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Abstract—Prediction of driving behaviors is an important
problem in developing a next-generation driving support system.
In order to take diverse driving situations into account, it is neces-
sary to model multiple driving operation time series data. In this
study we modeled multiple driving operation time series with four
modeling methods including beta process autoregressive hidden
Markov model (BP-AR-HMM), which we used in our previous
study. We quantitatively compared the modeling methods with re-
spect to prediction accuracies, and concluded that BP-AR-HMM
excelled the other modeling methods in modeling multiple driving
operation time series and predicting unknown driving operations.
The result suggests that BP-AR-HMM estimated behaviors of a
driver and transition probabilities between the behaviors more
successfully than the other methods, because BP-AR-HMM can
deal with commonalities and differences among multiple time
series, but the others cannot. Therefore BP-AR-HMM may help
us to predict driver behaviors in real environment and to develop
the next-generation driving support system.

I. INTRODUCTION

Constantly high level of traffic accident occurrence is one
of the most serious social problems in Japan. Statistics of
Japanese police agency shows that approximately 690,000
per year of traffic accidents still occur, although the number
of accidents develops a trend to decrease [1]. Therefore it
is imperative to strive to prevent accidents furthermore, by
supporting drivers to operate cars carefully and in a human-
friendly way. Practically, some researchers enthusiastically
have developed the indices of the risk of collision and the
automatic emergency brake system for automotive vehicle,
to reduce traffic accidents [2], [3]. These researches mainly
aim to prevent traffic accidents only immediately before the
accident would occur. Recently researchers turn to think about
the estimation of driving scenes and the prediction of behaviors
of drivers in order to realize novel driving support systems [4]–
[8], not just to prevent collisions. If we can estimate driving
scenes or driver behaviors, it is possible to utilize the driving
support system like the collision preventing system according
to present driving scene, which is effective to prevent accidents
beforehand.

When driver behaviors are modeled in order to estimate
driving scenes or predict driving behaviors, hidden Markov
model (HMM) [3]–[5] that treats time series data, or its
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extension such as autoregressive hidden Markov model (AR-
HMM) [6], [7] are often used. If multiple time series data
can be assumed to have the identical set of states, transition
probabilities and output processes, they can be modeled jointly
with HMM or AR-HMM. When a dataset does not satisfy
the assumption, however, it must be modeled separately. In
practice it is not easy to judge whether we can model a set
of time series data jointly or not. In order to model driving
behaviors under diverse driving scenes, it is necessary to utilize
the novel method that can solve the problem to deal with
not only common features but also different features across
multiple time series data. Also HMM or AR-HMM have the
difficulty in model selection. If we model time series dataset
with HMM or AR-HMM we need to consider fixed number of
states, which corresponds to the number of behaviors, although
appropriate number of the states is unknown beforehand.

Fox et al. proposed novel efficient modeling method, beta
process autoregressive hidden Markov model (BP-AR-HMM)
that utilizes beta process prior and enables to model multiple
time series data considering common or different features
across a set of data, and to determine the number of the fea-
tures automatically [9]. They identified not only the common
behaviors across multiple time series, but also the specific
behavior exhibited in a specific time series using multiple
time series of motion capture data. In a previous study we
utilized BP-AR-HMM to model multiple driving operation
time series, and could predict driving operations in unknown
data successfully [10].

Our purpose of this study is to compare prediction abilities
of driving operations among four time series modeling meth-
ods, that is, HMM, AR-HMM, BP-AR-HMM, and hierarchical
Dirichlet process autoregressive hidden Markov model (HDP-
AR-HMM), which can determine the number of features
automatically as well as BP-AR-HMM [11]. In this paper we
applied the four methods to the driving behavior dataset to
model driving behaviors, and compare the prediction abilities
of BP-AR-HMM with those of HMM, AR-HMM, and HDP-
AR-HMM.

II. DRIVING BEHAVIOR MODELING

To model whole driving operation time series dataset, we
used HMM, AR-HMM, HDP-AR-HMM and BP-AR-HMM.
This section in particular describes an outline of BP-AR-HMM
with reference to HMM and its extension.



A. HMM and its model extension

To model time series data, hidden Markov model (HMM)
and autoregressive hidden Markov model (AR-HMM) are
widely used. In HMM each time point of time series has its
latent state, and the latent state generates observable variables
to model time series. And each latent state is subject to the
Markov process, so its transition to a succeeding state is con-
trolled by the transition matrix that describes the probabilities
of transition from a state to all probable states. In AR-HMM,
which is an extension of HMM, observable variables are
subject to the identical vector-autoregressive (VAR) process as
long as latent states belong to the identical state. According
to this property we can expect that AR-HMM will give more
promising result than HMM, when we apply it to data that
exhibit its dynamical behavior contiguously. If we adopt either
HMM or AR-HMM, however, it is necessary to determine the
number of states using the cross-validation or according to the
information criterion.

Fox et al. proposed an extensional model that can determine
the number of states according to training data automatically,
HDP-AR-HMM [11]. Fig. 1(a) shows the graphical model of
HDP-AR-HMM. The HDP-AR-HMM is a kind of methods
referred to as Bayesian nonparametric approaches that are
developed actively by researchers recently. The methodology
of Bayesian nonparametrics is one of the method of Bayesian
statistics, attempting to learn the model complexity automat-
ically according to training data [12]. Another property of
HDP-AR-HMM is that multiple time series can share the
identical set of states and transition probabilities between the
states, applying hierarchical Dirichlet process prior to AR-
HMM. So we can identify a certain state that reveals in certain
time series with one that reveals in another time series.

B. BP-AR-HMM

Fox et al. proposed BP-AR-HMM as a Bayesian non-
parametric approach that can model multiple related time
series data taking into account commonalities and differences
among them. Each state has its dynamical behavior, and each
dynamical behavior is represented by a specific VAR process.
As is for HDP-AR-HMM, the number of states is determined
according to the intrinsic complexity of a training dataset.
Transition from a state to its succeeding state is subject
to the Markov process as well as AR-HMM, but transition
probabilities are determined for each time series respectively.
Fig. 1(b) shows the graphical model of BP-AR-HMM.

Authors assume that there exists N time series data and they
share common dynamical behaviors θ1, θ2, . . . . Binary indi-
cator variable fi = [fi1, fi2, . . .] represents which dynamical
behaviors time series i exhibits. When time series i exhibits
dynamical behavior k , it is represented as fik = 1, and fik
can be defined by Bernoulli process and represented as:

fik|ωk ∼ Bernoulli (ωk) (1)

where mass ωk is a mass of an atom in a draw B that
is generated by beta process conjugate to Bernoulli process,
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Fig. 1. Graphical model of (a) HDP-AR-HMM and (b) BP-AR-HMM.

which is represented by base measure B0, ωk and θk:

B|B0 ∼ BP (c,B0) (2)

B =

∞∑
k=1

ωkδθk (3)

where δθk represents measure concentrated at θk, referred to
as an atom at θk. The total mass of a base measure B0 is
B0(Θ) = α where Θ is a probability space. In this study,
a concentration parameter c of beta process is set to 1. Beta
process is conjugate to Bernoulli process, and marginalizing
it along B results to gain predictive distributions known as
Indian buffet process (IBP) [13]. In time series i , transition
from a state to its succeeding state is subject to Dirichlet
distribution:

π
(i)
j |fi, γ, κ ∼ Dir ([γ, . . . γ, γ + κ, γ, . . .]⊗ fi) (4)

where ⊗ denotes the element-wise vector product, and κ is
a hyperparameter that adds additional mass to self-transition
probability. Let y(i)

t denote observable variable of time series
i at time t , and z

(i)
t latent state. If we assume each dynamical

behavior is r-order VAR process, the relation between a state
and a corresponding observation can be formulated as follow:
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e
(i)
t (k) ∼ N (0,Σk) (7)

where dynamical behavior θk consists of θk = {Ak,Σk} ,
and VAR coefficient matrix Ak = [A1k,A2k, ...,Ark] .



Fig. 2. Course 1 and 2. The subject was instructed to drive the car clockwise
on course 1, and counterclockwise on course 2.

They applied matrix-normal inverse-Wishart distribution
(MNIW) to {Ak,Σk} as prior distribution. In this study, we
assumed that the order of VAR process r is 1. Assigned
parameters and estimation method are the same as our previous
study [10]. The code of BP-AR-HMM developed by Fox is
available on [14].

C. Measurement of driving behavior data

In this study, we measured data in a real road environment.
A subject was a 35 year-old eyesight-corrected male who
drove on a daily basis, and had neither any disease nor
disability of vision nor motor. We instructed him to drive our
experimental car along the two courses (Fig. 2), and to make
a stop after every lap he went around the course. The total
number of laps are five for each course respectively. During the
experiment there are other cars than ours around and people
occasionally walked across the road. We attached sensors to
the experimental car, so we could measure accelerator opening
rate, brake pressure and steering angle of the car. We measured
these three driving operations with sampling rate 10Hz that is
enough to model driving behaviors, and concatenated them
into the observation column vector y

(i)
t . We have already

confirmed the correspondence between the estimated state
sequences obtained from applying BP-AR-HMM to our time
series data and the locations of the car on the courses, which
is consistent across laps [15].

D. Evaluation methods of prediction accuracy

Finally we evaluate prediction accuracies of an unknown
time series with learned models. Takano et al. evaluated the
prediction accuracy of their proposed method according to the
mean absolute error (MAE) [5]. We follow the evaluation of
the study and evaluate the prediction accuracies of HMM, AR-
HMM, HDP-AR-HMM and BP-AR-HMM. Another way to
evaluate the prediction accuracies of models is to calculate
the root mean squared error (RMSE), which is equivalent to
biased estimation of the standard deviation of residual error.
We also use RMSE to evaluate the prediction accuracies.

III. RESULT

We first applied BP-AR-HMM to training time series
data that are consist of four laps for each course, sum
up to eight time series. And we obtained four estimated
state sequences and transition matrices of states for each

Fig. 3. Course 2 with estimated state sequence using BP-AR-HMM.

Fig. 4. Prediction of driving operations with BP-AR-HMM. light-colored
arrows: actual observations of driving operations, deep-colored arrows: pre-
dicted driving operations. Orange, blue and green arrows are those on the
course 2 at lower left, lower right and upper left corners of turning left,
respectively.

course, as well as seven VAR process parameters θk =
{Ak,Σk} (k = 1, 2, . . . , 7). Fig. 3 shows the relationship be-
tween the state sequence during a lap of course 2. We focus
our attentions on the locations just facing left-turn corners of
the course 2, which reveal the reproducible representation of
state sequence across laps as well as our previous study [10].
The driving state revealed state 4 (cream-color) followed by
state 7 (brown) at the location just before turning left, lower
left, lower right, and upper left corners of the course 2.

Next we show the result of predictions of driving operations
of test data, fifth lap of course 2 (Fig. 4). Light-colored and
deep-colored arrows show actual observations and predicted
driving operations respectively. Each arrow represents the
change of driving operations during the interval of 0.1 second.
Predicted accelerator opening rates are not presented because
their values keep around 0% during left-turn corners. We could
predict the sudden decrease of brake pressure before turning
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Fig. 5. Comparison of prediction accuracies among modeling methods with
respect to MAE (top) and RMSE (bottom). MAE and RMSE are calculated
for the brake pressure and the steering angle on left-turn corners.

left. Predicted driving operations almost trace the trends of
actual observations, except the inherent fluctuation.

Fig. 5 shows the MAE and RMSE of HMM, AR-HMM,
HDP-AR-HMM and BP-AR-HMM. We calculated MAE and
RMSE for the brake pressure and the steering angle, because
the prediction errors of the accelerator opening are pretty
small comparing with probable values of actual observation. In
HMM and AR-HMM, the numbers of states that perform best
in terms of MAE are selected. We can see that BP-AR-HMM
gave better prediction performances than the other methods
with respect to both MAE and RMSE.

IV. DISCUSSION

In the previous study, we confirmed that the driving op-
eration sequence of unknown time series can be predicted
with estimated dynamical behaviors by BP-AR-HMM [10].
In this paper, we applied four modeling methods including
BP-AR-HMM to multiple time series of driving operation
data in order to model driving behaviors. And we compared
prediction accuracies among modeling methods in terms of
MAE and RMSE, and found that BP-AR-HMM gave the
best performance among them. BP-AR-HMM excelled AR-
HMM and HDP-AR-HMM although each method has the
vector-autoregressive property of driving operations. This may
be because BP-AR-HMM can deal with commonalities and
differences among multiple time series, but the others cannot.
In addition, different parameter estimation schemes of these
methods might affect the prediction abilities.

As we saw in Fig. 3, the same driving state patterns
revealed in front of left-turn corners on course 2 across laps.
Taniguchi et al. [8] encoded driving behavior time series data
into the sequence of hidden state labels of sticky hierarchical
process hidden Markov model (sHDP-HMM), and analyzed
them based on nested Pitman-Yor language model (NPYLM).
They discovered the same sequences of latent state labels
in certain different positions on the experimental course.
Inspecting whether some similar patterns of state transition
exist in driving operation time series is our future work.

Our future work also includes (i) adding multiple subjects or
diverse driving situations to training data, and (ii) enlarging
the size of dataset. The inspections might give us profound
knowledge in developing the novel adaptive driving support
system.
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