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Abstract—Observing that a typical primary path in Active
Noise Control (ANC) system is sparse, i.e., having a few signifi-
cant coefficients, we propose an adaptive learning which promotes
the sparsity of the concatenation of the adaptive filter and the
secondary path. More precisely, we propose to suppress a time-
varying sum of the data-fidelity term and the weighted ¢; norm
of the concatenation by the adaptive Douglas-Rachford splitting
scheme. Numerical examples demonstrate that the proposed
algorithm shows excellent performance of the ANC by exploiting
the sparsity and has robustness against a violation of the sparsity
assumption.

I. INTRODUCTION

Active noise control (ANC) [1], [2], [3], [4], [5] is a
technique to cancel the unwanted noise based on the principle
of superposition. The unwanted noise is filtered through the
primary acoustic path after observed by the reference micro-
phone. The anti-noise signal from the secondary speaker is
generated by the reference noise filtered through an adaptive
filter of which learning algorithm has been studied extensively,
e.g. [6], [71, [8], [9], [10], [11], [12] because it affects directly
the anti-noise performance.

Recently, in the adaptive learning, sparsity of the desired
coefficients of the adaptive filter was utilized to improve
performance of the ANC [13], where the sparsity implies that
only a few coefficients are significant and other coefficients
are zero (or near zero). In [13], the sparsity is presumed by
employing a long adaptive filter length, and is exploited in
the adaptive learning by adopting a convex combination of
the update of the standard adaptive filter and the so-called
proportionate-type update.

In this paper, motivated by observations in [14] and [15]
that typical acoustic paths are sparse in practical situations, we
propose an effective use of an inherent sparsity of the primary
acoustic path to improve performance of the adaptive learning
further. To exploit this sparsity, we adopt a time-varying
sum of the weighted ¢;-norm of the concatenation of the
adaptive filter and the secondary path, as a sparsity promoting
term, and the data-fidelity term to measure consistency with
observations. To suppress the time-varying sum in an online
way, we derive an adaptive learning algorithm by applying
the adaptive Douglas-Rachford splitting (ADRS) scheme [16].
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Fig. 1. A model of the feed-forward ANC.

Although the update of the ADRS scheme consists of two
auxiliary convex minimization problems, we derive computa-
tionally efficient closed form solutions for the two auxiliary
problems by reformulating the minimization of the time-
varying sum into a higher dimensional minimization problem
and by using special structure of the concatenation. Moreover,
thanks to the flexibility of the ADRS scheme, we can also
extend the proposed algorithm to exploit simultaneously the
sparsity of both the primary path and the desired adaptive filter
coefficients.

A numerical example for a sparse primary path demon-
strates that the proposed algorithm achieves best performance
of the ANC compared with popular conventional algorithms.
In addition, a numerical example for a dense primary path
shows that the proposed algorithm is robust against a vio-
lation of the sparsity assumption by achieving a comparable
performance for a sparsity-unaware algorithm.

A preliminary version of this paper appeared as a technical
report [17].

II. PRELIMINARIES
A. Feed-Forward Active Noise Control

Let R and N denote the sets of all real numbers and
nonnegative integers, respectively. Denote the set N\ {0} by
N* and transposition of a matrix or a vector by (-)*. Suppose
that we observe the output (e;)reny C R (ie., e € R, Vk € N)

e = (i) Tk — (s5)'yp + vk (1)

at the error microphone (See Fig. 1), where k£ € N denotes
the time index, the reference noise (xp)ren C R (with
Tk = [Tk, Th—1,.-., Th_n,+1)" € RM) is filtered through
the unknown primary acoustic path p; € RM (of tap
length N; € N*) between the reference noise source and
the error microphone, the anti-noise signal (yx)ren C R



(with ¥, = [Uk, Yk—1,---> Yb—No+1]t € RY2) is filtered
through the unknown secondary acoustic path s} € R™N2 (of
tap length No € N*), and (vg)ken C R is the observation
noise at the error microphone. In general, the anti-noise signal
(yr)ken C R is generated by the reference noise (zx)ren
filtered by an adaptive filter h), € R™o:

Yk = hi,:ck.

A major goal of the active noise control is to create a zone of
silence in the vicinity of the error microphone by designing
adaptively hj, with the knowledge on (z;,e;)¥_, and initial
estimate hy € RNo.

An observation in the case of time-invariant p;, and s}, i.e.,
(Prs8%) = (P, ss) for any k € N*, leads to an underlying
linear model for active noise control. Assume that there exists
a desired filter h., which minimizes E[e?], i.e.,

h. € argmin E[((p. — h'S.)&; + vi)?], 2)
heRNo

where! &; and vj, are considered as random variables, and
h'S, implies the concatenation of the adaptive filter and the
secondary path. Then by denoting the resulting error signal as
nj we obtain a standard linear model of h.:

f)i:ik = hig*:ﬁk — Vg + Nng.
Fortunately, we can eliminate unknown p, and v by (1):
er + Siyk = hiS’*ik + ng.

Since the complete knowledge of s, is unavailable in general,
an initial offline estimation (or an online modeling of s.)
has been utilized (see e.g. [2], [3], [4], [18], [19]). Hence
we can replace s, and S, by its estimate s € R™? and its
corresponding Toeplitz matrix S, which results a linear model:

er + sty,c = hiS’:ﬁk + ng. 3)

This suggests that we can apply standard adaptive filtering
techniques to the linear model (3). In fact, a direct application
of the least mean squares (LMS) algorithm [8] to the model (3)
reproduces the modified filtered-x LMS (MFxLMS) algorithm
[9].

In this paper, for simplicity, we assume that the primary and
secondary paths are time-invariant, and also that an estimation
s is obtained a priori, while the entire discussion can be
extended to a time-varying case straightforwardly.

! s Th—(No+No)l" € RN, N := No + N2 — 1,

P, € RN and 3. € RV are impulse response of which length are extended
by zero padding, i.e.,

Ty = [z, Th—1, -

p. =70, MY 00, 0],

Sy 1= [sio)7 sil), R siNz_l),O,O, ..., 0],
and 8, € RNoxN jg 5 Toeplitz matrix of which the first row is s and the

first column is (s(o) ,0,...,0)t € R0 in such a way that the multiplication
S« &y represents the convolution of §4 and x.

B. Adaptive Douglas-Rachford Splitting Scheme

Define the inner product (x,y) := x'y and its induced
norm ||z := \/{(z,z) for all z,y € RY. We consider the
situation where the time-varying cost function Oy : RY —
(=00, ], k € N, can be decomposed into the sum of two
functions, i.e.,

Or(h) := @r(h) + Yr(h), )

where 9y, : RY — (—o00,00] and ¢ : RY — (—o0,00] are
proper lower semicontinuous convex functions (see e.g. [20]).
To suppress the time-varying function @y, in an online way,
the adaptive Douglas-Rachford splitting (ADRS) scheme [16]
was proposed?.

Scheme 1: (Adaptive Douglas-Rachford Splitting
Scheme) For an arbitrary initial vector gg € R and any
sequences v, € (0,00), tx € (0,2) (k € N), generate a
sequence hy, € RV (k € N) by

hy, := prox, . (gk) 5)
with
8ht1 = 8k + t [prox,, o, (2hy —gr) —hg],  (6)

where, in general, a mapping prox, ;: RY — R defined by

prox, ;(z):=arg min ('yf(z) + %Hw - z||2) V€ RY
z€RN
for v > 0 and a proper lower semicontinuous convex function
f, is called the proximity operator [21] of f of index v > 0.
Fact 1 (Properties of Scheme 1): Suppose that the func-
tions ¢y, and 1)y, satisfy the qualification condition® for every
keN.
Then the sequences (hy)ren and (gk)ren generated by

Algorithm 1 satisfy the following
(1){ Hhk’+1 - prOX7k+1¢k+1 (g;;-i—l)H < Hgk’+1 - g;;-i—l”
lgr+1 — il < llge — &l -
for all g}, , € (prOXWHWH) () with @, ==
argmin ©y,(h) (i =0,1).

heRN
(ii) Suppose that there exists a N’ € N such that Q, :=

Ni>n' ¥ # &, ; = ¢, and v = v for all ¢+ > N'.
Then we have

[r1 — prox,,(ga) || < llgrr1 — gl < llgr — gl
forall k> N’ and all g, € (plroij)_1 ().

2Note that the original ADRS scheme has an adaptively defined matrix
Q;. which improves convergence performance significantly. However, for
simplicity, we consider the case of @, as the identity matrix in this paper.
3Qualification condition [22]: The set

(J {2x | x € dom(py) — dom(vx)}

A>0
is a subspace of RYN | where

dom(ipy,) — dom (i)
={x1 —x2 € RN | V(x1,%2) € dom(pg) X dom(e)g)}.



(iii) Suppose that ¢, = ¢, ¥ = ¥ (i.e., Qf = €.) and
v =y for all k € N. Then by using (tx)ren satisfying
> pen tk(2 — tx) = 0o, we have

[y, — prox. , (g.)]| < lgx — g/ =3 0

€ (proxw})_1 ().

Note that Fact 1(ii) implies a monotone decrease of a sequence
of upper bounds (||gx — g«|)ren of the distance* d(hy, €2.)
without assuming ; = ¢ for any ¢ > N’. This property is
useful for adaptive filtering applications.

for some g,

III. PROPOSED METHOD

We propose a sparsity-aware adaptive learning algorithm of
h. in the frame of the ADRS scheme, based on the fact that
the concatenation h'S' is desired to approximate the primary
acoustic path (see (2)) and to be sparse. More precisely, we
suppress the time-varying sum of the data-fidelity term and a
sparsity promoting term of the concatenation

min  fi((Saw, b)) + Al 'R (7)
heRN
with a vector wy, = (w!" w® wg\f;))t € RN of
nonnegative coefficients for weighting the concatenation,

N
~ k)|~
=1

geeey

RN .
R %R,Z—(Zl,z%...,

- 117
i R=>Rr— (ek—i—styk —r)2,

and a regularization parameter A; > 0. Since the proximity
operator of the latter term in (7) is hard to compute directly, we
introduce an equivalent problem of (7) through the following
two steps: (1) embedding the Toeplitz matrix S mto a circulant
matrix C(S t) (of which leading submatrix is S [23)), i.e.,

S'h= HNC(S )h
for any (h,h) € RNo x Cy such that
h = IIh, (8)
where IT := [Ty, O] € RN*N Mg := [I g O] € RNV
with® N —N+N0—1 and Cp := {h € RY | hy,1i =

0, Vi € {1 2,...,N— No}}, and (ii) introducing an auxiliary

variable & = C( t
problem of (7)

)h € RV . That is, we obtain an equivalent

min

Comin fiu((IT°S&k, b)) + N[ TGl
(h,€)ERN xRN

+ Lcy (ﬁ) + iy (ﬁv é) )

w1th6 a closed convex set Cy = {(h,&) € RN x RV | £ =
c(s )h} of which any solution A, recovers a solution k., of

4The distance between an arbitrary point x € R™ and a closed convex set
C C RY is defined by d(x,C) := minyec ||x — |-

SFor any N € N, Iy € RNXN implies the identity matrix.

SFor a given nonempty closed convex set C' C R¥, the indicator function
to: RY — (—c0,00] is defined by to(x) := 0 if ¢ € C, to(x) := oo
otherwise.

problem (7) by equation (8). By applying Scheme 1 to problem
(9) with

pr(h, &) = fi(TI'Say, b)) + AT 5 €11
wk(il’aé) =l (h’ag)a

we propose an adaptive learning of h,. (see the following
remark for computation of the proximity operators and Al-
gorithm 1 for the resulting algorithm).

[Remark 1](Efficient Computation of Proximity Operator
of ¢ and 1) (a) For the function ¢, we have

+ Lo (il),

pI'OX,YM@k (h‘a €)

= (Htprox’mfk(@ikw))(Hh)’prOX%/\HHN'G% (6)) (10)

~ -1 _ ~
— (@) +1182]?)  S@e(S3i) € RN,
1D

proka/\klln e &)

H'Mz

51 maX{|§z|7’yk)\kw() 0}6 + Z gzez

i= N+1

for any ﬁ,é € RY and any h € R™0, where (11) is adaptively
weighted soft-thresholding proposed in [24] (as an extension
of [25]).

(b) For the function 1, we utilize the following three facts: (i)
the circulant matrix C (S' t) can be diagonalized by the Discrete
Fourier Transform (DFT)® U? € CV*V [23], i.e.,

¢(8") =Uusut
with® 3 = diag(U'3) and 3 := (s*,0,...,0)" € RV,
(i1) by introducing ¢, := vy o Z with
_ (U O 2N x2N
Z = (0 U) eC ,
we have!? prox.,, 0 Z =2Zo proxsm;

"The signum function sgn(-) is defined by sgn(z) :=
0, sgn(z) := 0 otherwise, for all z € R, {e;}}_

x/|x| if x #

L, is the standard orthonor-

mal basis of RV (ie., e; := [0,...,0,1,0,...,0]t and i € {1,2,..., N},
with the value 1 assigned to its ith position).
scN implies the N-dimensional complex space with inner product

(o dem eV xcN — C, (x,y) — &'y and its induced norm || - lex =

VIO CN> where & implies the complex conjugate of a. For a given vector

x € cv , Uta represents the DFT of « and U the inverse of DFT (IDFT).
For a vector x, diag(x) denotes the diagonal matrix whose entry is a.
0By adopting an inner product {((z1,x2),(y1,¥s))

cN xcWN
<m17y1>(cN + <:l':27 y2><cN (v(mlva) (y17 y2) € (CN X CN) and its
induced norm ||- || for a proper lower semicontinuous convex function

cN x ¢V,

R ClleN N K R
F:CN xCN — (—o0, 00|, define prox(JCc: CN xcN -

1
(720 + = = il o)

(see for an extended proximity operator in the complex space [26]).

arg min

(o}
prox;(w) = min.
zeCN xCN



Algorithm 1 Proposed Sparsity-Aware Adaptive Learning

Require: (gg,Co) € RY x RV, (t)ren € (0,2), (11)ren €
(0,00), k=0, o := DFT(38),

7:=diag (o1 + 1) ..., (JogP+1)71).

Repeat the following step:
(Compute ProX., by (12))

Q, ¢ = rdiag (DFT(&k) - diag(a)DFT(gk))
hi = g, +IDFT(Q, ; &)
& = C, —IDFT(Q, ¢ 1)
(Compute prox,, ., by (10))
~ -1 _ -
Ry = Iy — ((20) 7 + 1524]?)  S2u(520)'

ﬂk = HtRk (H(Q’:Lk — gk) + 2716(619 + styk)S’i'k)

(13)
Xk = 2ék - ék
N
Uy = ngn(fcz(-k)) max{|;ggk)| _ ,yk)\sz(k), 0} e,
im1
N
+ > e (14)
i=N+1

(Update (gk+1,ék+1) by (6))
91 = Gi +tr(fy — hy)
Ck+1 = Ck +tk(’>k _gk)
k—k+1

(iii) proxC,, : CV x C¥ — ¥ x CV,

prOXS¢k (’;’07 é(/) = (ﬁ(l + Q(’;’C? éc)a-? éc - Q(’;’C) E(/)l) ?

where o :=U"'5 € (CN, & is the complex conjugate of o,
1:=(1,1,...,1) e RV,

ri=diag (Jon> + 17, (log P+ 1)71) e RVXV,
Q: CVxC¥ o CVN (B, ¢,) > Tdiag (éc - 2ﬁc) .

These facts lead to a closed form expression of prox,, ,, :

ProXey, oy, (ﬁv é) = (f" + UQ(Ut}qu Uté)&a
E-UQU'R,U'EN). (12)

[Remark 2](Extension to a simultaneous use'' of the spar-
sity of p, and h,) By adding a weighted ¢;-norm of the

"Note that the sparsity of the concatenation does not imply that of ..
In fact, we can theoretically generate a pair of a sparse concatenation and a
dense h.. Empirically, the concatenation is sparse if p, is sparse, and hx is
sparse if p, is similar to s..

TABLE I
PARAMETER SETTINGS.

Size of p* N, 100
Size of s* No 20
Size of h* No 100
Reference noise (zr)k>0 (16)
Observation noise (V) k>0 17
Stepsize of FXLMS 4.0x 107°
Stepsize of MFxLMS 2.5 x 1072
Stepsize of Sun’s Algorithm 5.0 x 1075
Stepsize of Akhtar’s Algorithm 5.0 x 1075
Parameters of Proposed 1. (A& te, ) (0.3,1.0,5.0 x 1075)
Parameters of Proposed 2. Ak, tis k) (0.0,1.0,5.0 x 1075)
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Fig. 2. Primary path of sparse (top left)/dense (bottom left) and secondary
path (right). The secondary path is same in the both cases. These paths are
generated artificially.

filter h with its weight vector w), € R™° to the cost function
in problem (7), we have

. o~ ot wp wy
min fi((SZk, h)) + Mel|S R[T* + X [[R]l
heRNo

and its equivalent form
min  fy((TT' 8@y, b)) + A [T g €]7"

. N ) (15)
(h,€)eRN xRN

+ 10 () + iy (R, €) + X | TTA| .

Then a direct application of Scheme 1 to problem (15)
produces an algorithm same as the proposed algorithm except
the update (13) of hj, which is replaced by

[, = prox w),
Ve TNl *

lHtRk (1(2hs ~ ;)

+ 2y(ex + styk).é':ik

N———

B

We examine the performance of the proposed sparsity-aware
adaptive learning algorithm. To clarify effect of the sparsity,
we adopt a primary path of sparse or dense (see Fig. 2), as
well as employ the exact secondary path as its estimate, i.e.,
s = s.. Since the reference noise signal (zy)r>0 and the
observation noise (v )i>o are impulsive in practical situations,
these noises are generated from random variables zi and v,ﬁ

IV. NUMERICAL EXAMPLES
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Fig. 3. A comparison of noise residual averaged over 300 trials for the sparse
primary path. Although FXLMS and Sun’s algorithm are unstable against the
impulsive reference noise, the others are stable. Proposed 1 achieves the best
performance in all the algorithms. Since Proposed 1 differs from Proposed 2
only the parameter \j of the sparsity promoting term in (7), this behavior
shows that our use of the sparsity improves the performance of the ANC.

with a-stable distribution'? [27] of o = 1.63:
T = ka + xi,

vp = v + 0.1 x vf,

(16)
a7)

where xf and v,? are drawn from a zero mean white Gaussian
distribution with variance 1. We apply the filtered-x least
mean squares (FXLMS) [6], the modified filtered-x least mean
squares (MFXLMS) [9], Sun’s algorithm [11], Akhtar’s Algo-
rithm [12]'3, Algorithm 1 (Proposed 1), and Algorithm 1 of
Ar = 0 (Proposed 2) which is unaware of the sparsity. Table I
shows parameter settings of the model and the algorithms. The
stepsizes of conventional algorithms are chosen in a way that

12The a-stable distribution was utilized to generate impulsive noise se-
quences, e.g., in [11], [12], because a small o (€ (0,2]) implies a heavy
tailed distribution.

13Sun’s algorithm

hk+1 = hk + ,uekS:izfc,
utilizes a modified reference signal &,

0 xp < c1
xE T € [c1,c2)
0 T > C2

A
xy, =
with user-defined parameters c1,c2 € R: ¢1 < ca, i.e., significant values of
xy, are removed. Akhtar’s algorithm
1 Qzl
hiy1 = hy + peg Sz,

also modifies significant reference signals and error signals as :r;c’ =
P[Cl,cz](xk?) and eg = P[cl,cz](ek) with P[Cl’cﬂ ‘R — R,

c1 r<el
P[Cl,CQ](T‘) =3 LS [61762]
co2 T > 9.
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Fig. 4. A comparison of noise residual averaged over 300 trials for the dense
primary path. Proposed 1 achieves a comparable performance for Proposed
2, which shows a robustness of Proposed 1 against a violation of the sparsity
assumption.

the suppression speed are same in early iterations. In Sun’s

algorithm and Akhtar’s algorithm, the paramters cp,cy are

selected as 0.01 and 99.99 percentile of the reference noise.
We adopt as a criterion the noise residual defined by a power

ratio of the uncontrolled noise d, := pimk and the controlled
noise at the error microphone, i.e., eﬁc =di — siyk:
A

(NR) = 10log;, (A—dk> ,

k

where a low-pass filter is utilized to clarify its behavior, i.e.,
Aeje = 77146;71 +(1- 77)(62)2a
Adk = 77Adk71 + (1 - n)dia

with n = 0.99.

As an example, we employ the design of wj introduced
in [24] to assign the small threshold v Arw'™ in (14) for
significant coefficients (see for other designs e.g. [28]):

k ~(k
wl( ) 5:V(Xl(' )>,

v:R — (0,00),v(z) = )

, otherwise,

for any i € {1,2,.. .,]\7}, where § := 107 and T = 0.02.

Fig. 3 shows a comparison of the noise residual for the
sparse primary path. Although FXLMS and Sun’s algorithm
are unstable against the impulsive reference noise, other al-
gorithms succeed to control the noise. Proposed 1 achieves
the best performance in all the algorithms and improves
approximately 4dB compared to Proposed 2, which shows
that the proposed sparsity promoting term of the concatenation
improves the performance.

Fig. 4 illustrates that Proposed 1 is robust against a violation
of the sparsity assumption on the primary path because it
achieves a comparable performance for Proposed 2.



V. CONCLUDING REMARK

This paper has proposed an efficient use of the sparsity
of the primary path for the active noise control (ANC) in
the frame of the adaptive Douglas-Rachford splitting (ADRS)
scheme. Although our discussion in this paper assumes for
a simplicity a time-invariant primary/secondary path, we can
extend straightforwardly for a time-varying case by using
online secondary path modeling techniques (see e.g. [18],
[19]).

Future work includes (i) applications, (ii) complexity reduc-
tions, and (iii) performance improvements. (i) Exploiting the
sparsity of the concatenation can be applicable in various noise
control situations, e.g. multichannel active noise control and
narrow band active noise control (see for recent developments
[5], [29]). (ii) Though our update of the proposed algorithm
is efficient, further complexity reduction is necessary because
the discrete Fourier transform has been required at each
iteration, which demands computational cost compared with
the FXLMS-type algorithms. To reduce the computational cost
of the proposed algorithm, the so-called homotopy algorithm
for the generalized LARS [30] will be effective if the concate-
nation is sparse. (iii) For further performance improvements of
the proposed algorithm, we can utilize the so-called variable
metric technique (e.g., in the original ADRS scheme [16])
as well as can adopt multiple data-fidelity terms defined using
observations at previous time (see e.g. [24], [31], [32]). In such
a situation, the adaptive primal-dual splitting scheme [33],
which utilizes the gradient descent update for the multiple
smooth data-fidelity terms, will be useful to avoid use of
proximity operators requiring huge computational cost in the
ADRS. To robustify the performance of the ANC against
unknown noise nj in the underlying linear model (3), we
can adopt in the ADRS a special design of the data-fidelity
term introduced in [34]. Such extensions will be discussed
elsewhere.
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