through the following

two steps: (i) embedding the Toeplitz matrix S̃
t

into a circulant

matrix C(S̃
t
) (of which leading submatrix is S̃

t
[23]), i.e.,

S̃
t
h = ΠÑC(S̃

t
)ĥ

for any (h, ĥ) ∈ RN0 × C0 such that

h = Πĥ, (8)

where Π := [IN0
O] ∈ RN0×N̂ , ΠÑ := [IÑ O] ∈ RÑ×N̂

with5 N̂ := Ñ + N0 − 1, and C0 := {ĥ ∈ RN̂ | ĥN0+i =
0, ∀i ∈ {1, 2, . . . , N̂−N0}}, and (ii) introducing an auxiliary

variable ξ̂ = C(S̃
t
)ĥ ∈ RN̂ . That is, we obtain an equivalent

problem of (7)

min
(ĥ,ξ̂)∈RN̂×RN̂

fk(〈Π
tS̃x̃k, ĥ〉) + λk‖ΠÑ ξ̂‖wk

1

+ ιC0
(ĥ) + ιC1

(ĥ, ξ̂) (9)

with6 a closed convex set C1 := {(ĥ, ξ̂) ∈ RN̂ × RN̂ | ξ̂ =

C(S̃
t
)ĥ}, of which any solution ĥ∗ recovers a solution h∗ of

4The distance between an arbitrary point x ∈ RN and a closed convex set
C ⊂ RN is defined by d(x, C) := miny∈C ‖x− y‖.

5For any N ∈ N, IN ∈ RN×N implies the identity matrix.
6For a given nonempty closed convex set C ⊂ RN , the indicator function

ιC : RN → (−∞,∞] is defined by ιC(x) := 0 if x ∈ C, ιC(x) := ∞
otherwise.

problem (7) by equation (8). By applying Scheme 1 to problem

(9) with

ϕk(ĥ, ξ̂) = fk(〈Π
tS̃x̃k, ĥ〉) + λk‖ΠÑ ξ̂‖wk

1 + ιC0
(ĥ),

ψk(ĥ, ξ̂) = ιC1
(ĥ, ξ̂),

we propose an adaptive learning of h∗ (see the following

remark for computation of the proximity operators and Al-

gorithm 1 for the resulting algorithm).

[Remark 1](Efficient Computation of Proximity Operator

of ϕk and ψk) (a) For the function ϕk, we have

proxγkϕk
(ĥ, ξ̂)

=

(

Πtproxγkfk(〈S̃x̃k,·〉)
(Πĥ), proxγkλk‖ΠÑ

·‖
w

k

1
(ξ̂)

)

(10)

with7

proxγkfk(〈S̃x̃k,·〉)
(h) = Rk

(

h+ 2γk(ek + styk)S̃x̃k

)

,

Rk := IN0
−
(

(2γk)
−1 + ‖S̃x̃k‖

2
)−1

S̃x̃k(S̃x̃k)
t ∈ R

N0×N0 ,

proxγkλk‖ΠÑ
·‖

w
k

1
(ξ̂) (11)

=

Ñ
∑

i=1

sgn
(

ξ̂i
)

max
{

|ξ̂i| − γkλkw
(k)
i , 0

}

ei +

N̂
∑

i=Ñ+1

ξ̂iei

for any ĥ, ξ̂ ∈ RN̂ and any h ∈ R
N0 , where (11) is adaptively

weighted soft-thresholding proposed in [24] (as an extension

of [25]).

(b) For the function ψk, we utilize the following three facts: (i)

the circulant matrix C(S̃
t
) can be diagonalized by the Discrete

Fourier Transform (DFT)8 U t ∈ CN̂×N̂ [23], i.e.,

C(S̃
t
) = UΣU t

with9 Σ = diag(U tŝ) and ŝ := (st, 0, . . . , 0)t ∈ RN̂ ;

(ii) by introducing φk := ψk ◦Z with

Z :=

(

U O

O U

)

∈ C
2N̂×2N̂ ,

we have10 proxγψk
◦Z = Z ◦ proxCγφk

;

7The signum function sgn(·) is defined by sgn(x) := x/|x| if x 6=

0, sgn(x) := 0 otherwise, for all x ∈ R, {ei}N̂i=1 is the standard orthonor-

mal basis of RN̂ (i.e., ei := [0, . . . , 0, 1, 0, . . . , 0]t and i ∈ {1, 2, . . . , N̂},
with the value 1 assigned to its ith position).

8CN̂ implies the N̂ -dimensional complex space with inner product

〈·, ·〉
CN̂

: CN̂ ×CN̂ → C, (x,y) 7→ x̄ty and its induced norm ‖ · ‖
CN̂

:=
√

〈·, ·〉
CN̂

, where x̄ implies the complex conjugate of x. For a given vector

x ∈ CN̂ , Utx represents the DFT of x and Ux the inverse of DFT (IDFT).
9For a vector x, diag(x) denotes the diagonal matrix whose entry is x.
10By adopting an inner product 〈(x1,x2), (y1,y2)〉CN̂×CN̂

:=

〈x1,y1〉CN̂
+ 〈x2,y2〉CN̂

(∀(x1,x2), (y1,y2) ∈ CN̂ × CN̂ ) and its

induced norm ‖·‖
CN̂×CN̂

, for a proper lower semicontinuous convex function

f : CN̂ × CN̂ → (−∞,∞], define proxC
f
: CN̂ × CN̂ → CN̂ × CN̂ ,

proxCf (w) := argmin
z∈CN̂×CN̂

(

f(z) +
1

2
‖z −w‖2

CN̂×CN̂

)

(see for an extended proximity operator in the complex space [26]).



Algorithm 1 Proposed Sparsity-Aware Adaptive Learning

Require: (ĝ0, ζ̂0) ∈ RN̂ × RN̂ , (tk)k∈N ⊂ (0, 2), (γk)k∈N ∈
(0,∞), k = 0, σ := DFT(ŝ),

τ := diag
(

(|σ1|
2 + 1)−1, . . . , (|σ

N̂
|2 + 1)−1

)

.

Repeat the following step:

(Compute proxγkψk
by (12))

Q
ĝ
c
,ζ̂

c

= τdiag
(

DFT(ζ̂k)− diag(σ)DFT(ĝk)
)

ĥk = ĝk + IDFT(Q
ĝ
c
,ζ̂

c

σ̄)

ξ̂k = ζ̂k − IDFT(Q
ĝ
c
,ζ̂

c

1)

(Compute proxγkϕk
by (10))

Rk = IN0
−
(

(2γk)
−1 + ‖S̃x̃k‖

2
)−1

S̃x̃k(S̃x̃k)
t

µ̂k = ΠtRk

(

Π(2ĥk − ĝk) + 2γk(ek + styk)S̃x̃k

)

(13)

χ̂k = 2ξ̂k − ζ̂k

ν̂k =

Ñ
∑

i=1

sgn
(

χ̂
(k)
i

)

max
{

|χ̂
(k)
i | − γkλkw

(k)
i , 0

}

ei

+
N̂
∑

i=Ñ+1

χ̂
(k)
i ei (14)

(Update (ĝk+1, ζ̂k+1) by (6))

ĝk+1 = ĝk + tk(µ̂k − ĥk)

ζ̂k+1 = ζ̂k + tk(ν̂k − ξ̂k)

k → k + 1

(iii) proxCγφk
: CN̂ × CN̂ → CN̂ × CN̂ ,

proxCγφk
(ĥc, ξ̂c) =

(

ĥc +Q(ĥc, ξ̂c)σ̄, ξ̂c −Q(ĥc, ξ̂c)1
)

,

where σ := U tŝ ∈ CN̂ , σ̄ is the complex conjugate of σ,

1 := (1, 1, . . . , 1)t ∈ R
N̂ ,

τ := diag
(

(|σ1|
2 + 1)−1, . . . , (|σ

N̂
|2 + 1)−1

)

∈ R
N̂×N̂ ,

Q : C
N̂ × C

N̂ → C
N̂×N̂ , (ĥc, ξ̂c) 7→ τdiag

(

ξ̂c −Σĥc

)

.

These facts lead to a closed form expression of proxγkψk
:

proxγkψk
(ĥ, ξ̂) =

(

ĥ+UQ(U tĥ,U tξ̂)σ̄,

ξ̂ −UQ(U tĥ,U tξ̂)1
)

. (12)

[Remark 2](Extension to a simultaneous use11 of the spar-

sity of p∗ and h∗) By adding a weighted ℓ1-norm of the

11Note that the sparsity of the concatenation does not imply that of h∗.
In fact, we can theoretically generate a pair of a sparse concatenation and a
dense h∗. Empirically, the concatenation is sparse if p∗ is sparse, and h∗ is
sparse if p∗ is similar to s∗.

TABLE I
PARAMETER SETTINGS.

Size of p∗ N1 100
Size of s∗ N2 20
Size of h∗ N0 100
Reference noise (xk)k≥0 (16)
Observation noise (vk)k≥0 (17)

Stepsize of FxLMS 4.0× 10−5

Stepsize of MFxLMS 2.5× 10−2

Stepsize of Sun’s Algorithm 5.0× 10−5

Stepsize of Akhtar’s Algorithm 5.0× 10−5

Parameters of Proposed 1. (λk , tk, γk) (0.3, 1.0, 5.0× 10−5)
Parameters of Proposed 2. (λk , tk, γk) (0.0, 1.0, 5.0× 10−5)
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Fig. 2. Primary path of sparse (top left)/dense (bottom left) and secondary
path (right). The secondary path is same in the both cases. These paths are
generated artificially.

filter h with its weight vector w′
k ∈ RN0 to the cost function

in problem (7), we have

min
h∈RN0

fk(〈S̃x̃k,h〉) + λk‖S̃
t
h‖wk

1 + λ′k‖h‖
w′

k

1 ,

and its equivalent form

min
(ĥ,ξ̂)∈RN̂×RN̂

fk(〈Π
tS̃x̃k, ĥ〉) + λk‖ΠÑ ξ̂‖wk

1 (15)

+ ιC0
(ĥ) + ιC1

(ĥ, ξ̂) + λ′k‖Πĥ‖
w′

k

1 .

Then a direct application of Scheme 1 to problem (15)

produces an algorithm same as the proposed algorithm except

the update (13) of ĥk, which is replaced by

µ̂k = prox
γkλ

′

k
‖Π·‖

w
′

k

1

[

ΠtRk

(

Π(2ĥk − ĝk)

+ 2γ(ek + styk)S̃x̃k

)]

.

IV. NUMERICAL EXAMPLES

We examine the performance of the proposed sparsity-aware

adaptive learning algorithm. To clarify effect of the sparsity,

we adopt a primary path of sparse or dense (see Fig. 2), as

well as employ the exact secondary path as its estimate, i.e.,

s = s∗. Since the reference noise signal (xk)k≥0 and the

observation noise (vk)k≥0 are impulsive in practical situations,

these noises are generated from random variables xIk and vIk
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Fig. 3. A comparison of noise residual averaged over 300 trials for the sparse
primary path. Although FxLMS and Sun’s algorithm are unstable against the
impulsive reference noise, the others are stable. Proposed 1 achieves the best
performance in all the algorithms. Since Proposed 1 differs from Proposed 2
only the parameter λk of the sparsity promoting term in (7), this behavior
shows that our use of the sparsity improves the performance of the ANC.

with α-stable distribution12 [27] of α = 1.63:

xk = xGk + xIk, (16)

vk = vGk + 0.1× vIk, (17)

where xGk and vGk are drawn from a zero mean white Gaussian

distribution with variance 1. We apply the filtered-x least

mean squares (FxLMS) [6], the modified filtered-x least mean

squares (MFxLMS) [9], Sun’s algorithm [11], Akhtar’s Algo-

rithm [12]13, Algorithm 1 (Proposed 1), and Algorithm 1 of

λk = 0 (Proposed 2) which is unaware of the sparsity. Table I

shows parameter settings of the model and the algorithms. The

stepsizes of conventional algorithms are chosen in a way that

12The α-stable distribution was utilized to generate impulsive noise se-
quences, e.g., in [11], [12], because a small α (∈ (0, 2]) implies a heavy
tailed distribution.

13Sun’s algorithm

hk+1 = hk + µekS̃x̃′
k ,

utilizes a modified reference signal x̃′
k

x′k =











0 xk < c1
xk xk ∈ [c1, c2]

0 xk > c2

with user-defined parameters c1, c2 ∈ R : c1 < c2, i.e., significant values of
x̃k are removed. Akhtar’s algorithm

hk+1 = hk + µe′′k S̃x̃′′
k ,

also modifies significant reference signals and error signals as x′′
k

=
P[c1,c2](xk) and e′′

k
= P[c1,c2](ek) with P[c1,c2] : R → R,

P[c1,c2](r) =











c1 r < c1
r r ∈ [c1, c2]

c2 r > c2.
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Fig. 4. A comparison of noise residual averaged over 300 trials for the dense
primary path. Proposed 1 achieves a comparable performance for Proposed
2, which shows a robustness of Proposed 1 against a violation of the sparsity
assumption.

the suppression speed are same in early iterations. In Sun’s

algorithm and Akhtar’s algorithm, the paramters c1, c2 are

selected as 0.01 and 99.99 percentile of the reference noise.

We adopt as a criterion the noise residual defined by a power

ratio of the uncontrolled noise dk := pt∗xk and the controlled

noise at the error microphone, i.e., e′k = dk − st∗yk:

(NR) = 10 log10

(

Ae′
k

Adk

)

,

where a low-pass filter is utilized to clarify its behavior, i.e.,

Ae′
k
:= ηAe′

k−1
+ (1− η)(e′k)

2,

Adk := ηAdk−1
+ (1− η)d2k,

with η = 0.99.

As an example, we employ the design of wk introduced

in [24] to assign the small threshold γkλkw
(k)
i in (14) for

significant coefficients (see for other designs e.g. [28]):

w
(k)
i :=ν(χ̂

(k)
i ),

ν : R → (0,∞), ν(x) :=

{

δ, if |x| > τ,

1, otherwise,

for any i ∈ {1, 2, . . . , Ñ}, where δ := 10−9 and τ = 0.02.

Fig. 3 shows a comparison of the noise residual for the

sparse primary path. Although FxLMS and Sun’s algorithm

are unstable against the impulsive reference noise, other al-

gorithms succeed to control the noise. Proposed 1 achieves

the best performance in all the algorithms and improves

approximately 4dB compared to Proposed 2, which shows

that the proposed sparsity promoting term of the concatenation

improves the performance.

Fig. 4 illustrates that Proposed 1 is robust against a violation

of the sparsity assumption on the primary path because it

achieves a comparable performance for Proposed 2.



V. CONCLUDING REMARK

This paper has proposed an efficient use of the sparsity

of the primary path for the active noise control (ANC) in

the frame of the adaptive Douglas-Rachford splitting (ADRS)

scheme. Although our discussion in this paper assumes for

a simplicity a time-invariant primary/secondary path, we can

extend straightforwardly for a time-varying case by using

online secondary path modeling techniques (see e.g. [18],

[19]).

Future work includes (i) applications, (ii) complexity reduc-

tions, and (iii) performance improvements. (i) Exploiting the

sparsity of the concatenation can be applicable in various noise

control situations, e.g. multichannel active noise control and

narrow band active noise control (see for recent developments

[5], [29]). (ii) Though our update of the proposed algorithm

is efficient, further complexity reduction is necessary because

the discrete Fourier transform has been required at each

iteration, which demands computational cost compared with

the FxLMS-type algorithms. To reduce the computational cost

of the proposed algorithm, the so-called homotopy algorithm

for the generalized LARS [30] will be effective if the concate-

nation is sparse. (iii) For further performance improvements of

the proposed algorithm, we can utilize the so-called variable

metric technique (e.g., in the original ADRS scheme [16])

as well as can adopt multiple data-fidelity terms defined using

observations at previous time (see e.g. [24], [31], [32]). In such

a situation, the adaptive primal-dual splitting scheme [33],

which utilizes the gradient descent update for the multiple

smooth data-fidelity terms, will be useful to avoid use of

proximity operators requiring huge computational cost in the

ADRS. To robustify the performance of the ANC against

unknown noise nk in the underlying linear model (3), we

can adopt in the ADRS a special design of the data-fidelity

term introduced in [34]. Such extensions will be discussed

elsewhere.
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