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Abstract—With the development of computer technology, 3-D
facial expression synthesis has been an important and challenging
task in the field of computer animation. Since the faces generated
by previous works lack of personalization, we propose a novel
approach for 3-D facial expression synthesis based on non-
linear learning. Firstly, a pre-process alignment is performed
for input 2-D or 3-D faces with landmarks based on cylindrical
mapping, and the intrinsic representations of faces are generated
using radial basis function network. Secondly, according to the
low dimensional representations of input faces, reconstruction
operations are carried out to synthesize 3-D face expressions
by sharing linear combination coefficients. Finally, the output
3-D face expressions are further optimized by its corresponding
landmarks both in 2-D and 3-D spaces using locality-constrained
linear coding. The experimental results indicate the robustness
and effectiveness of our facial expression synthesis approach.

I. INTRODUCTION

THREE-DIMENSIONAL (3-D) facial-expression synthesis
has been extensively studied over the past two decades for
its wide range of applications in movie production, video
conference and digital entertainment. Recent researches have
shown its potential value in human computer intelligent in-
teractions. Although we can generate 3-D face model with
exact expressions from 3-D scanners, the expensive cost is not
applicable when facing large numbers of subjects in real time
facial expression sequences. We still need efficient methods to
transfer captured expressions to models.

The existing approaches on 3-D facial expression synthe-
sis mainly fall into three groups, namely parameter-driven,
example-based and learning-based.

As a common technique in computer graphics, parameter-
driven synthesis is first used for forming a parametric face
in 1970s by Parke [9]. In this approach, different personality
traits from individual faces are defined by specific param-
eters, which contain a set of control parameters for gener-
ating facial expression by controlling basic movements of
faces. However, it usually uses a low resolution face model
with sparse vertex distribution which leads to the failure of
mimicking subtle expression details. Afterwards, facial action
coding system (FACS) [8] has been raised for generating 3-D
facial expressions by using parameters to define generic facial
deformations. Although extensions such as facial definition

parameter (FDP) [7] and facial animation parameter (FAP) [6]
are developed, they all fail to give expression details.

Example-based synthesis, also known as expression cloning
or expression retargeting, is presented to overcome the limita-
tions of parameter-driven methods. Jun-Yong Noh and Ulrich
Neumann [10] applied motion vectors on target faces to clone
facial expressions. Song et. al. [11] introduced vertex-tent
coordinate for modeling local deformations in source faces. In
their approach, a consistency constraint is built for transferring
local deformations to the target face. However, example-based
synthesis is not suitable for real time applications owing to its
computational complexity and sensitivity to noise, which may
produce flaws and distortions on target face.

Learning-based synthesis is developed by analyzing the
information from a set of training 3-D faces to generate the
relationships between input data and target faces. Vlasic et.
al. [12] presented multi-linear algebra for face modeling. They
applied different coefficients obtained by tensor decomposi-
tion to synthesize facial expressions. Later, Tao et. al. [19]
introduced Bayesian tensor analysis for 3-D facial expression
modeling. They constructed the multi-linear model from a
probabilistic point of view. Though both of them are with
good performances, they cannot handle faces with incomplete
data.

In comparison with the complexity of 3-D face model
generation, it is quite easier to capture a variety of expressions
in 2-D facial images. There already exist a number of efficient
methods to reconstruct a 3-D face model from a single 2-D
face image. Among those representative algorithms mentioned
above, the learning-based methods have drawn much attention
in recent researches for 3-D face model reconstruction. These
methods recover the 3-D shapes by using the common in-
formation shared by the 3-D shape and 2-D image subspace.
Thus a coupled training set containing pairs of 2-D faces and
corresponding 3-D faces is used. Reiter et. al. [13] presented
canonical correlation analysis (CCA) to predict 3-D faces from
2-D faces using a statistical approach. They assumed that
both 2-D and 3-D faces are embedded in the corresponding
linear subspaces and tried to maximize the correlation. Wang
and Yang [14] employed nonlinear manifold embedding and
alignment (NMEA) to recover a 3-D shape. They utilized



a nonlinear dimensionality reduction technique to learn the
local image models for each patch of facial image and the
local surface models for each patch of 3-D shape. Song et.
al. [15] introduced a coupled radial basis function network (C-
RBF) for 3-D face shape reconstruction. In this approach, the
intrinsic representations of 2-D and 3-D faces are generated to
build 3-D shapes using linear combination coefficients shared
in low dimensional subspace. These methods mainly focus on
optimizing global mappings, which leads to the loss of details
in results. For facial expression synthesis, it is important to
transfer all the appearance details of facial expression from
one model to another.

In order to generate personalized 3-D facial expressions with
important details, in this paper, we present a novel approach
for expression synthesis based on landmark constraint. Song
et. al. [15] have proved that the RBF [1] network is effective
for reconstructing expressive faces for input single images.
Taking account of the fact that RBF cannot handle local
details on faces, we present two improvements as our key
contributions in this paper:

1) We construct the low dimensional representations for
2-D and 3-D faces and share the reconstructional coef-
ficients for both faces and landmarks in order to make
local constraints.

2) A local constrained deformation is conducted for recon-
structed 3-D faces. As a matter of fact, the landmarks
form 2-D faces we used for 3-D facial deformation lack
z coordinate which is essential in 3-D face modeling.
Thus we build a coupled dictionary for coordinate
system and generate the z coordinate using locality-
constrained linear coding.

The remainder of the paper is organized as follows: Section
II introduces the problem statement and an overview of our
approach. Section III describes the detail of the approach
including RBF network, landmark generation, coordinate opti-
mization, and local deformation. Section IV shows our exper-
imental results and comparison. Finally conclusions are made
in Section V.

II. PROBLEM STATEMENT AND OVERVIEW

A practical approach for 3-D facial expression synthesis
should have one key factor: given coefficients, it can accurately
generate expressions for an arbitrary neutral face. In our
approach, inspired by [15], a C-RBF network is used to
reconstruct 3-D faces with expressions. Figure 1 shows the
framework of the C-RBF network. The process of landmark
generation and coordinate optimization is shown in Figure 2.
Our approach is divided into three steps.

1) We prepare a set of coupled training data that con-
tains several pairs of 2-D faces and its corresponding
3-D faces with expressions. Let a 2-D face or 3-D
face be the input. A pre-process alignment based on
cylindrical mapping is performed for the 3-D faces in
database. To construct the mapping between input face
and 3-D expressional face, we assume that they are

identically distributed in intrinsic representations which
can be treated as the common geometric structure [2].
Therefore, we build RBF networks to obtain intrinsic
representations of input faces and expressional faces by
mapping functions. Then temporary expressional 3-D
faces are reconstructed by the shared linear combination
coefficients.

2) The 3-D expressional faces in training data are combined
with their corresponding 3-D landmarks to build a
coupled dictionary in order to generate the landmarks of
synthesized temporary faces using locality-constrained
linear coding. For further optimization, we conduct a
same process on 2-D faces and 2-D landmarks as well
as the vertices in 3-D faces’ coordinate system to build
another two coupled dictionaries.

3) A local constrained deformation for 3-D expressional
faces is performed on the basis of landmarks from 2-D
and 3-D spaces. By relocating the locations of vertices
in synthesized temporary faces, natural and smooth 3-D
expressional faces are finally obtained.

III. PERSONALIZED 3-D FACIAL EXPRESSION SYNTHESIS
BASED ON LANDMARK CONSTRAINT

A. Radial Basis Function Network

RBF network is effective for handling sparse, high-
dimensional, and noisy data. It has been widely used for com-
puter vision applications [3][4]. In general, an RBF network is
an artificial neural network with three layers: an input layer, a
hidden layer and an output layer. RBFs are used as activation
functions. The output of a RBF network can be written as:

φ(x) =

N∑
i=1

aiρ(∥x− ci∥) (1)

where x is the input, N is the number of hidden units, ai ∈
[a1, ...an] encodes the linear combination coefficients, ci is the
center vector for ith neuron, ρ(·) is the RBF. We use Gaussian
ρ(∥x− ci∥) = exp(−β · ∥x− ci∥2) in our approach. Here (1)
can be normalized in the region of input space:

φ(x) =

N∑
i=1

aiρ(∥x− ci∥)

N∑
i=1

ρ(∥x− ci∥)
. (2)

As introduced by Song [15], a coupled RBF network is built
for the training data set that contains pairs of 2-D faces X2D =
[x2D

1 , x2D
2 , ..., x2D

n ] and 3-D faces X3D = [x3D
1 , x3D

2 , ..., x3D
n ],

where x2D
i ∈ RL and x3D

i ∈ RH are the ith individual’s 2-
D face image and the corresponding 3-D face, respectively.
C-RBF network outputs the intrinsic representations of input
2-D and 3-D faces. Let Y 2D = [y2D1 , y2D2 , ..., y2Dn ] and
Y 3D = [y3D1 , y3D2 , ..., y3Dn ] be the corresponding intrinsic
representations of X2D and X3D, where y2Di ∈ Rl(l << L)
and y3Di ∈ Rh(h << H) represent the ith face’s 2-D and 3-D
intrinsic representations, respectively.
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Fig. 1. Framework of the C-RBF network. The network discovers the intrinsic representations of input faces and expressional faces by mapping functions.
The coefficients are combined with the intrinsic representations on the right to synthesize temporary expressional faces.

We define the mapping function between a 3-D face and its
intrinsic representations as F 3D and f3D, respectively, as well
as F 2D and f2D for 2-D face. By using X2D, X3D, Y 2D,
Y 3D as inputs in (2), we can obtain the following normalized
RBFs:

F 2D(x2D) =

∑n
i b

2D
i ρ(x2D − c2Dxi

)∑n
j ρ(x

2D − c2Dxj
)

f2D(y2D) =

∑n
i a

2D
i ρ(y2D − c2Dyi

)∑n
j ρ(y

2D − c2Dyj
)

F 3D(x3D) =

∑n
i b

3D
i ρ(x3D − c3Dxi

)∑n
j ρ(x

3D − c3Dxj
)

f3D(y3D) =

∑n
i b

3D
i ρ(y3D − c3Dyi

)∑n
j ρ(y

3D − c3Dyj
)

(3)

where A = [a1, ...an] and B = [b1, ...bn] are the linear
combination coefficients. We can obtain synthesized 3-D faces
as our temporary faces by seeking solution for (3), the specific
method for solving (3) can be found in [15].

B. Landmark Generation and Coordinate Optimization

Landmark has been widely utilized for computer vision
applications for a long time. It can accurately describe the
shapes and locations of face organs, which is critical for
improving the local details of synthesized 3-D faces. A typical
and successful application for landmarks on 2-D face is active
shape model (ASM) [16]. However, it’s still a challenging task
to generate landmarks on 3-D face. We present a novel ap-
proach based on locality-constrained linear coding (LLC) [18]
to achieve 3-D landmark generation and 3-D vertex coordinate
optimization. For learning local nonlinear geometry of data in
a semi-supervised way, local coordinate coding (LCC) [17]
has shown promising results, and its fast implementation,
namely locality-constrained linear coding (LLC), is proposed
by Wang [18]. Let X be a set of D-dimensional input faces,
i.e. X = [x1, x2, ...xn] ∈ RD×N . Given a dictionary with
M bases, B = [b1, b2, ...bm] ∈ RM×N , locality-constrained
linear coding finds a best coding c ∈ Rk for a sample x that

minimizes the reconstruction error and the violation of the
locality constraint. The process can be written as an objective
function as follows:

min
c

∥x−Bc∥2 + λ
M∑
i=1

Di ∗ ci (4)

s.t.
∑M

i=1
ci = 1

where Di = exp(∥x−Bi∥2

σ ) stands for the locality adaptor that
gives different freedom for each basis vector proportional to its
similarity to the input data X . There is an analytical solution
in [18] written as follows:

c∗ = Norm (Ci + λ ∗ diag(Di)) (5)

where Ci = (B − 1xT
i )(B − 1xT

i )
T represents the data

covariance matrix.
The dictionary B is assumed to be known in (4). We conduct

the LLC coding criteria to train a dictionary that is adapted to
the distribution of the samples given a set of training samples.
Hence an optimal dictionary can be obtained by minimizing
the objective function below:

argmin
C,B

∥xi −Bci∥2 + λ
M∑
j=1

Di ∗ cji (6)

where ci refers to the corresponding coefficient for input data
xi.

By concatenating the training face and its corresponding
landmarks as the input xi for (6), we can obtain a coupled
dictionary B = {B1, B2, ...Bn}, where Bi = {Bi

f , B
i
l}.

Respectively, Bi
f stands for the dictionary of ith face and Bi

l

refers to the dictionary of corresponding landmarks.
For a newly input face, we can approximate it by (7) after

obtaining the coupled dictionary:

x∗
f
=

∑
Bfc (7)
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Fig. 2. The learning processes for generating landmarks on the bottom and coordinate optimization on the top. The inputs use the linear combination coefficients
discovered from coupled dictionary to get the outputs.

where Bf denotes the dictionary of face, and c denotes the
coding coefficient for xf in Bf .

Because of the locality property of manifolds, c is quite
sparse with a few non-zero elements. The process above can
be seen as selecting the appropriate local bases for input face
xf and can be written as:

min
c

∑
∥xf −Bfc∥2. (8)

In our approach, we assume that the face models and their
corresponding landmarks share the same geometric structure
in low dimensional representations. Hence the landmarks
corresponding to input face can be approximated by the coding
coefficient of xf . By replacing the Bf in (7) with Bl, we can
obtain the landmarks xl of input face using the following:

x∗
l =

∑
Blc. (9)

This approach is effective for both 2-D faces and 3-D
faces. And the landmarks from 2-D faces and 3-D faces are
combined to make further optimization for the locations of
vertices in synthesized 3-D expressional faces. However, the
landmarks from 2-D space lack z coordinate, without which
we may receive unsmooth results in experiments. Therefore,
a coupled dictionary B′ = {B1

′, B2
′, ...Bn

′} is built for the
vertices on 3-D face, where Bi

′ = {Bxy, Bz}. Bxy denotes
the dictionary of x and y coordinates of vertices and Bz refers
to the corresponding z coordinate.

Similarly, the x and y coordinates can be represented by

x∗
xy =

∑
Bxyc

′ (10)

and z coordinate can be generated by

x∗
z =

∑
Bzc

′. (11)

C. Local Deformation

Since the temporary 3-D expressional faces generated by
RBF network lack of personalization, we conduct a local
deformation by using landmarks both from 2-D and 3-D faces.
Let x2D

l = {v2Dl }1≤l≤L and x3D
l = {v3Dl }1≤l≤L be the

landmarks for 2-D faces and 3-D faces, respectively. We define
Sli = v3Dli (x, y) − v2Dli , where v2Dli ∈ x2D

l , v3Dli ∈ x3D
l

and v3Dli (x, y) denotes the x/y coordinates of v3Dli . Then for
x3D = {v3Di }1≤l≤M , the optimized locations v3D

′

i of all the
vertices on temporary faces can be written as:

v3D
′

i (x, y) =

L∑
l=1

µiSli∑
µi

+ v3Di (x, y) (12)

where µ = exp(−
∥∥v3Di − v3Dl

∥∥) is the weight coefficient
which is negatively correlated with the Euclidean distance
between two vertices.

Noting that we only obtain the x and y coordinates for
vertices, z coordinate can be generated by the aforementioned
method using (10)(11). After the local deformation we obtain
a local optimized 3-D face model x3D

∗ from the temporary
3-D face model x3D. Considering the global and local opti-
mization, we combine x3D

∗ and x3D for weighted average in
order to generate the final result of expression synthesis. The
process can be written as follows:

x3D
output = ηx3D + (1− η)x3D

∗ (13)

where η ∈ (0, 1) is the weight parameter to adjust the impact
between x3D

∗ and x3D.

IV. EXPERIMENTAL RESULTS

To validate the effectiveness of the proposed method, we
carry out experiments on a 32-bit Windows system with Core2
E6300, 2GB RAM. The 2-D and 3-D faces data are from the
BU-3DFE database. We select 100 neutral face models and
400 expressional face models including happy, sad, surprising
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Fig. 3. The synthesis results of seven samples from BU-3DFE database. First
column shows the neutral face. The second is the target expression. Third
to fifth columns are the shapes from ground truth, RBF, and the proposed
approach, respectively.

and disgusting from 100 subjects. These 500 models were
obtained by a 3-D scanner and each model has a corresponding
2-D face image. All the faces in this database are with
corresponding landmarks generated by our manual calibration.
In our experiment, 80% of the models are used for training
and the remaining 20% are used for testing. η is set to 0.3.

Considering that the unaligned data may lead to inaccurate
results, a preprocess for face alignment is performed for each
training 3-D faces. Firstly, feature points are located on face
organs of all 3-D faces in the same positions. Then the
cylindrical coordinates of 3-D faces are obtained by cylindrical
mapping [5]. Finally, all the vertices from 3-D faces are
aligned by centric mapping.

In Figure 3, we show the synthesized results of the expres-
sional 3-D faces from the BU-3DFE database and compare

TABLE I
MEAN SQUARE ERROR OF TWO APPROACHES CORRESPONDING TO THE

SUBJECTS IN FIG.3

Subjects 1 2 3 4 5 6 7
RBF 9.80% 6.74% 4.12% 4.81% 5.84% 4.00% 4.97%
Our 8.72% 5.72% 3.14% 4.19% 3.75% 3.23% 4.15%

them with the results generated by RBF. Table I illustrates the
estimation results by comparing the mean square errors and
the equation can be written as follow:

error =

√
|xgt−xsyn|2

k

Diaglength(xgt)
(14)

where xgt is the 3-D face ground truth, xsyn is the synthe-
sized face, Diaglength(xgt) represents the diagonal length of
ground truth’s bounding box and k denotes the vertex number
of 3-D face. From the results, we can find that the faces
synthesized by the proposed method are personalized with
more details than the faces generated by RBF. This is because
the RBF only takes global optimization into account which
leads to a smooth result but lacks of personalization.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel approach to synthesize
personalized 3-D expressional face based on nonlinear learn-
ing. By using C-RBF network, the intrinsic representations of
2-D and 3-D faces are discovered to generate temporary 3-D
expressional faces by sharing linear combination coefficients.
We utilized LLC for locating the landmarks on temporary
faces and optimized the z coordinate for vertices in contrast
with the landmarks form 2-D space. Finally, the faces and
landmarks are combined to conduct a local deformation to
obtain synthesized 3-D expressional faces.

In comparison with existing algorithms, the experimen-
tal results have validated the effectiveness of the proposed
method. However, it is noticeable that some of our synthesized
results are not smooth enough in details, such as the eyes.
Hence, more efforts will be paid on synthesizing smooth 3-D
expressional faces in the future work.

REFERENCES

[1] A. G. Bors and I. Pitas, “Object classification in 3-D images using alpha-
trimmed mean radial basis function network,” IEEE Transactions on
Image Processing, vol. 8, no. 12, pp. 1744-1756, 1999.

[2] S. T. Roweis and L.K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323-2326,
2000.

[3] J. Park and W. I. Sandberg, “Universal approximation using radial-basis-
function networks,” Neural computation, vol. 3, no. 2, pp. 246-257, 1991.

[4] M. J. Er , S. Wu, J. Lu and H. L. Toh. “Face recognition with radial basis
function (RBF) neural networks,” IEEE Transactions on Neural Networks,
vol. 13, no. 30, pp. 697-710, 2002.

[5] Challis and H. John, “A procedure for determining rigid body transforma-
tion parameters,” Journal of Biomechanics, vol. 28, no. 6, pp. 733-737,
1995.

[6] P. S. Aleksic and A. K. Katsaggelos, “Automatic facial expression
recognition using facial animation parameters and multistream HMMs,”
IEEE Transactions on Information Forensics and Security, vol. 1, no. 1,
pp. 3-11, 2006



[7] M. Escher, I. Pandzic and N. Thalmann, “Facial deformations for MPEG-
4,” Computer Animation 98, 1998, pp. 56-62.

[8] P. Ekman and W. V. Friesen, “Facial action coding system,” Consulting
Psychologists Press, Palo Alto: Stanford University, 1977.

[9] Parke and I. Frederick, “A parametric model for human faces,” DTIC
Document, Salt Lake City, Utah: Dept of Computer Science, 1974.

[10] J. Noh and U. Neumann, “Expression cloning,” Proceedings of the
28th annual conference on Computer graphics and interactive techniques,
2001, pp. 277-288.

[11] M. Song, Z. Dong, C. Theobalt, H. Wangm, Z. Liu and H. Seidel “A
generic framework for efficient 2-D and 3-D facial expression analogy, ”
IEEE Transactions on Multimedia, vol. 9, no. 7, pp. 1384-1395, 2007.

[12] D. Vlasic, M. Brand, H. Pfister and J. Popvoi “Face transfer with
multilinear models,” ACM Transactions on Graphics (TOG), vol. 23, no.
3, pp. 426-433, 2005.

[13] M. Reiter, R. Dormer, G. Langs and H. Bischof, “3d and infrared face
reconstruction from rgb data using canonical correlation analysis,” 18th
International Conference on Pattern Recognition, vol. 1, pp. 425-428,
2006

[14] X. Wang and R. Yang, “Learning 3-D shape from a single facial image
via non-linear manifold embedding and alignment,” IEEE Conference on
Computer Vision and Pattern Recognition, 2010, pp. 414-421.

[15] M. Song, D. Tao, X. Huang, C. Chen and J. Bu “Three-Dimensional
Face Reconstruction From a Single Image by a Coupled RBF Network,”
IEEE Transactions on Image Processing, vol. 21, no. 5, pp. 2887–2897,
2012.

[16] A. Blake, M. Isard, “Active shape models,” Springer, 1998.
[17] K. Yu, T. Zhang and T. Gong, “Nonlinear learning using local coordinate

coding,” Advances in Neural Information Processing Systems, vol. 22, pp.
2223-2231, 2009.

[18] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang and Y. Gong “Locality-
constrained linear coding for image classification,” 2010 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2010, pp. 3360-
3367.

[19] D. Tao, M. Song, X. Li, J. Shen, X. Wu, C. Faloutsos and S. J. Maybank
“Bayesian tensor approach for 3-D face modeling,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 18, no. 10, pp. 1397-
1410, 2008.


