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Abstract—In this paper, we address the problem of performing
sound event recognition tasks in the presence of television playing
in a home environment. Our proposed framework consist of two
modules: (1) a novel regression-based noise cancellation (RNC),
a preprocessing which utilises a addition reference microphone
placed near the television to reduce the noise. RNC learns an
empirical mapping instead of the convention adaptive methods
to achieve better noise reduction. (2) An improved subband power
distribution image feature (iSPD-IF) which build on our existing
classification framework by enhancing the feature extraction. A
comprehensive experiment is carried out on our recorded data,
which demonstrates high classification accuracy under severe
television noise.

I. INTRODUCTION

Sound event recognition (SER) is the task of understanding
real-life events using sound information. This has a wide range
of important applications in home environments, such as safety
surveillance [1], [2] and home automation [3]. However, in
home environments, listening to the radio and watching TV
are frequent daily activities which can severely affect the
performance of a sound event recognition system. The noise
produced by these activities are different from stationary noise
which has a fixed or slowly changing statistics. Examples
of stationary noise include sounds generated from washing
machine, air-con or vacuum cleaner. Conventional noise robust
techniques for SER are mostly used to address such stationary
noise. On the other hand, the noise produced by listening to
the radio and watching TV is highly non-stationary and is
regarded as a interference signal itself.

In this paper, we propose a dual microphone solution which
utilize an additional microphone to effectively reduce non-
stationary interferences, such as TV signals, and achieve high
classification accuracy under severe noisy conditions. The
proposed system consists of two modules: (1) the regression-
based noise cancellation (RNC), a preprocessing for the televi-
sion noise (2) A robust improved subband power distribution
image feature (iSPD-IF) classification framework.

Our first novelty, the RNC, in contrast to conventional
approaches using adaptive filters, such as least mean squares
(LMS) [4], uses a short calibration to learn the empirical
mapping from the reference to the classifying microphone.
The advantage of our method is that it is free from the explicit
assumptions of the statistical independence between noise and
signal, also the performance of the system is not sensitive to
the iterative updating parameters as in LMS.
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Fig. 1. Overview of proposed system.

The second novelty of our system is the iSPD-IF which is
an extension of our robust classification framework, SPD-IF,
proposed in [5]. We have shown that in the SPD-IF framework,
the noise and signal can be localised and separated, hence
producing superior performance by using a missing feature
classifier. In this paper, we improve the SPD-IF method by
replacing the histogram representations by a non-parametric
windows (NP-Windows) method [6] in the feature extraction,
which better represents the distribution of strongly dependent
signals.

The overview of our proposed system is illustrated in Fig
1, the system consist of two microphones: (1) the microphone
to capture the sound events for SER and (2) the reference
microphone, which should be located near to the interference
(TV or radio). The first few seconds of the recording are
used in a short calibration, which learns the mapping function
between the reference and the operating microphone. This
enables the interference signal to be mapped and cancelled
from the operating microphone which is then transformed
into the SPD domain. Finally, the image feature is extracted,
followed by a missing feature classification.

The rest of this paper is as follows: Section II introduces our
proposed RNC method and compares it to the conventional
methods, Section III recaps our previous work on SPD-IF
and introduces our proposed modifications. Section IV then
describes the experiments used to validate our approach,
before Section V concludes the work.



II. REGRESSION BASED CANCELLATION

In this section, we present our proposed regression-based
noise cancellation (RNC). Similar to the conventional meth-
ods, we employ a dual microphone approach which includes
a reference microphone, that should be located nearer to the
noise source (e.g. Television) and an operating microphone,
which is used for the recognition. The first step is to remove
the delay, d, between the microphones by using the autocor-
relation function:

d = max
τ

E[x(t)r(t+ τ)] (1)

where x(t) is the signal from operating microphone and r(t)
is the signal from reference microphone in time domain. In
the absence of any sound event signals and with only the
interference playing, the power spectrum of operating and
reference microphones are related in following expression:

PX [t, k] ≈ |H[t, k]|2PR[t, k] + PN [t, k] (2)

where H is the unknown frequency response characterizing
the relative transfer function between the signal power at the
operating, PX and reference, PR, microphones. Symbols t and
k denote the frame index and bin, respectively. PN denotes
the noise power. Due to the window effect, H[t, k] is not a
constant but more like a random variable distributed around
its mean value. For each fixed frequency bin, k, the aim is to
find a function G such that:

argmin
G

∫
t

||PX [t, k]−G(PR[t, k])||2dt (3)

where ||.|| represents the L2 Euclidean norm.
In general, the function G can be any one-to-one function of

any form, analytic or non-analytic. From the physical model
as seen in equation 2, a natural choice of a function is the
linear model, i.e:

PX [t, k] = c1(k)PR[t, k] + c2(k) (4)

By utilising a short calibration period where only the inter-
ference source is active, the mapping coefficients c1 and c2 is
learnt in each subband. A closed form solution is derived as
follows [7]:

[c1(k) c2(k)]
ᵀ = (R̄ᵀR̄)−1R̄ᵀX̄ (5)

where R̄ = [ones(M, 1)ᵀ[PR[1, k]PR[2, k] . . . PR[M,k]]ᵀ]
and X̄ = [PX [1, k]PX [2, k] . . . PX [M,k]]ᵀ and M is the
number of total consecutive frames. Since the samples with
higher power are usually more reliable, additional weights is
given on these samples and modify the equation as follows:

[c1(k) c2(k)]
ᵀ = (R̄ᵀWR)−1R̄ᵀWX̄ (6)

where W is the weighting function based on the power of the
reference. Once the mapping function is learned, the desired
output signal power, S, is obtained by cancelling the mapped
interference from the noisy signal at the operating microphone:

PS(t, k) = max (PX [t, k]− {c1(k)PR[t, k] + c2(k)}, 0) (7)

A floor value of zero for the signal power is added to
prevent over subtraction. Now, since the phase information
from the operating microphone does not suffers as significantly
compared to the magnitude in the presence of noise. This
means that the estimated output signal can be reconstructed
in time domain using the phase of the observed signal with
an inverse FFT(IFFT).

s(t) = IFFT (PS(t, k)φ[X(t, k)]) (8)

where φ[X(t, k)] is the phase of the observed signal and
c1(k), c2(k) are the mapping coefficients. The resulting signal
may be transformed to any domain for any feature extraction
method.

III. SUBBAND POWER DISTRIBUTION IMAGE FEATURE
CLASSIFICATION

The noise cancellation module provides a significant reduc-
tion of the TV interference. However, it does not completely
solve the mismatch in the classification, which still remains
in the form of residual noise. In this section, we present our
improved Subband Power Distribution Image Feature (iSPD-
IF) classification which combines sophisticated normalization,
robust component extraction and missing feature classification,
and is an extension of our previous SPD-IF framework [5].

A. Subband Power Distribution Image Algorithm

The basic idea of the SPD is to transform the spectrogram
into a new image representation, where the signal and noise
are better localized and separable. This is done by following
steps:

1) Normalise the auditory spectrogram into a grey-scale
image

2) Transform each subband power series into its distri-
bution, stacking them together to form a new image
representation

3) Enhance the above image by using “contrast stretching”
[8].

More details of this module is found in our previous work
[5]. In the second step, we recall that the SPD represents the
distribution of power, D(f, z), in each frequency subband of
the normalised spectrogram over time. In our previous work,
we estimated this distribution using a conventional histogram.
However, we note that the conventional probability density
estimation (PDF) methods, such as histogram or Parzen kernel
[9], assume the observations to be discrete independent and
identically distributed (i.i.d) samples. For speech and sound,
due to the modulation effects, the signal powers in each
subband are often strongly correlated.

In this paper, we propose to replace the histogram, by
employing a novel density method called non-parametric win-
dows (NP-Windows) [6]. This approach treats the input as an
analytical signal, approximated by interpolations between each
consecutive pair of observation.The summary to calculate the
PDF using NP-Windows [6] consists of three main steps:

1) Calculate the polynomial coefficients for the signal sam-
ples
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Fig. 2. The top row indicates input A and its density estimation using
histogram and NP-Windows from left to right respectively. The bottom row
indicates input B which is a reverberated version of signal B.

2) Calculate the PDF for each piecewise section, the signal
is considered a function of a uniform random variable
representing its domain

3) Populate the appropriate bins for each piecewise section.
To estimate the PDF in each subband, first we connect

each adjacent data input with a straight line in the form
lf,i(x) = af,ix + bf,i where i represents the piecewise index
and f represents the subband. For each piecewise straight line,
we would assign a PDF, g, scaled to its gradient:

gf,i(z) =

{
1

|af,i| bf,i ≤ z ≤ af,i + bf,i

0 otherwise
(9)

Then, an arbitrary number of bins is chosen for the output
histogram by summing up all the PDF that lies within the
interval:

D(f, z) =
∑
i

gf,i(lb ≤ z ≤ rb) (10)

where lk and rk are the respective left and right edges of a
particular histogram bin, b.

With this formulation, we illustrate an example as seen
in Fig.2 by considering a clean input A and its reverberated
version, input B. It is seen that the histogram of signal A is
mismatched with input B with many spikes. However by using
NP-windows, the output distribution of both input A and B is
smoothed and produces less mismatch between the clean and
reverberated input.

B. Image Feature Extraction & Missing Feature Classification

After the improved SPD image using NP-windows is
formed, an image feature based on the visual signature is
extracted using spectrogram image feature (SIF) [10]. To
extract the image feature, the two-dimensional SPD image is
partitioned into 9x9 local sub-blocks, and then compute the
image pixel distribution statistics. The image pixel distribution
are inspired by the color layout which is described further in
[10]. The final image feature is a 486 (2x3x9x9)-dimensional
vector, using red, green and blue (RGB) quantisation regions
with the second and third central moments to capture the

0

20

40

60

80

100

10 20 30 40 50

N
o
rm
a
lis
e
d
 s
p
e
c
tr
a
l 
p
o
w
e
r 
b
in
, 
b

Frequency bin, f

Fig. 3. An SPD image of a cancelled signal. The red line indicates the level
noise estimate of the residual noise.

distribution statistics.
In Fig 3, it is seen that the noise masking effectively

separates the residual noise and the signal into two regions.
By choosing only a region containing the reliable parts, we
then perform missing feature classification with kNN, using
the Hellinger distance to measure the distribution distance
between image features. Further details on the missing feature
classification are found in our previous work [5].

IV. EXPERIMENTS

In this section we carry out experiments to demonstrate the
performance of our proposed system on a SER task.

Sound Database: For this, we select the following ten
sound classes related to the home environment setting from
the Real Word Computing Partnership (RWCP) Sound Scene
Database [11]: horn, bells5, bottle1, phone4, whistle1, whis-
tle3, clock2, ring, doorlock and trashbox. The sound files
have a high SNR, and each contains an isolated sound, with
some silence before and after the sound. For each class, 50
files are randomly selected for training and another 50 for
testing. Overall, with 10 sound classes, this gives 500 clips for
training and testing, with experiments repeated over 10 runs.
For television noise, we recorded a half hour news segment
from a local television channel.

Recordings: Both the sound classes and television sig-
nal are played back and recorded in our medium-sized lab
(10m*4m*3m) with a reverberation time of approximately
400 milliseconds. They are played back through loudspeakers
placed 4 meters apart in the middle of the room. The record-
ing microphones are omni directional microphones (Shure-
MX184): the operating microphone is placed randomly in
between the speakers, while the reference microphone is
placed next to the speaker playing back the television signal.
The sampling rate of the recordings is 16000hz in 16bits
resolution.

Experimental Methods: The following preprocessing
methods are evaluated:

1) Proposed RNC method, based on subband power linear
regression mapping.

2) Baseline FDAF method, based on state-of-the-art fre-
quency domain adaptive filtering [12].

and the following classification methods are evaluated:



MFCC-SVM MFCC-GMM MFCC-GMM-
MVAN

MFCC-GMM-
MVAN-Multi

SPD-IF iSPD-IF

Accuracy 44.60 48.20 67.40 95.12 97.84 98.52

TABLE I
CLASSIFICATION RESULTS WITHOUT INTERFERENCE (%).

MFCC-GMM-Multi SPD-IF iSPD-IF
-5db 0db 5db -5db 0db 5db -5db 0db 5db

No Processing 41.78 43.78 47.24 51.18 62.94 69.96 51.32 63.74 70.88
FDAF 49.80 50.64 50.88 87.64 90.06 91.20 90.54 91.50 92.54
RNC 61.56 65.44 66.00 89.38 92.80 94.98 91.46 93.96 96.10

TABLE II
CLASSIFICATION RESULTS WITH INTERFERENCE AT DIFFERENT SIR LEVELS (%).

1) SPD-IF, a robust sound classification framework intro-
duced in [5]. The default parameters is the same as
author’s chosen parameters.

2) Proposed iSPD-IF, a extension of SPD-IF, using NP-
Windows to improve the estimation of power densities.

3) MFCC-SVM: MFCC features modelled with one-
against-one (OAO) SVM.

4) MFCC-GMM: MFCC features modelled with a GMM
model

5) MFCC-GMM-MVAN: based on MFCC-GMM with
mean, variance and arma normalisation (MVAN).

6) MFCC-GMM-MVAN-Multi: based on MFCC-GMM-
MVAN with multi-conditional training using additive
noise and also convoluting with random room impulse
responses. The noise is added from random segments of
the television signal at various noise levels.

For all various preprocessing and classification methods, frame
lengths of 0.016s with frame shifts of 0.008s were used
throughout. All MFCC features include deltas and delta-
deltas, without the 0th coefficient and log energy to reduce
mismatch due to loudness, giving a total of 36 dimensions.
All methods using GMM are generated with 10 mixtures. For
training, only the original clean samples from the CD are
used in each classification method. For testing, each sound
event is segmented using the ground truth time label for fair
comparison, since the focus of the evaluation is solely on the
classification and not the detection accuracy. Both training and
testing are coded and evaluated using Matlab 2012b.

The performance for each method is reported in two tables:
Table I - sound classes are recorded without interference,
denoted as “Distant Microphone”; Table II - sound classes
are recorded with TV playing simultaneously at a signal-to-
interference ratio (SIR) of 5, 0 and −5 dB.

Results: Table I shows the results of the experiment con-
ducted to evaluate the performance in the absence of television
playing. This is an important step to find an upper bound
performance for each of the classification method when com-
pared to playing in the presence of television. Even though no
interference is present, the sound events are played in various

positions in the room and resulted the recorded test samples
to be mismatched with the clean training due to the room’s
impulse response. This is reflected in the result for MFCC-
SVM and MFCC-GMM which performs badly at 44.60% and
48.20% respectively.

Using MFCC-GMM-MVAN, MFCC-GMM with mean,
variance and ARMA normalisation (MVAN) performed better
at 67.40%, compensated slightly for the mismatch. However,
the performance without interference was expected to perform
at least 90% for a good lower bound for the experiment with
interference. A multi-conditional training is added to MFCC-
GMM-MVAN (MFCC-GMM-MVAN-Multi) where the train-
ing uses additive noise and convoluting with random room
impulse responses performs much better at 95.12%. The multi-
conditional training is effective in reducing the mismatch
caused by the room’s impulse response.

The proposed classifier iSPD-IF and the original SPD-IF
both achieve a good baseline performance in the mismatched
condition, with accuracies more than MFCC-GMM-MVAN-
Multi. Also, even though the SPD-IF was not tested on convo-
lution noise in our previous work, from this result we find that
both the SPD-IF (97.84%) and iSPD-IF (98.52%) perform well
with the recordings from the distant microphone. With these
findings, only the top three feature-classifier combination with
scores over 95% are used to evaluate in the next section, where
interference noise is present. We will find out if the accuracy
suffer and if so, which preprocessing methods will be most
effective.

Next we discuss about the performance when the sound
classes are recorded with interference in different SIR levels as
shown in Table II. It is seen that the accuracy of each method
reduces significantly when no pre-processing has been done
before classification. However, we observe that that both SPD-
IF and iSPD-IF outperforms the conventional MFCC-GMM-
Multi method at all SIR levels. This is because SPD-IF and
iSPD-IF are able to mask out some of the non-stationary noise
from the interference. However, it cannot cope completely with
the highly non-stationary TV noise.

The last two rows of Table II show the classification results
after pre-processing the signals with the FDAF and RNC



methods. It is clearly seen that using the additional reference
channel and applying pre-processing improves the results in
all cases. The most significant result is that our proposed
RNC outperforms FDAF for all three classification methods
at all SIR levels. Another important observation is that the
improvements for MFCC-GMM-Multi method are much less
than for both SPD-IF methods. This is because the residual
noise left from the preprocessing are effectively masked off in
the both SPD-IF methods. However for MFCC-GMM-Multi
method, the MFCC features are sensitive to the slight change
caused by the residual noise, this causes mismatch and thus
the less relative improvement.

Finally comparing our proposed iSPD-IF and the original
SPD-IF in both Tables I and II, we observe that our proposed
iSPD-IF consistently outperforms our original SPD-IF , with
between 1-4% improvement. This is due to the use of NP-
Windows to estimate the SPD, which reduces mismatch under
reverberant conditions.

Overall, our proposed RNC preprocessing combined with
the iSPD-IF gives a very good accuracy of above 90% for
all SIR cases. In particular at 5db, the average accuracy was
96.1% which is less than 2.5% difference to the clean baseline.
In addition, a significant advantage of the SPD-IF method, as
compared to the conventional multi-conditional training, is the
simplicity of using only the original clean signals for training
which removes the possibility of room mismatch occurring,
while maintaining a superior performance in the classification
accuracy.

V. CONCLUSION

We propose a sophisticated sound event recognition frame-
work in the presence of interferences such as TV, radio or
music playing. The proposed method is a combination of
two novel modules: the regression-based noise cancellation
(RNC) and the improved subband power distribution image
feature (iSPD-IF) for classification. The noise cancellation is
able to greatly reduce the non-stationary interference, while
the novel classification method is designed to transform the
signal to a novel representation where the signal is separable
from the residual noise. The proposed method has shown a
significant improvement in a realistic noisy environment using
only clean training. Particularly, we achieved more than 96%
classification accuracy of ten sound classes under 5dB TV
interference.
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