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Abstract— This paper overviews a series of recent advances in
adaptive processing and learning for audio source separation. In
real world, speech and audio signal mixtures are observed in re-
verberant environments. Sources are usually more than mixtures.
The mixing condition is occasionally changed due to the moving
sources or when the sources are changed or abruptly present or
absent. In this survey article, we investigate different issues in au-
dio source separation including overdetermined/underdetermined
problems, permutation alignment, convolutive mixtures, contrast
functions, nonstationary conditions and system robustness. We
provide a systematic and comprehensive view for these issues
and address new approaches to overdetermined/underdetermined
convolutive separation, sparse learning, nonnegative matrix fac-
torization, information-theoretic learning, online learning and
Bayesian approaches.

I. INTRODUCTION

We are surrounded by sounds and noises in presence of

room reverberation. The observed mixtures are usually less

than source signals. The mixing condition is prone to be varied

by the moving sources or in case of source replacement. It

becomes challenging to estimate the desired audio and speech

signals and develop a comfortable acoustic communication

channel between humans and machines. Audio source separa-

tion in realistic conditions has been a fascinating avenue for

research which is crucial for broad extensions and applications

ranging from speech enhancement, speech recognition, music

retrieval, sound classification, human-machine communication

and many others. How to extract and separate a target audio

or speech signal from noisy and nonstationary observations

is now impacting the communities of signal processing and

machine learning.

The traditional blind source separation (BSS) approaches

based on independent component analysis (ICA) were de-

signed to resolve the instantaneous mixtures by optimizing

a contrast function or an independence measure. In previous

BSS methods, the frequency characteristics and location of

each sources and how these sources were mixed were not so-

phisticatedly investigated. Solving the instantaneous mixtures

did not truly reflect the real reverberant environment which

structurally mixed the sources as the convolutive mixtures

[25][31]. The underdetermined problem in presence of more

sources than sensors may not have been carefully treated [30].

The contrast functions may not flexibly and honestly measure

the independence for an optimization with convergence [7].

The static mixing system could not catch the underlying

dynamics in source signals and sensor networks. The uncer-

tainty of system parameters may not be precisely characterized

so that the robustness against adverse conditions was not

guaranteed [5][9][15].

Generally, signal processing and machine learning provide

fundamental knowledge and algorithm to resolve different

issues in audio source separation. In the past years, there

have been a remarkable progress on development of cutting-

edge adaptive processing and learning algorithms for source

separation and its applications. Machine learning has been one

of the most rapidly growing areas in international conferences

and journals. The goal of this paper is to overview a series

of recent advances in adaptive processing and learning al-

gorithms for BSS in presence of speech and music signals.

In this paper, we address general issues in an audio source

separation system including permutation problem, overdeter-

mined/underdetermined convolutive mixtures, optimization of

contrast function, nonstationary mixing condition and model

regularization. We provide a comprehensive and unified view

for these issues and present a systematic survey over the

recent important solutions to overdetermined/underdetermined

convolutive separation [14][24][26], sparse source separa-

tion [3], reverberant source separation [31], nonnegative ma-

trix factorization (NMF) [8][12][27], information-theoretic

learning [6][9], online learning [9] and Bayesian inference

[4][18][19][28]. We address how these algorithms are con-

nected and why they work for source separation particularly

in speech and music applications.

The remaining of this paper is organized into three sections.

Section 2 addresses key issues in BSS system and discusses

some challenging issues in real-world audio source separation.

The competing solutions to these components and issues are

generally categorized into two parts: the front-end processing
and the back-end learning, which are detailed in Second 3

and Section 4, respectively. Section 5 shall summarize this

overview study and point out future directions on adaptive

processing and learning for audio source separation and ap-

plications.

II. CHALLENGES IN AUDIO SOURCE SEPARATION

Audio source separation is known as a challenging re-

search topic and has had a big progress in recent years.
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Fig. 1. Some issues in adaptive audio source separation.

In particular, the challenges in speech separation and recog-

nition have been impacting the development of practical

automatic speech recognition systems and attracting the at-

tention of many researchers in different communities, e.g.

machine learning, audio signal processing and spoken lan-

guage processing as illustrated by the recent CHiME challenge

(http://spandh.dcs.shef.ac.uk/chime challenge/).

In this study, we review some advances in adaptive audio

source separation which are generally classified into front-

end processing and back-end learning as shown in Figure

1. A number of adaptive processing and learning algorithms

will be introduced to deal with different issues in audio

source separation. In front-end processing, we highlight on the

adaptive signal processing to analyse the information on each

source, such as its frequency characteristics and location, or

identifying how the sources are mixed. The input signals are

processed through several processing components to obtain

the separated signals. In this section, we review a number

of high-impacting works on frequency-domain audio source

separation which could align the permutation ambiguities [26],

separate the convolutive mixtures [28], identify the number

of sources [3], resolve the overdetermined/underdetermined

problem [2][30] and compensate for the room reverberation

[31].

The back-end learning is devoted to recover the source

signals by using only the information about their mixtures

observed in each microphone without possessing frequency

and location information on each source. We build a statistical

model for the whole system and infer the model by using

the mixtures. Machine learning algorithms are developed for

audio source separation. The model-based speech separation

and recognition could be established [20]. In this section,

we present the estimation of demixing parameters through

construction and optimization of information-theoretic contrast

function [6][7]. The solutions to music source separation based

on NMF [12][27] and sparse learning [8] are introduced. Next,

we focus on the uncertainty modeling for the regularized signal

separation in accordance with Bayesian perspective [18]. The

nonstationary and temporally-correlated audio source separa-

tion [9] is presented.

III. FRONT-END PROCESSING

Considering the issue of unknown number of sources, a

Gaussian mixture model with Dirichlet prior for mixture

weight parameter was proposed to identify the direction-of-

arrival (DOA) of source speech signal from individual time-

frequency units. This model was applied to estimate the

number of sources and deal with the sparse source separation

[3][4]. Moreover, it is popular to apply linear filtering and

spectrum enhancement methods for reverberant speech pro-

cessing which is applied for speech recognition in reverberant

environment [31]. In this section, we mainly focus on the

solutions to frequency-domain blind source separation which

are applied to resolve the overdetermined/underdetermined

problems and the permutation alignment.

A. Overdetermined System

When the number N of microphones is enough for the

number M of sources (in a determined M = N or overde-

termined M < N case), we employ the complex-valued

ICA to separate the frequency bin-wise mixtures. Let xft =
[xft1, . . . , xftN ]T ∈ C

N be N dimensional complex vector

that represents N microphones’ observations at frequency

f and time t. ICA obtains the separated signals ŝft =
[ŝft1, . . . , ŝftM ]T ∈ C

M by a linear transformation

ŝft = Wfxft , t = 1, . . . , T (1)

with a frequency-dependent separation matrix Wf of size

M×N . The matrix Wf is optimized so that the distribution of

the vector elements ŝftm, t = 1, . . . , T is far from a Gaussian

distribution. Various optimization learning rules have been

proposed, for example FastICA [17] or one based on natural

gradient [1][10]. In the learning rule, a non-linear function is

utilized to evaluate how similar or different the distribution of

each element ŝftm is compared with the Gaussian distribution.

For a complex-valued variable obtained as a result of short-

time Fourier transform (STFT), a polar coordinate based non-

linear function [21] is effective.

There is scaling ambiguity in an ICA solution. For an audio

source separation task, the scaling ambiguity is resolved by

trying to represent the observed signals at microphones with



scaled separated signals. For this purpose, we calculate the

inverse matrix Af = [af1, . . . , afM ] = W−1
f or the Moore-

Penrose pseudo inverse matrix Af = [af1, . . . , afM ] = W+
f

of the separated matrix. By multiplying Af on both sides of

(1), we have

Af ŝft =
M∑

m=1

afmŝftm = xft . (2)

Then we obtain a vector s̆(m)
ft of the scaled (ambiguity-

resolved) separated signals as

s̆(m)
ft = afmŝftm . (3)

B. Underdetermined System

When the number N of microphones is insufficient for the

number M of sources (in an underdetermined M > N case),

we typically employ the method based on time-frequency

masking, where we need to estimate which source has the

largest amplitude for each time frequency slot (f, t). For that

purpose, we apply a clustering method to observation vectors

xft and to calculate the posterior probability p(Cm|xft) that

a vector xft belongs to a cluster Cm. Then, time frequency

masks are made by

Mftm =

{
1 p(Cm|xft) ≥ p(Cm′ |xft), ∀m′ �= m
0 otherwise,

(4)

and the separated signals are obtained by

ŝ(m)
ft = Mftmxft . (5)

In terms of clustering methods, one based on an anechoic

propagation model [2][24] is easy and simple, and works well

under low reverberant conditions. However, to cope with more

complicated real-room sound propagation, frequency bin-wise

clustering has been proposed [26]. Specifically, a Gaussian

mixture model (GMM)

p(xft|Θ) =

M∑
m=1

πfm p(xft|afm, σ2
fm) (6)

with a complex Gaussian density function of the form [26]

p(x|afm, σ2
fm) =

1

(2πσ2
fm)N−1

× exp

(
−||x − (aH

fmx) · afm||2
σ2
fm

) (7)

is assumed for each frequency bin f , and we estimate a

parameter set Θ = {πf1, af1, σ2
f1, . . . , πfM , afM , σ2

fM} that

maximizes the likelihood p(Xf |Θ) =
∏T

t=1 p(xft|Θ). In (6),

afm is the mean vector, σ2
fm is the variance, and πfm is the

mixture ratio of the m-th cluster. In (7), (aH
fmx) ·afm denotes

the orthogonal projection of x onto the subspace spanned

by afm. After the parameter set is estimated, the posterior

probabilities used in (4) is given by

p(Cm|xft) =
πfm p(xft|afm, σ2

fm)∑M
m=1 πfm p(xft|afm, σ2

fm)
. (8)

C. Permutation Alignment

The method based on ICA or GMM, described in previous

Subsections, performs a source separation task in a frequency

bin-wise manner. Therefore, we need to align the permutation

ambiguity of the ICA or GMM results in each frequency bin so

that a separated signal in the time domain contains frequency

components from the same source signal. This problem is well

known as the permutation problem of frequency-domain BSS

[22]. Although various approaches to the permutation problem

have been proposed [25], the following approach based on the

dominance measures [23][26] performs very well.

When using ICA, we employ the power ratio

r
(m)
f (t) =

||̆s(m)
ft ||2∑M

m=1 ||̆s(m)
ft ||2

(9)

of the scaled separated signals (3) as a dominance measure

[23]. On the other hand, when using a GMM for time-

frequency masking, we employ the posterior probability (8)

r
(m)
f (t) = p(Cm|xft) (10)

as a dominance measure [26]. After calculating the dominance

measure, we basically interchange the indices m of the sep-

arated signals so that the correlation coefficient ρ(r
(m)
f , r

(m)
f ′ )

between the dominance measures at different frequency bins

f and f ′ is maximized for the same source. The optimization

procedure is described in details in a reference [26].

IV. BACK-END LEARNING

In this section, we focus on the machine learning solutions

to audio source separation. We consider blind speech or music

separation as a learning problem without special treatment on

convolutive mixtures or extraction of frequency features and

location information on each source signal. The information-

theoretic learning, online learning, dictionary learning, sparse

learning and Bayesian learning are investigated.

A. Information-Theoretic Contrast Function

Information-theoretic learning is important to find the

demixing solution to audio source separation. Let the observa-

tion vector xt = [xt1, . . . , xtN ]T from N microphones at time

frame t be mixed by xt = Ast where A is an unknown N×M
mixing matrix and st = [st1, . . . , stM ]T denotes a vector of M
mutually-independent source signals. For the case of N = M ,

BSS problem is resolved by ICA method which optimizes

a contrast function D(X,W) measuring the independence or

non-Gaussianity of the demixed signals ŝt based on a demixed

matrix or separation matrix W, i.e. ŝt = Wxt. The demixing

matrix can be estimated in accordance with the gradient

descent algorithm or the natural gradient algorithm [1] from

a set of audio signals X = {x1, . . . , xT }

W(n+1) = W(n) − η
∂D(X,W(n))

∂W(n)
W(n)TW(n) (11)

where n is the iteration index and η is the learning rate. The

scaled natural gradient algorithm was proposed to improve



learning process by imposing a posteriori scalar gradient con-

straint [13]. The metrics of likelihood function, negentropy and

kurtosis are popular to serve as ICA contrast functions. More

meaningfully, the information-theoretical contrast function is

adopted to measure the independence between the demixed

signals.

The statistical hypothesis test was recently proposed to

carry out an information measure of confidence towards in-

dependence by investigating the null hypothesis H0 where

the demixed signals Ŝ = {ŝ1, . . . , ŝT } are independent against

the alternative hypothesis H1 where the demixed signals are

dependent [6]. The contrast function was formed as a log

likelihood ratio given by

DNLR(X,W) = log p(Ŝ|H0)− log p(Ŝ|H1). (12)

However, the parametric Gaussian distribution is not allowed

to represent demixed signals in p(Ŝ|H) by using ICA method.

The nonparametric distribution based on Parzen window

density function was applied to develop the nonparametric

likelihood ratio (NLR) contrast function for speech separation.

This method was extended to unsupervised learning of acoustic

hidden Markov models for speech recognition. More generally,

the measure of independence is calculated as a divergence

between the joint distribution of the demixed signals and

the product of marginal distributions of individual demixed

signals. This divergence measure equals to zero in case that

the condition of independence is met. A general convex

divergence measure was derived by substituting a general

convex function f(t) = 4
1−α2

[
1−α
2 + 1+α

2 t− t(1+α)/2
]

into

Jensen’s inequality to construct a contrast function for ICA

optimization. This convex divergence DC(X,W, α) is written

by [7]

2

1− α2

T∑
t=1

{
2

[
1

2

(
p(Wxt) +

M∏
m=1

p(wmxt)

)](1+α)/2

−
⎡
⎣p(Wxt)(1+α)/2) +

(
M∏

m=1

p(wmxt)

)(1+α)/2
⎤
⎦
}

(13)

where W = [wT
1, . . . ,wT

M ]T and α is an adjustable con-

vexity parameter. By substituting the nonparametric distri-

bution p(·) and adjusting the convexity parameter α, we

estimated different nonparametric solutions to the demixing

matrices Ŵ for audio source separation. In cases of α = 1
and α = −1, the general convex divergence is realized

to the convex-Shannon divergence and the convex-logarithm
divergence where the convex functions based on Shannon’s

entropy and negative logarithm are adopted, respectively. The

convergence in optimizing convex divergence for ICA was

improved by choosing the convexity parameter with sharp

learning curve [7]. Information-theoretic learning is illustrated

to work for adaptive source separation.

B. Nonnegative Matrix Factorization

The information-theoretic learning is further extended to

dictionary learning based on the nonnegative matrix factor-

ization (NMF) which is recently hot issue in audio source

separation [11]. NMF attempts to decompose the nonnegative

mixed samples X ∈ R
N×T into a product of nonnegative

mixing matrix A ∈ R
N×M and nonnegative source signals

S ∈ R
M×T by minimizing a divergence measure D(X,A, S)

between X and AS. NMF is a parts-based representation which

only allows additive combination and can be directly applied to

decompose the nonnegative mixed audio signals. The absolute

values of short-time Fourier transform (STFT) are calculated

to form X. The standard NMF is fulfilled according to a

regularized least square (RLS) criterion DRLS(X,A, S) with

sparsity constraint∑
n,t

|Xnt − [AS]nt|2 + γa
∑
n,m

f(Anm) + γs
∑
m,t

f(Smt) (14)

where γa ≥ 0 and γs ≥ 0 denote the regularization parameters.

The sparseness measure f(Anm) = |Anm|, f(Anm) = Anm

or f(Anm) = Anm log(Anm) could be imposed in (14).

More recently, the α divergence [12], convex divergence [7]

and Itakura-Saito (IS) divergence [27] were treated as objective

function to derive solution to NMF. For example, IS divergence

is written by DIS(X,A, S) =
∑

n,t(
Xnt

[AS]nt
− log Xnt

[AS]nt
− 1)

which depends only on the ratio Xnt

[AS]nt
. This property is

favorable for analyzing music and speech signals where low

frequency components have much higher energy than high

frequency components. In [16][27], minimizing IS divergence

was shown to be equivalent to maximizing the log-likelihood

log p(X̃|A, S) based on the multivariate complex-valued Gaus-

sian distributions where X̃ denotes a matrix of STFT complex-

valued coefficients. The multiplicative updating rule for NMF

was obtained by

Anm ← Anm

√√√√∑
t

XntSmt

([AS]nt)2∑
t

Smt

[AS]nt

, Smt ← Smt

√√√√∑
n

XntAnm

([AS]nt)2∑
n

Anm

[AS]nt

.

(15)

However, this solution is only designed for the case of an

M -dimensional observation frame xt at a single frequency

bin f . The multichannel time-frequency NMF was devel-

oped for music source separation where an M -dimensional

mixed signals xft was extended to different frequency bins

{(f, t), 1 ≤ f ≤ F}. A clustering procedure of NMF bases

was performed. The separate bases were used to recover

individual source signals.

In [8], Bayesian NMF was proposed for monaural music

source separation which decomposed a single-channel mixed

signal X into a rhythmic signal Xr and a harmonic signal

Xh. Let the nonnegative monaural matrix X ∈ R
F×T in

time-frequency domain be chunked into L segments {X(l)}.

Each segment is represented by X(l) = X(l)
r + X(l)

h =

ArS(l)
r +A(l)

h S(l)
h where {S(l)

r , S(l)
h } are two groups of segment-

dependent encoding coefficients, A(l)
h denotes the bases for

harmonic source which are individual for different segments



l, and Ar denotes the bases for rhythmic source which

are shared across segments. Assuming the basis compo-

nents are Gamma distributed and the encoding coefficients

S(l) = {S(l)
r , S(l)

h } are Laplacian distributed by p([S(l)]|λ(l)) =
1
2λ

(l) exp{−λ(l)[S(l)]} with hyperparameter λ(l), Bayesian
group sparse learning for NMF was performed to resolve the

underdetermined problem in audio source separation through

a Gibbs sampling procedure over different parameters and

hyperparameters of Gamma distributions and Laplacian dis-

tributions. BSS was viewed as a probabilistic framework with

latent variables including source signals, mixing coefficients,

modeling errors and their associated parameters.

C. Bayesian Learning for Nonstationary Source Separation

In real-world audio source separation, we face the chal-

lenges of changing sources or moving speakers, namely the

source signals may abruptly appear or disappear, the speakers

may be replaced by new ones or even moving from one

location to the other. The mixing conditions and source

signals are accordingly nonstationary and should be traced

to assure robustness in nonstationary source separation [9]. A

meaningful approach to deal with the robustness issue in audio

source separation is constructed from Bayesian perspective
[5][18]. The Bayesian approaches to blind speech separation

[9][18] are examined. Some prior information is introduced

for uncertainty modeling and knowledge integration. Model

regularization and system robustness could be improved. Let

X(l) = {x(l)t } denote a set of mixed signals at segment l. The

signals are mixed by a linear combination of M unknown

source signals S(l) = {s(l)t } using a mixing matrix A(l),

i.e. considering a noisy ICA model x(l)t = A(l)s(l)t + ε
(l)
t

where E(l) = {ε(l)t } denotes the noise signals. We assume

that A(l) and S(l) are unchanged within a segment l but

varied across segments. To tackle the nonstationary source

separation, we attempt to incrementally characterize the vari-

ations of A(l) and S(l) from the observed segments X (l) =
{X(1),X(2), . . . ,X(l)}. Online learning is conducted to com-

pensate for nonstationary conditions of mixing coefficients and

source signals segment by segment. At each learning epoch

l, we first accumulate to calculate the predictive distribution

of current ICA parameters Θ(l) = {A(l), S(l),E(l)} based on

previous segment data X (l−1). When new data X(l) = {x(l)t }
of segment l is enrolled, the posterior distribution is cor-

rected by p(Θ(l)|X (l)) ∝ p(X(l)|Θ(l))p(Θ(l)|X (l−1)) which

is proportional to the product of a likelihood function of

current data segment X and a posteriori distribution given

the previous data segments X (l−1). In this sense, the modes

of posterior distributions are updated in an online manner

Θ(0) → Θ(1) → · · · → Θ(l).

In particular, source signals are represented by a mixture of

Gaussian distributions p(s(l)t |Θ(l)) given by

M∏
m=1

[
K∑

k=1

π
(l)
mkN (s

(l)
m,t|μ(l)

mk, (γ
(l)
mk)

−1)

]
(16)

with parameters Θ(l) consisting of mixture weights Π(l) =

{π(l)
mk}, means M(l) = {μ(l)

mk} and precisions R(l) =

{γ(l)
mk}. The noise vector ε

(l)
t is assumed to be Gaussian

N (ε
(l)
t |0, (B(l))−1) with zero mean and diagonal precision

matrix B(l) = diag{β(l)
n }. The prior density of N × M

mixing matrix A(l) = {a(l)nm} is distributed by p(A(l)|α(l)) =∏N
n=1

[∏M
m=1 N (a

(l)
nm|0, (α(l)

m )−1)
]
. Importantly, the hyper-

parameter α
(l)
m is known as an automatic relevance determina-

tion (ARD) [29], which reveals the activity of a source signal

s
(l)
m,t. The matrix A(l) is prone to be sparse with near zero

entries at the mth column of A(l) if the estimated ARD α
(l)
m

is large. The mth source is likely inactive at segment l. The

redundant sources are disregarded automatically.

To fulfill full Bayesian approach to audio source separation,

we consider the uncertainties of parameters and hyperpa-

rameters Θ(l) = {A(l), S(l),E(l),Π(l),M(l),R(l),B(l),α(l)}
which are latent variables and compensate these uncer-

tainties by using the solution obtained by optimizing the

marginal likelihood over all latent variables. Conjugate priors
p(Θ(l)|Φ(l−1)) are introduced to characterize the uncertainties

of {Π(l),M(l),R(l),B(l),α(l)}. The hyperparameters Φ(l−1)

are continuously updated from history data X (l−1). With these

conjugate priors, the integral in marginal likelihood has closed-

form solution and is calculated efficiently. This nonstationary

Bayesian method was formulated based on the variational

Bayesian expectation maximization (VB-EM) algorithm [9]

where the variational inference was solved by maximizing the

lower bound of marginal likelihood.

More recently, we present the solution to nonstationary

and temporally correlated source separation where the mixing

condition is changed continuously and the temporal correlation

in time-series signals, e.g. mixing coefficients and source

signals, is taken into account. Online learning and Gaussian
process (GP) [19] are merged into a separation system which

compensates for the nonstationary and temporally correlated

mixing environments and source signals, respectively. Consid-

ering a noisy ICA model with time-varying mixing matrix A
(l)
t

at segment l and time bin t, the temporally correlated mixing

coefficients are generated by the distributions of nonparametric

latent functions. GP flexibly explores the unknown temporal

structure of a
(l)
nm,t. A latent function f(·) is employed to

connect the relation between current coefficient a
(l)
nm,t and its

past p coefficients �a(l)nm,t−1 = [a
(l)
nm,t−1, . . . , a

(l)
nm,t−p]

T by

a
(l)
nm,t = f(�a(l)

nm,t−1) + ε
(l)
nm,t (17)

where ε
(l)
nm,t denotes the white noise. This

function is generated from a zero-mean Gaussian

with a variance κ(�a(l)nm,t−1,�a
(l)
nm,τ−1) given by

ξ
(l−1)
anm exp

[
−λ(l−1)

anm

2

∥∥∥�a(l)
nm,t−1 −�a(l)

nm,τ−1

∥∥∥2] which

is an exponential-quadratic kernel function with

hyperparameters {λ(l−1)
anm , ξ

(l−1)
anm }. The GP prior

p(a(l)nm|μ(l−1)
anm ,R(l−1)

anm
) for the mixing coefficients

a
(l)
nm = [a

(l)
nm,1, . . . , a

(l)
nm,L]

T written by N (a(l)nm|0,K(l−1)
anm

)



where [K(l−1)
anm

]tτ = κ(�a(l)
nm,t−1,�a

(l)
nm,τ−1) + δtτ . With GP

prior and its hyperparameters, VB-EM algorithm is again

applied for model inference of the proposed online GP. The

variational and sequential Bayesian inference is presented to

implement a dynamic audio source separation system [9].

V. CONCLUSIONS

We have presented a series of adaptive methods which

were developed for different issues in audio source separation.

These methods were systematically categories into front-end

processing and back-end learning. In front-end processing,

we addressed high-performance solutions to overdetermined

and underdetermined problems which are based on the pro-

cessing of complex-valued time-frequency signals and the

noise-masking method using Gaussian mixture model. The

permutation problem was solved according to the correlation

coefficient between dominance measures at different frequency

bins. In back-end learning, we addressed the importance of

information-theoretical learning for ICA optimization. The

recent methods of sparse learning and dictionary learning

based on nonnegative matrix factorization were presented

for speech/music source separation. The online learning and

Bayesian learning designed for nonstationary source separa-

tion were also presented for improving the robustness for

audio source separation. In the future, the directions of single-

channel and multi-channel dereverberation are still impacting

the communities of signal processing and machine learning.

The application of audio source separation in robust speech

recognition is continuing to be attractive for future studies.
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