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Abstract—Learning dictionaries from a large-scale music 
database is a burgeoning research topic in the music information 
retrieval (MIR) community. It has been shown that classification 
systems based on such learned features exhibit state-of-the-art 
accuracy in many music classification benchmarks. Although the 
general approach of dictionary-based MIR has been shown 
effective, little work has been done to investigate the relationship 
between system performance and dictionary properties, such as 
the dictionary sparsity, coherence, and conditional number of 
the dictionary. This paper aims at addressing this issue by 
systematically evaluating the performance of three types of 
dictionary learning algorithms for the task of genre classification, 
including the least-square based RLS (recursive least square) 
algorithm, and two variants of the stochastic gradient descent-
based algorithm ODL (online dictionary learning) with different 
regularization functions. Specifically, we learn the dictionary 
with the USPOP2002 dataset and perform genre classification 
with the GTZAN dataset. Our result shows that setting strict 
sparsity constraints in the RLS-based dictionary learning (i.e., 
<1% of the signal dimension) leads to better accuracy in genre 
classification (around 80% when linear kernel support vector 
classifier is adopted). Moreover, we find that different sparsity 
constraints are needed for the dictionary learning phase and the 
encoding phase. Important links between dictionary properties 
and classification accuracy are also identified, such as a strong 
correlation between reconstruction error and classification 
accuracy in all algorithms. These findings help the design of 
future dictionary-based MIR systems and the selection of 
important dictionary learning parameters. 

I. INTRODUCTION 

Online music service is one of the most essential 
entertainments in modern people’s daily life. However, the 
vast amounts of digital music contents have made it difficult 
for people to find a preferred song in million-scale online 
music libraries. Music recommendation systems [1][2][3] aim 
to solve the above problem, either by utilizing human-tagged 
metadata, or by learning the musical contents such genres, 
emotions, instruments, and any other information. As a high-
level descriptor, genre information suggests possible 
characteristics that help people to understand, retrieve or 
categorize music.  

Music genre classification is one of the most widely-
investigated topics in MIR field. Various approaches have 
been studies previously, for example, different classifiers such 

as K-nearest neighbor [4], Gaussian mixture models (GMM) 
[5], hidden Markov model (HMM) [6], linear discriminant 
analysis (LDA) [7], and support vector machines (SVM) [8], 
have been applied in the literature. In addition to classification 
method, feature representation is also important. For example, 
Lidy and Rauber [9] evaluated  multiple feature extraction 
algorithms on genre classification and reported 7% to 15% 
accuracy difference. 

In recent years, learning a dictionary (codebook) from a 
large database as a means to improving the musical feature 
representations has attracted increasing attentions. Such a 
dictionary-based approach converts low-level features (e.g., 
spectrum) of an input signal into a finite set of dictionary 
atoms using algorithms such as vector quantization (VQ) or 
L1-regularized sparse coding (SC). This approach has been 
shown useful in various music information retreival problems 
[10][11].  

Dictionary learning algorithms [12]-[15] can be generally 
categorized into non-incremental type and incremental (online) 
type. The former needs to read the whole training data at one 
time before learning, while the latter allows for updating the 
dictionary adaptively as new training data are received. 
Obviously, incremental type algorithms, such as recursive 
least square dictionary learning algorithm (RLS-DLA) [12] 
and online dictionary learning (ODL) [13], provide memory 
efficient solutions for a music database which is likely to be 
changed or extended rapidly. In consequence, we consider 
incremental type algorithms in this work.  

In addition to merely evaluating the system performance by 
a testing dataset, we are interested in how the quality of a 
learned dictionary influences the classification accuracy. In 
particular, we are interested in the following issues: What are 
the optimal sparsity constraints in dictionary learning phases 
for these dictionary learning algorithms? How does the size of 
a dictionary influence performance? Is it possible to identify 
some dictionary properties that are indicative of the resulting 
system performance? Inspired by O’Hanlon and Plumbley’s 
work [16], we investigate the relationships among various 
property indicators of a learnt dictionary, the quality of 
reconstruction, the codeword sparsity, and the accuracy in 
classifying music genre using the dictionary-based feature. To 
this end, we present an empirical performance study using the 
well-known GTZAN dataset. 



The main findings of this paper include: 
 Strict sparsity constraints in dictionary learning phase 

(i.e., <1% of the signal dimension) generally leads to 
better accuracy in genre classification.  

 In contrast, we do not need strict sparsity constraints 
in the encoding phase. 

 The value of some dictionary property indicators is 
correlated with the classification accuracy of a 
dictionary-based system. 

The rest of this paper is organized as follows. Section II 
introduces the dictionary learning algorithms and the 
dictionary indicators. Section III gives an overview of used 
system. Section IV evaluates the parameters in the whole 
system, after which Section V explores the relationships 
among the dictionary properties and classification accuracy. 
Finally, Section VI concludes the paper. 

II. DICTIONARY PROPERTIES 

Dictionary learning algorithms aim at constructing a finite 
set of representative elements called atoms from a training 
database. In this section, we introduce three types of incre-
mental dictionary learning algorithms, including the on-line 
dictionary learning (ODL) algorithm1 [13] with two different 
objective functions, and recursive-least squares dictionary 
learning algorithm2 (RLS-DLA) [12]. Moreover, we describe 
several indicators measuring the quality of a dictionary. We 
are interested in whether these indicators can be used to 
predict the performance of the corresponding dictionary for 
discriminating musical genre. If this is possible, we can 
automatically select the most promising dictionary for con-
structing the classification system. 

 

A. Dictionary Learning 

The objective functions of RLS-DLA and ODL are both: 
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where λd is the regularization parameter to be determined. 
Smaller λd represent more strict constraint, and there is no 
universal value for λd. One has to empirically determine the 
best value through evaluation. The dictionary D∈Rm×k is to be 
learnt, and k > m in general, and each column dj is normalized 
to unit Euclidean norm. The αi∈Rk is a column vector 
approximates an input datum xi by (a few) columns of D, and 
is referred to as codeword in this paper. Although the hard 
constraint of L0-norrm leads the problem to be NP-hard [17], 
this can be solved in polynomial time by a greedy algorithm 
based on orthogonal matching pursuits (OMP) [18]. As the 
objective function is not convex, both RLS-DLA and ODL 
adopt a sub-optimal alternating minimization strategy, fixing 
D while optimizing α and vice versa, to make the objective 
convex when fixing one variable. 
                                                           
1 http://spams-devel.gforge.inria.fr/ 
2 http://www.ux.uis.no/~karlsk/dle/index.html 

Both RLS-DLA and ODL algorithms build a dictionary by 
an incremental approach, updating a dictionary by newly-
collected data instead of the whole dataset. This is a memory-
efficient solution when we are given a large amount of data 
for learning the dictionary. 

The two algorithms differ in the updating strategies. RLS-
DLA updates the D iteratively by 
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This product of matrix B and the inverse of matrix A is the 
solution for the objective value in (1) when all αi are given 
[15]. The two matrices B and A are defined as: 
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Matrix A is the product between each element of a codeword 
αi, and matrix B is the product between each element of an 
input datum, xi and the corresponding codeword, αi. The 
superscript i denotes the iteration step, i.e., the corresponding 
state when given ith datum. The parameter γ ∈ (0, 1] is the 
forgetting factor, whose purpose is to de-emphasize the 
effects of previous solution, since the choice of initial solution 
should not affect the final solution. 

On the other hand, ODL updates each atom by stochastic 
approximation, a family of steepest descent optimization. The 
update rule is as follows, 
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In (5), dj is the jth

 atom (column) of D, and A(i)
[j,j] is the 

element in jth
 row and jth column of matrix A defined in (3). 

The lower case symbol b is the column vector of B defined in 
(4). In ODL, the forgetting factor is not considered. 

Besides above algorithmic difference, ODL also supports 
other objective functions, including the following one, 
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Unlike (1), λd in (6) uses a soft regularization parameter over 
αi, instead of a hard constraint. Larger λd in (6) forces αi 
sparser, whereas smaller λd forces αi denser. In the following 
discussion we refer to the ODL algorithm based on 
formulation (1) as ODL1, and the one based on formulation (6) 
as ODL2, respectively. Please note that because (6) takes a 
soft regularization form, in ODL2 the LARS-Lasso algorithm 
[19] is used to solve αi instead of using OMP. 

B. Indicators 

The goal of dictionary learning is to find suitable atoms to 
approximate the data. To define the quality of dictionary, it is 
straightforward to measure the quality of reconstruction error 
for applications aiming at perfect reconstruction, e.g. image 



and audio compression. However, for other applications such 
as classification or similarity estimation, low reconstruction 
error does not guarantee good performance, because of the 
difference in objective function. For example, for genre 
classification, the dictionary of interest is able to help extract 
the common characteristic in the same genre.  

To examine the property of learnt dictionaries, in this study 
we resort to the measurements employed in a recent work [16].  
The first indicator is the coherence μ defined as  
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Coherence is the maximum absolute value of inner product 
between different normalized atoms. This is a similarity 
indicator of a dictionary D. Larger μ indicates higher 
similarity between the dictionary atoms. However, this is only 
an estimation, as it considers only the maximum value.  

The second indicator is the condition number κ: 
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where σmax and σmin stand for the maximum and minimum 
singular value of D, respectively. It can be found that κ is also 
an indicator of extreme value, instead of the whole picture. 
However, the condition number has been considered 
important in numeric analysis, as it indicates whether the 
matrix is stable, or how sensitive the matrix is. A matrix D 
with condition number ≫ 1 is often called ill-conditioned, and 
well-conditioned otherwise. In other words, larger condition 
number may lead to larger variations even when two different 
data are very close. As similar input data should normally be 
associated to the same genre, one might expect that a small 
value would lead to better accuracy. 

The third indicator, redundancy, is defined as 
 

 ||DTD－I||F ,    (9) 
 

where DTD is the Gram matrix of normalized D, and I is the 
identity matrix. The Frobenius norm is used to summarize the 
similarity between all different atoms, with larger ||DTD－I||F 

indicating the atoms in D are more similar. The subtraction of 
I is to remove the self-correlation of each d in DTD, since we 
only consider the relationship between different atoms. This 
indicator can measure the redundancy of the dictionary, for it 
equals to zero when the codewords in the dictionary D are 
perfectly orthogonal.  

In addition to the aforementioned indicators, we also study 
the relationship between the accuracy of genre classification 
and combinations of the reconstruction error and sparsity of 
codewords. 

III. SYSTEM OVERVIEW 

Fig. 1 shows the block diagram of the implemented 
dictionary-based genre classification system. At the outset, we 

extract spectrograms from two music datasets, USPOP2002 
and GTZAN, which are used for dictionary learning and 
classifier training/test, respectively. To reduce the computa-
tional power, the codewords are pooled along with short-time 
frames, giving rise to the so-called bag-of-frames (BoF) 
features. Moreover, as proper normalization might help 
reduce the effects of outliers, we considered two normali-
zation techniques before applying support vector machine for 
classification. 

A. Spectrogram 

As Fig. 1 shows, the first phase of the feature extraction 
process computes the spectrogram of each audio file in 
USPOP2002 and GTZAN dataset. The sampling rate of each 
file is 22.05 kHz. A spectrogram is obtained by computing 
decibel of short-time Fourier transform (STFT) by using a 
window function with 1025 samples (46.5 ms) in window size 
and 512 samples in hop size, resulting in a 513-dimensional 
spectral feature (plus the DC term). 

B. Sparse Coding 

Given a dictionary D∈Rm×k, sparse coding seeks the vector 
α∈Rk with minimal number of non-zero weighting coeffi-
cients that approximates input vector x∈Rm by atoms in the 
dictionary D. The sparse coding problem can be formulated as 
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where λc controls the trade-off between approximation error 
and sparsity. Please note that the value of λc can be different 
from the value of λd in (1) and (6). The sparse property makes 
it possible to capture the most “important” characteristic of x 

Fig. 1. Framework of Algorithm and Experimental Settings. 



with prominent atoms in D. Different from λd, we set the 
value of λc to λ0, the inverse of square root of m, the value 
recommended in [13] for it leads to good performance both 
empirically and theoretically. 

C. Bag-of-Frames 

Temporal pooling has been shown useful in music and 
audio processing [20][21][22]. Obviously, the concept of 
genre can be identified only when the temporal information is 
accumulated for at least several seconds. Therefore, just 
concerning short-time frames independently may not be 
enough. Furthermore, temporal pooling would reduce the 
computational complexity for later process, where the size of 
feature representing a song reduces from a matrix to a column 
vector as we sum up the codewords α over the whole 
sequences of each song.  

D. Normalization and Support Vector Machine 

We adopted LIBSVM for the implementation of support 
vector machine [23], and the used kernels of SVM are 
histogram intersection kernel (HIK) and linear kernel, and we 
adopt power normalization and Manhattan normalization 
serially to enhance the distribution of features before classifi-
cation. Power normalization is a transformation that makes 
data distributes more like Gaussian distribution by a power 
function. Given a datum xi∈Rk, a typical power normalization 
technique outputs sign(xi)|xi|p, where sign(·) is a sign function 
and p∈[0, 1]. In this paper, we set p to 0.5, which reduces to 
square root of absolute value of x with original sign. This 
technique has been shown useful in [20]. The Manhattan 
normalization here is L1-normalization of data xi.  

For readability, in all the figures we use “No norm” to 
denote the case of no normalization, and use “All norm” for 
power normalization plus L1 normalization. 

IV. EVALUATIONS 

In this section, we first introduce the evaluation datasets. 
The first part of the experiments focuses on various post-

processing methods and SVM kernels of the bag-of-frames 
features learned from RLS-DLA dictionary. Then, we 
compare different dictionary learning algorithms and object-
tive functions. Extensive experiments on sparsity parameter λd 
in both dictionary learning algorithms and dictionary size k 
are also performed. Moreover, we also studied the influence 
of the encoding sparsity constraint λc. 

All experiments are performed under a ten-fold cross-
validation scheme, repeated for 10 times for each experiment. 
Each fold has the same number of training (testing) songs for 
each genre. All training and testing sets are fixed over all 
experiments for no bias. HIK and linear kernel for SVM are 
both investigated with the tuning parameter C swept from 2-10 
to 210, totaling four configurations over two selected 
normalization techniques are tested in most cases. 

A. Datasets 

Since transductive dictionary learning is potentially biased 
[24], we used two different datasets for dictionary learning 
and genre classification. Specifically, we used USPOP2002 to 
train the dictionary and used the resultant dictionary to 
generate the features for predicting the genres in GTZAN 
dataset. Both datasets have different formats, and we 
converted all songs to standard mono-channel with 22,050 Hz 
sampling rate in WAV. 

USPOP2002 were collected with 6700 preview audio from 
7digital3  according to the list of [25]. The length of the audio 
files ranges from 30 to 60 seconds. On the other hand, The 
GTZAN dataset consists of 1,000 30-second clips with 10 
genres included, and there are 100 clips for each genre. These 
genres are blues, classical, country, disco, hip-hop, jazz, metal, 
pop, reggae, and rock. Although this dataset is the most 
widely-used dataset in evaluating genre classification, 10.6% 
of the files have been found mislabeled recently [26]. 

B. SVM Kernels and Normalization Methods 

                                                           
3 http://us.7digital.com/ 

Fig. 3. Averaged accuracies of four configurations in normalizations with
HIK kernel in SVM for RLS-DLA bag-of-frames features. Diamond marks:
no normalization. Square marks: power normalization only. X-marks: L1

normalization. Circle markers: power normalization and L1 normalization. 

Fig. 2 Averaged accuracies of four configurations in normalizations with
linear kernel in SVM for RLS-DLA bag-of-frames features. Diamond marks:
no normalization. Square marks: power normalization only. X-marks: L1

normalization. Circle markers: power normalization and L1 normalization. 



By comparing Fig. 2 and Fig. 3, we see that combining 
HIK kernel with both normalization methods leads to the best 
accuracy in most cases for RLS-DLA. Although the case with 
linear kernel + power normalization is the most accurate when 
λd = 16, the accuracy is still behind HIK + both normalization 
methods at λd = 4. The setting “All Norm + HIK” is found 
significant better than all other settings (p < 0.01, d.f. = 198, 
under a two-tail t-test), except for Power Norm + HIK. 

Linear kernel is comparable to histogram intersection 
kernel only when power normalization is performed, suggest-
ing that histogram-like kernel better suites our data. Power 
normalization improves the accuracy a lot as it remedies the 
problem of large outliers and the majority of small-valued 
data. The classification process then benefit from this as long 
as the distribution of different genres overlap less. 

C. Different Algorithms and Objective Functions 

Fig. 4 (a) illustrates the results of RLS-DLA and ODL1 and 
ODL2 for linear kernel with power normalizations. We can 
see from both Figs. 2 and 3 (a) that a loose constraint (larger 
λd) generally results in worse accuracy for RLS-DLA, 
regardless of the learning kernel. Better accuracy is achieved 
with stricter sparisty, except for the case when λd equals 1. It 
seems that setting a strict constraint forces RLS-DLA to learn 
more “prominent” features in different genres. Best result is 
obtained with λd = 4, which is less than 1% dimension of 
signals (4/513 ≈ 0.8%). 

We cannot obtain fair classification accuracy with λd = 1, 
possibly because RLS-DLA would degenerate into K-means 
algorithm [11] in such as case.  

As for ODL1, we see that larger λd is preferred. Even 
though RLS-DLA and ODL1 use the same objective function, 
the performance trend of ODL1 is different from that of RLS-
DLA. Fig. 4 (a) suggests that for ODL1, the accuracy is 
positively correlated with λd. However, we do not observe 
strong performance difference between different sparsity 
levels for this algorithm. Considering that the major differ-
ences between these two algorithms are the forgetting factor 
in RLS-DLA and the dictionary update strategy, and that we 
have set the forgetting factor close to one (which reduces the 

effect of the forgetting factor), we infer that ODL1 is less 
sensitive to the degree of sparsity constraint because of 
dictionary update strategy. 

Fig. 4 (b) shows the average accuracies with different λd. 
Because larger λd stands for strict constraint in ODL2, λd  goes 
from large values to small ones in this figure. In addition, λd is 
in terms of the multiple of λ0, the suggested optimal value in 
[13]. We can see that the performance trend of ODL2 is 
similar to that of RLS-DLA; imposing a strong emphasis on 
sparsity degrades the classification accuracy. The optimal λd 
turns out to be λ0, confirming the suggestion in [13]. 

D. Influences of Dictionary Size 

In addition to the sparsity, the dictionary size also plays an 
important role in dictionary-based framework. Fig. 5 depicts 
the results by varying k, graphed in four lines standing for two 
dictionary learning algorithms (RLS-DLA and ODL1) and 
two post-processing settings (Power Norm + Linear and L1 
Norm + linear). The regularization parameter λd is set to 4 for 
both ODL1 and RLS-DLA. We can see that using larger k 
improves the classification accuracy, which is expected since 
larger dictionary typically contains more information. Never-
theless, the rate of growth is not significant for some cases, 
such as RLS-DLA with L1 normalization and linear kernel. 

The rate converges quickly possibly due to limited testing 
data, where only 1,000 songs are included for training and 
testing, and each song contains only one vector, due to bag-
of-frames, as the feature. 

E. Encoding Sparsity 

Fig. 6 depicts the result of RLS-DLA, ODL1 and ODL2 
with power normalization and linear kernel with various λc, 
the regularization parameter of LASSO encoder. In addition 
to the classical λc = λ0 in this experiment, we also examined 
the value from 0.1λ0 to 10λ0. Results show that loose 
constraint (smaller λc) generally works better. Serious 
degradation may be found when too strict L1-norm constraint 
is applied, e.g., ODL1. This trend is different for RLS-DLA in 
dictionary learning, showing that RLS-DLA prefers strict 
constraint but loose constraint is desired in sparse coding. It 

Fig. 4. The averaged accuracies of (a) RLS-DLA, ODL1 and (b) ODL2 with
power normalization and linear kernel are employed. Where λ0 in the right
figure is  513/1  

Fig. 5. Influence of dictionary size (horizontal axis) of RLS-DLA and ODL1 
algorithms with respect to averaged accuracies (vertical axis). 



perhaps implies that SVM favors small λd because that makes 
the dictionary learning algorithm RLS-DLA focuses on only a 
subset of (representative) atoms. Also, the trend of λc provides 
two possible implications. First, SVM can easily identify a 
musical genre using the proposed codewords, if the genre is 
associated with a specific set of atoms. Second, the number of 
atoms associated with a genre might not be sparse. If an 
overly strict constraint is applied in the encoding process, 
SVM may not obtain sufficient information to discriminate 
different genres. In consequence, a loose λc enriches the 
feature representation, making it possible to include atoms 
that are specifically associated with each genre. 

V. PROBING THE TREND 

After extensive evaluations of different dictionary learning 
algorithm with many parameters, we probed with indicators 
of dictionary and qualities of signal reconstruction to disclose 
the correlation with accuracy. 

A. Analysis of Dictionary Properties 

We first analyzed the correlation between the indicators 
introduced in Section II and the accuracies obtained from 
different λd. The experimental results used here are all 
obtained by power normalization with linear kernel. 

Left part of TABLE I lists the correlations between each 

selected indicator and each accuracy using RLS-DLA, ODL1 
and ODL2. The entries marked with asterisk represent 
significant correlation between the indicator and accuracy. 
The detailed trend of the two variables with the strongest 
correlation (ODL1 and condition number) is shown in Fig. 7. 
Obviously, low condition number in ODL1 stands for good 
accuracy in most cases, as expected by the discussion in 
Section II. However, such phenomenon is not found in the 
other two algorithms. It is possible that condition number 
works fine as an indicator only when it is in a proper range. 
Because, as given in Fig. 7, the highest value is less than 90, 
the dictionaries should be well-conditioned. We find in our 
data that the range of κ varies from 786 to 21860 for RLS-
DLA, and from 345 to 551 for ODL2. Such high values imply 
that the dictionaries are relatively ill-conditioned. Why high κ 
becomes an unreliable predictor of accuracy for given 
matrices needs further investigation. We also notice that even 
RLS-DLA has the largest range of condition number, RLS-
DLA has the best accuracy among all. Therefore, we can only 
infer that κ can be used as a proper indicator only when the 
value is appropriate and for matrices trained in the same way. 

As can be read from TABLE I, the coherence seems to be 
too brief to be an informative measurement. In contrast, the 
redundancy of the dictionary (||DTD － I||F) is negatively 
correlations with the accuracy for all algorithms (same trend); 
The correlation is significant for the case of RLS-DLA. This 
indicates that a dictionary achieves higher accuracy when 
most of atoms are not similar and thus contains more 
information. However, ODL2 has a low correlation in this 
indicator, probably due to the soft constraint formulation. 

B. Analysis of Reconstruction Error 

Besides the dictionary atoms, we sought for the relation 
between the codewords and the accuracy. In this subsection, 
regularization parameter of encoding, λc, is set to λ0 in all 
experiments and analysis. We computed several indicators 
related to objective functions and constraints used in 
dictionary learning for all codewords of GTZAN, including 
||x-Dα||F, which is the Frobenius norm of reconstruction error, 
||α||1, and ||x-Dα||F+λc||α||1. 

Right-hand side of TABLE I gives the correlations between 

Fig. 8. Dictionary sparsity λd, versus reconstruction error ||x-Dα||F (bars) and
classification accuracy (dashed line), using ODL2 for dictionary learning. 

Fig. 6. Influence of coding sparsity, λc (horizontal axis) with respect to
averaged accuracies (vertical axis). Linear kernel and power normalization
are used. 

Fig. 7. Dictionary sparsity λd, versus the condition number κ(D) (bars) and the
classification accuracy (dashed line), using ODL1 for dictionary learning. 

 



 Dictionary Properties Objective Values 

 μ κ(D) ||DTD -I||F ||x-Dα||F ||α||1 ||x-Dα||F+λc||α||1 

RLS-DLA -0.0884 -0.1291 -0.7986* -0.8721** 0.8932** 0.8924** 

ODL1 -0.6105 -0.8422 ** -0.7008 -0.8115* 0.7764* 0.7769** 

ODL2 -0.3287 -0.1911 -0.2717 -0.9870** 0.5013 0.4999** 
 

Note: the entries marked with * stand for p ≤ 0.05 and ** for  p ≤ 0.01 
 

accuracies and the indicators. The reconstruction error shows 
the strongest correlation among all indicators. Detail behavior 
of ODL2 is shown in Fig. 8. Both RLS-DLA and ODL2 
shows a negative correlation while ODL1 shows a positive 
correlation. For RLS-DLA and ODL2, higher accuracy 
benefits from lower error, because acceptable low 
reconstruction error is required in a classification problem. 
Surprisingly, ODL1 exhibits an opposite trend, implying that 
perfect reconstruction is not necessary in all cases. The reason 
of this might stem from the properties of musical genre. For 
example, different songs would share similar contents if they 
are associated with the same genre. Such similar 
characteristics can be recognized by human listeners and 
hopefully also by an automatic classification system. This 
application then tends to extract the characteristic for each 
genre rather than using original songs for classification. 

Because larger L1-norm generally leads to less error, we 
expect that if smaller reconstruction error leads to higher 
accuracy, so does higher L1-norm. This can be seen from the 
result of RLS-DLA and ODL2. Moreover, the last column 
shows that L1-norm dominates the reconstruction error in 
correlation, since the sign and the values are almost the same 
as L1-norm for three algorithms. 

VI. CONCLUSIONS 

 In this paper, we have compared three different algorithms, 
and all of them exhibit different trends, even RLS-DLA and 
ODL1 share the same objective function. This suggests none 
of them definitely dominates others in the classification 
system. In other words, the widely-adopted objective 
functions in sparse-coding may not have a direct and relevant 
relation in accuracy. Optimal λd is between 3 and 5 for RLS-
DLA, and the suggested value in [13] for ODL2. On the other 
hand, a loose sparsity constraint is preferred for codewords to 
capture more information about the signal for classification. 
That is, different sparstiy constraints are needed for dictionary 
learning, especially different algorithms, and encoding.  Our 
analysis shows that the condition number of the dictionary is a 
reliable indicator for ODL1, whereas the redundancy of the 
dictionary is suitable for RLS-DLA. In addition, the recon-
struction error is highly correlated with the classification 
accuracy for all the three algorithms, but the trend for ODL1 
is in the opposite direction against the case for the other two. 

Therefore, we may use reconstruction error as a predictor only 
when the trend is discovered in advance. 
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