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ABSTRACT

In this paper, we present a numerical algorithm for the de-
sign of FIR filters with sparse impulse responses. Our method
minimizes the number of nonzero entries in the impulse re-
sponse together with the least squares error of its frequency
response. We show that the FIR filters with sparse coeffi-
cients can outperform a conventional least squares approach
and the Parks-McCllelan method under the condition of the
same number of multipliers.

Index Terms— FIR filter design, coefficient sparsity, l0
approximation,

1. INTRODUCTION

The design of FIR filters is an important issue in digital sig-
nal processing. Many design methods have been proposed
by a number of authors [1]-[12]. Especially the least-squares
(LS) method, which minimizes the mean squared error of fre-
quency responses, is widely used due to its simplicity and
flexibility [7]-[12].

Most of conventional filter design approaches aim to min-
imize a filter order and maximize the filter performance. Even
though the FIR filter coefficients designed by the LS method
is optimal in the least squares sense, it is not necessarily op-
timal among the set of filters with the same number of mul-
tipliers, that is, less mean squared error can be achieved by a
filter that has the same number of multipliers, but has longer
impulse response with some zero-valued entries. To minimize
the number of multipliers instead of the filter order, some ap-
proaches design the filter with zero-valued taps, which is of-
ten called sparse filters (Fig.1). The problem is stated as l0
optimization problem which can be approximately solved by
the orthogonal matching pursuit. Some methods with more
sophisticated and flexible approach have been proposed [13]-
[14]. However these method need to design filters iteratively,
and high computational effort is required for high order filters.

In this paper, we present a numerical approach for design-
ing the sparse filters. Our method consists of two steps. In the
first step, we find the position of zero-valued coefficients us-
ing the l2-l0 optimization, and then in the second step the filter

∗We are grateful for the support of Japan Society for the Promotion of
Science and KDDI Foundation.

Fig. 1. Impulse response of sparse filters: ’x’ indicates zero
coefficients.

coefficients are determined while keeping the coefficients de-
termined by the first step fixed to zero. Our method does not
guarantee optimality in the sense of sparsity, but has better
performance than the conventional filter design methods.

In Section 2, the basic theory of the least squares method
for the FIR filters is briefly described. In Section 3, our design
problem is formulated and a design algorithm that considers
the sparsity of coefficients is proposed. In Section 4, several
examples are illustrated to verify the validity of the proposed
algorithm, and a comparison with the conventional methods
are shown. In the last section, we make comments on the
advantages of the algorithm.

2. CONVENTIONAL WEIGHTED LEAST-SQUARES
METHOD

The magnitude response H(ω) of the linear phase FIR filters
and more general non-linear phase FIR filters can be written
as a linear combination of trigonometric basis functions

H(ω) =
N−1∑
n=0

anϕn(ω), (1)

where, for example, ϕn(ω) = cos(nω) for even-order sym-
metric linear phase filters, and ϕn(ω) = ejnω for more gen-
eral formula.

Our design method can handle all types of the FIR filters
expressed by (1), however due to the limited space, we show
only the case of the even-oder symmetric linear phase FIR
filters.



We here repeat H(ω) for the even-order symmetric filter:

H(ω) =

N−1∑
n=0

an cos(nω), (2)

where N = (N0 − 1)/2 + 1 and N0 is its filter length.
Here we briefly review the conventional weighted LS

(WLS) method. Generally, the mean squared error of Eq.(2)
over the interval [0, π] is defined as

Φ1 =
1

π

∫ π

0

W (ω)|H(ω)−D(ω)|2dω, (3)

where W (ω) is a weight function which is not identically zero
and has positive values, and D(ω) is a desired frequency re-
sponse. The optimal filter coefficients {an}N−1

n=0 in the LS
sense can be uniquely determined by solving the normal equa-
tion:

Qa = p, (4)

where
a = [a0 a1 · · · aN−1]

T

pm =
1

π

∫ π

0

W (ω)D(ω) cos(mω)dω (5)

Qm,n =
1

π

∫ π

0

W (ω) cos(mω) cos(nω)dω, (6)

where pm and Qm,n are m-th and (m,n)-th elements of p
and Q, respectively.

When D(ω) and W (ω) are simple functions, Eqs. (5) and
(6) can be easily calculated in a closed form. However, com-
monly, the integrals of Eqs.(5) and (6) are difficult to derive
if both D(ω) and W (ω) are arbitrary. In particular, when the
weight function is given by an error response, as in Lawson’s
algorithm (discussed later), we can never calculate the inte-
gral in Eqs.(5) and (6). Therefore, in practice, it is efficient to
define the following cost function which is expressed as the
finite sum of the errors on the discretized frequency points.

Φ2 =
1

L

L−1∑
l=0

W (ωl)|H(ωl)−D(ωl)|2 (7)

We denote it by using the l2 norm of the error

Φ
1/2
2 = ∥W (Ra− d)∥2, (8)

where the (l, k)-th elements of R is

Rl,k = cos(kωl) (9)

and
d = [D(ω0) D(ω2) · · · D(ωL−1)]

T (10)

W = diag{W (ω0) W (ω2) · · · W (ωL−1)} (11)

In this case, pm and Qm,n of Eqs.(5) and (6) in the normal
equation are rewritten as follows.

pm =
1

L

L−1∑
l=0

W (ωl)D(ωl) cos(mωl) (12)

Qm,n =
1

L

L−1∑
l=0

W (ωl) cos(mωl) cos(nωl) (13)

3. DESIGN ALGORITHM

The conventional WLS method is optimal in the LS sense un-
der the condition that the filter length is fixed. If one allows a
longer filter length with some zero coefficients, it can achieve
better approximation than the non-sparse filters with the same
number of multipliers. Our goal is to design such sparse fil-
ters. The proposed design algorithm consists of two steps as
shown below:

1. The positions of filter coefficients to be zero is deter-
mined. We accomplish it to solve the sparse approxi-
mation problem (discussed in Sec.3.1).

2. The zero-valued coefficients in the previous step are
fixed to zero and the filter coefficients are found by us-
ing a conventional least squares design (Sec.3.3).

3.1. Sparse Approximation

Here we define ∥a∥0 as the number of non-zero elements in
a (It is often called zero-norm or l0-norm, despite not satis-
fying the properties of the norm). Our aim is to approximate
the desired frequency response by the linear phase FIR filter
with minimum number of coefficients. To fulfill it, we define
the filter design problem as a process to minimize the cost
function:

min
a

1

2
∥W (Ra− d)∥22 + β∥a∥0, (14)

where d is a desired frequency response and the parameter
β is introduced to control the balance between the error of
the filter and the number of the coefficients. Since the second
term of the cost function (14) is a discrete metric, the problem
is inherently difficult to solve by conventional methods such
as gradient decent based optimization.

We adopt a method based on the variable splitting and
quadratic penalty, which is recently applied to image restora-
tion problems [15], [16], [17]. Introducing an auxiliary pa-
rameter s that corresponds the coefficients a, the problem
(14) is equivalent to the following minimization problem:

min
a,s

1

2
∥W (Ra− d)∥22 + β∥s∥0,

subject to ∥a− s∥22 = 0 (15)



Instead of solving (15), we add the penalty term ∥a−s∥22
to the cost. In the end, our design problem is stated as

min
a,s

1

2
∥W (Ra− d)∥22 + β∥s∥0 +

γ

2
∥a− s∥22, (16)

where γ is a weighting parameter that controls similarity be-
tween a and s. The strategy of the variable splitting approach
is that, we start with initial values of s0, and then repeatedly
solve two sub-problems:

1.

ak = argmin
a

1

2
∥W (Ra− d)∥22 +

γ

2
∥a− sk−1∥22

(17)

2.
sk = argmin

s
β∥s∥0 +

γ

2
∥ak − s∥22 (18)

3. γk+1 = µ · γk, (µ > 1)

4. k = k + 1;

The first sub-problem (17) has a simple quadratic form. The
solution is determined by solving

(RTW 2R+ γkI)ak = RTW 2d+ γksk−1 (19)

The optimal solution of the second sub-problem (18) is
found for each coefficient individually, that is, the problem
is equivalent to the minimization of the function E(sn) for
n = 0, 1, · · · , N − 1 as follows

min
sn

E(sn) = βC(sn) +
γ

2
(an − sn)

2,

(n = 0, 1, · · · , N − 1) (20)

where sn is an element in s, and the function C(sn) has 1 if
sn ̸= 0 and 0 otherwise (we omit the superscript k). In the
end, (18) is minimized when

s∗n =

{
0, a2n < 2β/γ
an, otherwise (21)

(for derivation, see Appendix)

3.2. Balance control

In the algorithm, the desired number of non-zero coefficients
(denoted by Nd) is specified by a user. The parameter β in
the minimization problem (16) determines the number of non-
zero coefficients. However it is difficult to explicitly formu-
late the relationship with β and Nd. We adopt a heuristic
approach, in which β adaptively changes in the iterations ac-
cording to the number of non-zero coefficients. If the actual
number of non-zero coefficients in an iteration is larger than
Nd, β is increased to ru ·β (ru > 1), otherwise β is decreased
to rl ·β (rl < 1), where ru, and rl are newly introduced scal-
ing parameters. When the number of the coefficients reaches
Nd, then β is fixed. The algorithm starts with large values of
ru and rl, then those are gradually decreased.

3.3. Constrained Filter Design

The aim of the algorithm in Sec.3.1 is to find the positions
for the filter coefficients to be zero. Once the positions are
determined, we re-design the filter by the constrained least
squares approach to achieve an optimal filter:

a∗ = argmin
a

Φ2 s.t. an = 0 (∀n ∈ S),

where S is the set of the positions of zero coefficients. The
solution for the problem is given by solving the normal equa-
tion.

4. EXAMPLES AND COMPARISON

In this section, several numerical examples are shown to ver-
ify the advantage of the proposed algorithm. All examples
were designed in MATLAB. All frequencies are normalized
by π and frequency points are equally spaced.

Example 1: Least Squares Filter

A low-pass filter with a narrow transition band was designed.
The filter length N0 is 1059 (N = 530) and the number of
non-zero coefficients is Nd = 859. The passband and stop-
band edges ωp = 0.05 and ωs = 0.055. The result is com-
pared to two conventional least squares approaches:

1. (LS1) Design a filter of length Nd by the conventional
LS method.

2. (LS2) Design a filter of length N0 by the conventional
LS method and then force the N0 − Nd smallest coef-
ficients zero.

Fig.2 illustrates the log-magnitude response of filters de-
signed the (a) LS1 and (b) the proposed method. The mean
squared errors of LS1, LS2 and the proposed method were
4.48 · 10−3, 4.34 · 10−3, 3.08 · 10−3, respectively.

We tested hundreds of design examples, and all examples
converge to filters with smaller errors than ones of the conven-
tional LS methods (LS1 and LS2). Some of them are listed in
Table 1.

Example 2: Chebyshev approximation

In this example, we apply the proposed method to the Cheby-
shev approximation, and compare it with the Parks-McClellan
(PM) algorithm [3].

In the algorithm modified Lawson’s algorithm [12] is used
for the Chebyshev approximation, in which the WLS prob-
lems are solved iteratively. In each iteration the weighting
function is updated by

Wk+1(ωl) = Wk(ωl)
W0(ωl)E

env
k (ωl)∑

i W0(ωl)Eenv
k (ωl)

, (22)



Table 1. Squared error(ωp: passband edge, ωs: stopband
edge, N : filter length, Nd: # of non-zero coeffs., all the three
filters listed have same number of non-zero coefficients)

(ωp, ωs, N0, N0 −Nd), LS1 LS2 Proposed method
(0.2, 0.26, 99, 40) 2.00e-2 3.42e-2 1.24e-2
(0.1, 0.14, 199, 40) 2.23e-4 7.13e-4 1.46e-4
(0.1, 0.14, 199, 80) 3.60e-3 1.35e-2 2.00e-3
(0.1, 0.11, 459, 100) 1.47e-2 1.24e-2 9.69e-3

(0.03, 0.035, 1199, 400) 7.38e-3 1.16e-2 4.81e-3
(0.05, 0.052, 2059, 1000) 0.183 0.142 0.111

where Eenv
k (ω) is the piecewise-linear envelope function of

the error (for detail, see [12]).
The algorithm for the Chebyshev approximation is stated

as follows.

1. The initial weight W 0(ω) is given and start with
W 1(ω) = W 0(ω).

2. Solve the sparse approximation in Sec.3.1.

3. The weight is updated by (22).

4. If it converges, then go to Step 5, otherwise go back to
Step 2.

5. Fix the zero-valued coefficients, the conventional Law-
son’s algorithm [12] is performed to re-design the filter.

We design the filter, whose passband and stopband edges
are ωp = 0.1 and ωs = 0.13, respectively.

We compare our results with the PM method that guaran-
tees its optimality for the non-sparse filters1. We adjust the
initial weighting function W 0(ω) to obtain the same amount
of passband ripples, and then compare the stopband ripple
with the PM method. Fig.3 shows the results of the designed
filter with N = 259 and Nd = 139. Table 2 gives some of
numerical design examples. Our method outperformes PM
method by 2-8 dB in the attenuation. According to the paper
[14], the sparse filter [14] also increase the level of attenua-
tion by 2-8 dB over the PM method. However the method [14]
needs iterative design of the optimal filter, and if the length is
increased, the number of iteration will become much larger.
On the other hand, in our algorithm the design of 300-tap
equiripple filter needs only a few seconds to converge with
Intel Core i7 2.93GHz CPU.

Appendix
This step is equivalent to hard thresholding in the shrinkage
algorithm. When sn ̸= 0, we have

E(sn) = β +
γ

2
(an − sn)

2

1executed in MATLAB using ’firpm.m’

Table 2. Chebyshev Approximation (ωp = 0.1, ωs = 0.13,
N : filter length, Nd: # of non-zero coeffs., the length of
the PM filter is Nd, p.r.: maximum passband ripple[dB], s.a.:
minimum stopband attenuation[dB])

PM method Proposed Method
(N,Nd) p.r. s.a. p.r. s.a.
(159, 79) 3.12e-2 25.2 3.12e-2 30.1
(199, 99) 1.60e-2 27.9 1.60e-2 35.9
(239, 119) 8.75e-3 33.1 8.75e-3 41.2
(259, 139) 5.53e-3 37.6 5.53e-3 45.1
(319, 179) 2.33e-3 48.9 2.33e-3 52.6

(a) (b)

Fig. 2. Example 1 (a) Conventional LS method, (b) Sparse
Filter

and then E(sn) has the minimum value

E(an) = β

at sn = an. In the case of sn = 0,

E(0) =
γ

2
a2n

holds.
Thus if

β >
γ

2
a2n

is satisfied, E(sn) has the minimum value γ
2a

2 at sn = 0.
Otherwise E(sn) has minimum value β at sn = an. In the
end, (21) holds.

(a) (b)

Fig. 3. Example 2 (a) PM method, (b) Sparse Filter
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