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Abstract— Photo collage, which constructs a compact and vis-
ually appealing representation from a collection of input images, 
provides the best convenient and impressive user experience. 
Previous approaches for automatic collage generation are always 
analogized as optimization problems, in which the researchers 
are trying to find the best balance between maximizing the visi-
bility of photos’ salient areas as well as compactly arrange the 
collage canvas layout. However, automatic saliency detection can 
sometimes be harmful since we cannot guarantee all of the user’s 
interest areas are well-kept. On the other hand, the rapid devel-
opment of mobile technology also calls for a robust solution of 
fast collage generation without any computation-expensive pro-
cesses such as saliency detection and graph-cut. The PicWall 
approach proposed in this paper offers real-time collage genera-
tion. Given the expected canvas sizes, it tightly packs the input 
images while keeping their aspect ratios and orientations un-
changed. Experiments show that it costs less than 0.5ms for a 
100-photo collage generation. Besides, various PicWall-based 
applications are also demonstrated.  

I. INTRODUCTION 

“A picture is said to be worth a thousand words.” With the 
rapid development of multimedia technology and the popular-
ity of digital devices, people can conveniently access to any 
kinds of digital photographic devices (e.g. digital camera, 
mobile phone, tablet PC, and web camera) and we are getting 
used to log our daily lives by taking photos rather than using 
text. Nevertheless, without advanced photo organization and 
visualization strategy, the huge amount of image resources 
such as hundreds of vacation photos in a single folder or thou-
sands of images returned by a web query may draw a poten-
tial problem with respect to information access and acquisi-
tion. Recently, a new image visualization technique, namely 
photo collage, provides a compact and pleasing representation 
for summarizing and displaying a set of photos on single can-
vas. The main advantage of collage is that it allows the user to 
efficiently browse multi-images at once while still keeping the 
important details of them. 

For collage generation, one typical idea is to minimize the 
viewing areas of the input images first, only leaving the ROIs 
(Region of Interest), and then create a layout and organize 
them into the main canvas. As a representative work, re-
searchers first extracted the salient regions of each image and 
then arrange them by solving a Maximum a Posterior (MAP) 
problem [1]. They introduced a very efficient Markov chain 
Monte Carlo (MCMC) method for the optimization and illus-
trated potential applications such as desktop image browsing 

as well as image search summarization.  Xiao et al. presented 
an image segmentation based saliency detection algorithm [2]. 
They first reduced the image to around 20 representative color 
clusters. Then, the clusters were assigned with a 
back/foreground probability and further classified as “subject”, 
“background”, or “distraction”. The final ROIs were defined 
based on the region labels with an expanded margin. In [3], 
the saliency computation was accelerated by introducing an 
integral map (similar to integral image) thus it was easy to get 
the sum of importance values in a rectangular region. In “Au-
toCollage” [4], saliency areas were extracted by graph-cut 
with a special respect to particular objects (e.g. faces). To 
create a seamless transition between input images that are 
adjacent in the canvas, alpha-poisson blending was also in-
cluded in the collage generation.  

Meanwhile, since automatic ROI extraction is usually time-
consuming and it may have the potential harm for losing im-
age’s content information, some non-saliency detection based 
approaches were proposed as alternatives. Intuitively, they 
proposed to use pre-defined layout templates [5]. The collage 
was then filled by matching the metadata of photos to the 
template cells based on an optimization algorithm. Although 
templates were always carefully designed which make the 
final generated collage compact in composition and the can-
vas area to be fully utilized, while coping with a set of images 
with different aspect ratios (width/height) and orientations, 
the main drawback was that it requires pre-processing steps 
such as cropping and shrinking. On the other hand, in [6], 
Atkins proposed BRIC (Block Recursive Image Composition) 
which ensured to keep the original aspect ratios without crop-
ping the input photos. BRIC adopted the “slicing structure” 
used in floorplan design [7]. It solved two linear equations of 
N (number of input images) variables in O(N3) complexity. In 
[8], Fan further improved BRIC under the framework of ge-
netic algorithm. His work included a “slicing structure”-based 
fast computation of photo layout as well as a new definition 
of cost function. 

As a novel image visualization technique, photo collage has 
been applied to many fields and applications. For consumer 
photo album, a genetic algorithm was proposed to generate 
the personalized album pages [9]. And in [10], applications 
for photo-on-photo composition were considered. It is also 
worth mentioning “Tiling Slideshow”, in which they created 
music-driven photo collages for images having similar char-
acteristics [11]. For video summary, “video collage” was gen-
erated by first selecting representative frames, extracting 



ROIs, and seamlessly arranging on the canvas [12]. Compar-
ing with traditional video summarization schemes, “video 
collage” enabled a more compact and visually appealing 
presentation of video content, and thus it is seen as an effec-
tive and efficient presentation for video browsing and under-
standing. In [13], the media files were formed into a matrix-
like representation according to when and where they were 
taken. The user can easily browse the media collection by 
scrolling the time or space axis. On mobile platform, “iPhoto-
book” was proposed as a solution to the problem of photo 
book creation on mobile devices. It constructed mobile-
oriented collages and help the user better organize photos 
with great convenience [14]. 

In this paper, we propose a fast photo collage generation 
method – PicWall. As a general solution oriented to multiple 
usage contexts and device platforms, PicWall prevails other 
approaches in the following points. 

1.   Fast: Given a set of input images, PicWall can generate 
photo collage on-the-fly, which is particular suitable for real-
time applications such as image retrieval service, online 
games, and human-computer interaction. According to exper-
imental results, it costs less than 0.5ms for a 100-input-photo 
collage generation (excluding the time for image reading), 
and less than 0.1ms for 20-input-photo collage. 
2.   User-Adjustable: PicWall allows the user to customize the 
size of collage by setting canvas height and width.  
3.   Content-Preserved: PicWall assures to fully preserve the 
visual content of input images. Although these photos can be 
stretched, their aspect ratios are strictly kept, and there is no 
cropping as well as changing of orientations. 

In Section II, we are going to introduce the basics of binary 
tree based collage generation for non-size-adjustable canvas. 
Section III and IV further extends this algorithm and show 
how to create a size-adjustable collage. The experimental re-
sults and demo applications are shown in Section V. Finally, 
we give the conclusion in Section VI. 

II. NON-SIZE-ADJUSTABLE COLLAGE GENERATION 

Our collage generation algorithm is enlightened by the idea 
of “slicing structure” and full binary tree [6], [8]. The notion 
of “slicing structure” originates from floorplan design in 
VLSI circuit layout [7]. We have the following definitions. 

    Canvas dissection: A subdivision of a given rectangle 
canvas by horizontal (“H”) cut and vertical (“V”) cut into a 
finite number of non-overlapping tile boxes. 

    Horizontal cut: As shown in Fig. 1, by drawing a hori-
zontal cut line on the canvas, it is divided into two non-
overlapping tile boxes. 

    Vertical cut: Same to horizontal cut. A vertical cut line is 
drawn on the canvas to divide it into two tile boxes. 

A “slicing structure” is a canvas dissection that can be ob-
tained by recursively cutting rectangles into smaller rectan-
gles. Intuitively, we can map a full binary to any kinds of 
“slicing structure”. The full binary tree requires each of its 

nodes to be either a leaf or a node with exactly two children. 
Fig. 1 illustrates a simple slicing structure and the correspond-
ing full binary tree. 

 
This observation motivates us to generate a random binary 

tree first and then map the tree into a collage layout. Given N-
image dataset, the generated binary tree should have exactly N 
leaves. Meanwhile, for all the other N – 1 inner nodes, either 
“H” or “V” label is assigned. Once a full binary tree is con-
structed, how can we place all the input tile boxes into the 
canvas? The layout generation has two steps: (1) Bottom-up 
recursively calculating aspect ratio ar. (2) Top-down propa-
gating image position. 

The aspect ratio arparent of a parent rectangle (inner node) 
can be calculated from its left and right child arleft and arright. 
It is proved that: 

 “V” cut:   arparent   =   arleft   +   arright.  (1) 
 “H” cut:   1/arparent   =   1/arleft   +   1/arright. (2) 

Before showing the details of collage generation algorithms, 
we first define the data structure of a binary tree node. 

 
TABLE   I 

 DATA STRUCTURE OF BINARY TREE NODE 
 

SYMBOL DATA TYPE DESCRIPTION 

Split char Denote the dissection type. “H” for 
horizontal, “V” for vertical. 

ar float The current aspect ratio of this node. 

arexp float The expected aspect ratio of this node. 

lchild TreeNode* Pointer to its left child (if exists). 

rchild TreeNode* Pointer to its right child (if exists). 

parent TreeNode* Pointer to its parent (if exists). 

Vertical cut 

Horizontal cut 

Fig. 1   Mapping a full binary tree to “slicing structure”. 
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Once the aspect ratios are calculated, we can set the size of 

the canvas accordingly. For example, we have a pre-defined 
canvas width (w = 800px), and the calculated aspect ratio 
(Algorithm 1) for the whole canvas is 2, which indicates the 
height is 400px (h = w / ar). Then, the positions for each of 
the inner and leaf nodes can be propagated top-to-down, from 
the tree-root to the bottom layer (Algorithm 2). 

 
For N input images, the full binary tree has (N - 1) inner 

nodes and N leaf nodes. Generating random tree, calculating 
aspect ratio, and propagating position have O(N) complexity, 
respectively. In all, non-fixed-aspect ratio generation can be 
finished in O(N) time. 

III. SIZE-ADJUSTABLE COLLAGE GENERATION 

 

The algorithms in Section II enable photo collage genera-
tion. However, many applications have a size requirement on 
the canvas, and such a “random-size” collage generation 
seems to be useless. For instance, some mobile displays re-
strict the resolution to be 320×480 or 240×320. And it turns to 
be 1024×768 on Tablet PC and Laptop. In this section, we are 
going to improve the approaches in Section II and make the 
canvas size / aspect ratio adjustable for the user. 

Given N input images and an expected canvas size, the 
proper generation of binary tree based photo layout is not easy. 
For instance, we have 20 images, the generated full binary 
tree has: 

n0 = 20    (0-child leaf-node) 
n1 = 0   (1-child inner-node) 
n2 = n0 - 1 = 19  (2-child inner node) 

 The total node number is n = n0 + n2 = 39. For n-node full 
binary tree, the number of different tree structures H(n) satis-
fies a modified Catalan sequence: 

                                                             0,  1
( )

(0) ( 1) ... ( 1) (0)    2
n n

H n
H H n H n H n

=⎧
= ⎨ ⋅ − + + − ⋅ ≥⎩

 (3) 

H(39) = 1767263190. For each of the 19 inner nodes, its 
split-type can be either ‘H’ or ‘V’. The total tree number T(n) 
= 1767263190× 219 ≈ 927 trillion. Noted T(n) exponentially 
grows as n gets larger, how to efficiently find a suitable solu-
tion among extremely large search spaces (trillions or even 
thousands of trillions) is the problem to be solved. 

Look back at the collage generation algorithm in Section II. 
The result is a “random-sized” collage which is not adjustable 
by the user. This is because of the following random factors: 

a)    Leaf nodes are randomly associated with images. 
b)   Inner nodes are randomly set with a split type, either “H” 
(Horizontal cut) or “V” (Vertical cut). 

Rather than cover all the search spaces, the demand of real-
time processing requires us to rapidly generate an acceptable 
near-optimal solution. On the other side, we improve the 
“random” algorithm in Section II and propose a “guided” tree 
generation scheme by using “divide-and-conquer” paradigm 

A divide-and-conquer algorithm recursively breaks down 
the original problem into sub-problems of the same type, until 
it becomes simple enough to be solved directly. To be more 
specific, we have the following steps. 

A. Preparation: Prepare the input image list L, expected 
aspect ratio arexp, create the initial tree root node, and set 
the number of associated images N. 

B. Divide step: Given input  tuple (L, arexp, N, node*) , 
assuming N ≠ 1 and N ≠ 2 (base cases): 

1) Randomly generate a split type (“V” or “H”) 
for the current node. 

2) Create child nodes l_node and r_node 
3) Set the number of associated images with the 

newly generated child nodes: 
Nleft = Nright = N / 2 



4) Set split type (“V” or “H”) to node 
5) If split type is “V”, initialize: 

arexp-left = arexp-right = aexp / 2 
Else: arexp-left = arexp-right = arexp × 2 

C. Conquer step: Solve sub-problems recursively: 
(L, arexp-left, Nleft, l_node*) 

(L, arexp-right, Nright, r_node*) 

In any recursive algorithm, base cases serve as the termina-
tor for recursion and there is considerable freedom in the 
choice of the base cases. Without loss of generality, since the 
number of associated images is decreasing in a geometrical 
ratio, we select base cases when it is 1 or 2. As you can find 
in Table II, the two base cases exist when we are going to 
generate leaf nodes for the binary tree. In other words, it per-
forms the action of dispatching images from the input list to 
the tree leaves. 

Case N = 1: Given the expected aspect ratio and the input 
list L, we need to select one image i with respect to the ex-
pected aspect ratio arexp and remove i from L. This can be 
down by pre-sorting L at the initialization step and do binary 
search when it is invoked. 

Case N = 2: Given the expected aspect ratio and the input 
list L, we need to select two images i and j to best fit arexp. 
Considering the split type of parent node*, we have the fol-
lowing situations. 

 “V” cut:  arexp   ≈   ari   +   arj (4) 

 “H” cut:  1/arexp   ≈   1/ari   +   1/arj (5) 
 

 

TABLE   II 
TREE GENERATION BY USING DIVIDE-AND-CONQUER 

 

 
 

Once we sort the input images according to their aspect ra-
tios, the solution for i and j can be found by traversing the 
sorted list with two pointers Pfront and Prear. Noticing if the 
images are sorted in ar ascending order, they are also sorted 
in (1/ar) descending order, without loss of generality, we only 
consider the “V” cut situation in Algorithm 3. 

The complexity for finding two images by Algorithm 3 is 
O(N). Finding one image (case 1) by binary search is O(logN). 
Thus, generating a N-leaf tree can be finished in O(N2). 

IV. TREE ADJUSTMENT 

Although the algorithm in Section III improves the tree 
generation by using divide-and-conquer paradigm, it still can-
not guarantee that the generated canvas meets the user’s size 
(aspect ratio) requirement. In this section, we propose a novel 
top-down adjustment algorithm to refine the generated binary 
tree. We achieve this by traversing the inner nodes and adjust-
ing their split types (“H” or “V”). The algorithm runs with the 
complexity of O(N). 

Intuitively, “V” cut makes the node’s aspect ratio larger as 
it is the sum of its child nodes’ aspect ratios. On the contrary, 
“H’ cut makes the node’s aspect ratio smaller. Since we have 
already defined the expected aspect ratio for the whole canvas 
(the top-level root node in the binary tree), the basic idea is: 

 If current node’s ar is too large than arexp, the split type 
should be “H”, and we can set arexp for its child nodes 
accordingly.  

 If current node’s ar is too small than arexp, the split type 
should be “V”, and we can set arexp for its child nodes 
accordingly. 

Algorithm 4 shows the proposed fast tree adjustment. It is 
understandable that certain values of aspect ratio are impossi-
ble to reach (e.g. given 3 images with aspect ratio [1.0, 1.3, 
1.5] but the target aspect ratio is 5.0). We skip over these cas-
es and set an acceptance range (e.g. [arexp ± 5%]) for near-
optimal solution. The PicWall system iteratively runs tree 
adjustment until the result aspect ratio is acceptable. In most 
cases, this scheme performs successfully. However, another 
round of tree generation is invoked again under the following 
cases: 

1) The adjustment number exceeds the maximum al-
lowed value (defines as 100 in current implementation). 

2) After tree adjustment, no node has been updated. 

<leaf node> : select one image i from set L. 
The aspect ratio of i should best fit the arexp 

<leaf node> : select two image i, j from set L. 
Their aspect ratio should best fit the arexp 

<inner node> : split the number N (3 =1 + 2). 
Create two child nodes and recursively 
calculate. 

<inner node> : split the number N (4 =2 + 2). 
Create two child nodes and recursively 
calculate. 



 

V. EXPERIMENTS 

In this section, we first show the performance comparison 
with state-of-the-art approaches [6, 8]. Then a comprehensive 
test of efficiency is given. Finally, we illustrate several Pic-
Wall-based applications on various device platforms. 

A. Performance Comparison 

The first experiment compares PicWall with BRIC [6] and 
FAST  [8]. Since all of the three approach provides content-
preserved collage generation as well as user-personalized 
canvas size and aspect ratio, we simply use the image dataset 
and evaluation criterion proposed in [8]. 

 Dataset: [8] introduced two datasets. One is called “San 
Francisco” dataset which includes 10 images with the 
following aspect ratios {2.05, 1.53, 1.49, 1.74, 0.54, 1.58, 
0.67, 1.20, 2.08, 1.46}. Another one is 25-photo Hawaii 
dataset with aspect ratios as {0.88, 1.33, 1.44, 0.94, 1.84, 
1.82, 1.61, 1.35, 1.17, 1.87, 1.65, 1.49, 1.49, 1.73, 1.65, 
0.64, 1.91, 0.50, 0.88, 1.74, 1.49, 0.50, 1.70, 1.77, 1.43}. 

 Canvas setting: For San Francisco dataset, the canvas is 
set as 13×19 (inches2). For Hawaii dataset, it is 24×16 
(inches2). 

 Evaluation metric: [8] proposed two cost functions C1 
and C2. C2 measures the coverage of the canvas. 
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where N is the number of input images, si = (wi×hi)/S is the 
normalized size of the i-th image (S is the canvas size). 

In [6] and [8], the user is allowed to select several high-
lighted photos to show them in bigger tile boxes. For instance, 
in San Francisco dataset, the desired size for “Golden Gate 
Bridge” image is up to 5 and others are set to 1. In Hawaii 

dataset, the “Waipio Valley Lookout” is set to 5 and others 
are set to one. PicWall approach also enables the user to set 
desire sizes to a sub-set of input images. As shown in Fig. 2, 
the region I (green) is generated based on the sub-set images 
with respect to their desired sizes. After laying region I at the 
top-left corner of the main canvas, we can further generate 
two collages to fill the blank areas (region II and region III).  
The difference between Fig. 2-(a) and (b) is the generation 
order of region II and III - whether to fill the horizontal blank 
first or the vertical blank first. 
 

 
Cost function C1 is proposed for evaluating the matching of 

image sizes to the user’s expectation. 
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where ti is the normalized desired size of the i-th image. And 
ki equals to 5 if (si/ti) < 0.5. Otherwise, ki equals to 1. Experi-
mental results are shown in Table III and IV (T is calculated 
excluding the time of image I/O). 

 
TABLE   III 

PERFORMANCE COMPARISON ON 10-IMAGE DATASET 
 

Run 
BRIC FAST PicWall 

C1 C2 T(s) C1 C2 T(s) C1 C2 T(ms) 
1 0.32 0.23 0.16 0.0065 0.035 0.49 0.07294 0.04461 0.055 

2 0.56 0.30 0.17 0.0058 0.038 0.49 0.07321 0.03538 0.050 

3 0.022 0.19 0.16 0.0098 0.090 0.48 0.07270 0.04769 0.049 

4 0.56 0.30 0.16 0.0200 0.048 0.47 0.07321 0.03538 0.031 

5 0.058 0.03 0.17 0.0054 0.047 0.48 0.07109 0.03833 0.048 

Avg 0.30 0.21 0.16 0.0096 0.052 0.48 0.07263 0.040278 0.047 
 

TABLE   IV 
PERFORMANCE COMPARISON ON 25-IMAGE DATASET 

 

Run 
BRIC FAST PicWall 

C1 C2 T(s) C1 C2 T(s) C1 C2 T(ms) 
1  0.092 0.068 3.8 0.0092 0.034 4.2 0.05287 0.01583 0.129 

2 0.12 0.032 3.8 0.018 0.039 4.1 0.04698 0.02000 0.118 

3 0.18 0.065 3.8 0.014 0.027 4.1 0.04292 0.02125 0.113 

4 0.13 0.065 3.8 0.012 0.037 4.2 0.06548 0.00333 0.172 

5 0.007 0.26 3.8 0.011 0.035 4.2 0.04747 0.01750 0.110 

Avg 0.092 0.099 3.8 0.013 0.035 4.2 0.05114 0.01558 0.128 

 
Both FAST and PicWall perform better than BRIC. FAST 

shows its advantage with respect to user-desired sizes (C1). 
However, the proposed PicWall can generate a more accurate 

(a) (b) 

Region I Region I 

Region II Region III 

Region III 

Region II 

Fig. 2   Collage with user-customized image sizes. 



canvas with precise width and height. One thing worth to 
mention is that the processing time for both BRIC and FAST 
grows rapidly while the number of input images increases. 
Even for the FAST approach, when the number of images is 
up to 25, it requires several seconds for collage generation 
and that seems to be unacceptable in scenarios such as online 
image retrieval and human-computer interaction. On the other 
hand, PicWall runs 104 times faster, which shows its capacity 
for real-time applications. Fig. 3 shows the photo collage gen-
erated by our approach. 
 

 
B. Efficiency Analysis 

We then show the evaluation with respect to the efficiency 
of PicWall. Our dataset includes 100 images returned by 
Google image search. Their aspect ratios range from 0.67 to 
2.00. 

The first evaluation aims to find the relationship between 
the number of input images and algorithm efficiency (num. of 
tree adjustments, num. of tree generations, and processing 
time). We fix the expected canvas aspect ratio to 1.5 and 
change the number of input images from 20 to 100. Table V 
shows the experimental details (Results in rows are the aver-
age values of 1000 runs). 

 
TABLE   V 

EVALUATION FOR DIFFERENT NUMBER OF INPUT IMAGES. 
 

Number of 
Input images 

Tree 
Adjustment 

Tree 
Generation 

Processing 
Time (ms) 

20 13.035 1.104 0.055785 
30 45.094 1.407 0.127750 
40 29.645 1.259 0.144606 
50 9.543 1.071 0.131016 
60 1.883 1.000 0.136629 
70 2.165 1.004 0.171236 
80 14.561 1.121 0.261470 
90 23.611 1.206 0.349438 

100 25.182 1.218 0.413838 
 

Intuitively, the processing time is closely related to the 
number of tree adjustments and tree generations. And the tree 
generation depends on a random factor since we randomly set 
the split type to a newly generated node. According to the 
experimental results, the number of tree generations and ad-
justments not only depends on the number of input images but 
also depends on input aspect ratios and the expected canvas 

size. In all, what we noticed is that the processing time rough-
ly increases when the number of input images gets larger. 
Besides, the proposed PicWall can swiftly generate photo 
collages. It requires less than 0.5ms for a 100-image input and 
less than 0.1ms for 20-image input. Fig. 4 illustrates the re-
sults of collages with different number of input photos. 

 
In accordance with previous analysis, processing time is in-

fluenced by many factors such as the input images and the 
expected canvas aspect ratio. We also find that when the input 
image number is fixed, the trend of processing time is in cor-
respondence with the trend of tree adjustment and tree genera-
tion (Fig. 5). 

 
Fig. 5   Evaluation for collages with different number of images. 

Num. of tree adjustments 

Num. of tree generations 

Processing time (ms) 

Aspect ratio 

Aspect ratio 

Aspect ratio 

(a) 20-image collage. (b) 60-image collage. 

 (d) 100-image collage.  (c) 80-image collage. 

Fig. 4   Collages generated by different number of images. 

San Francisco Hawaii 

Fig. 3   Generated collages by PicWall. 



It is worth noticing that the processing time is roughly in 
direct proportion with the number of tree generations. Com-
paring with tree adjustment (O(N)), the complexity of tree 
generation is much higher (O(N2)), and it accounts for the 
majority of the total processing time when we chose a large N 
(here, N=60). Besides, we still notice that the proposed algo-
rithm has the ability to deal with rare aspect ratios such as 
0.10 and 10.00. In all, the canvases can be generated efficient-
ly, usually in less than 0.5ms. 

C. Applications 

As a real-time photo collage generation algorithm, PicWall 
shows its potential to be applied in various usage contexts and 
devices platforms. We demonstrate five applications with 
respect to (1) Retrieval result presentation; (2) Personal photo 
album visualization; (3) Mobile image browsing; (4) Video 
summarization; (5) Image to manga conversion. 

(1)   Retrieval result presentation 

Modern online image search engines such as Google Imag-
es provide the best convenience for user to retrieval images 
based on text query and visual content. While focusing on the 
retrieval precision and recall, how to help users effectively 
visualize the returned results still remains a problem. As 
shown in Fig. 6, once a visual query is submitted, the retrieval 
results are listed in rows. Since these images usually have 
different orientations and aspect ratios, to compactly arrange 
them together, image resize and cropping are employed. As 
illustrated in Fig. 6, after entering the visual query, a list of 
images with different aspect ratios are returned. To effectively 
arrange the results in a user-friendly interface, cropping is 
adopted for some images. The photo on the top-right is the 
original image returned by the 20-th result. Because of the 
existence of image cropping (dashed box), some of the visual 
contents are lost.  

 
As illustrated in Fig. 7, PicWall provides a novel represen-

tation for the returned images as well as preserves their origi-

nal content. Moreover, as shown in the yellow rectangle, the 
top-K returned images are highlighted with bigger size and 
placed on the top-left corner. However, the downside for the 
collage-based image retrieval is that it loses the sequence in-
formation of the result images. The user cannot distinguish 
which one ranks exactly at the top-10 place and which one 
ranks at the top-100 place. 

 
(2)   Personal photo album visualization 

Fig. 9 illustrates our demo for using photo collage to visu-
alize the user’s personal photo repository. Our demo system 
organizes all the local photos by their related social con-
tacts/friends. At the very beginning, the user can chose one of 
the friends for photo browsing (Fig. 9-a). Then, all the 
events/folders related with that person are listed (Fig. 9-b). As 
shown in (Fig. 9-c), PicWall provides compact and palatable 
photo visualization with strong visual impact. If the user is 
interested in specific image, he can further view the details by 
clicking that photo (Fig. 9-d). 

(3)   “Shake & Show” – Mobile Image Browsing   

Recently, the rapid development of mobile devices and the 
fast-growing of smartphone market have aroused great atten-
tion. One of the most remarkable advantages for mobile is its 
portability and rich human interaction such as swipe, pinch, 
and touch-hold. Based on the PicWall algorithm, we can pro-
vide an interesting feature called “Shake & Show” for brows-
ing images on mobile phone. As shown in Fig. 8, when the 
user is browsing images, once he shakes his mobile, a new 
collage will be immediately generated and shown on the 
screen.  

 Fig. 8   Shake & Show for mobile image browsing. 

Fig. 7   Retrieval result presentation by PicWall.  
(The top-5 returned results are high-lighted with bigger size)  

Fig. 6   Retrieval interface of Google Image. 

Input Query 

Returned Results 



 
(4)   Video Summarization and Visualization 

Video is the collection of sequential frames/images. Previ-
ous works such as “Video Collage” [12] enabled the selection 
of representative frames, extraction of salient regions, and 
seamless ROI arrangement on a given canvas. In this paper, 
we propose a dynamic “Video Wall” which combines video 
collage and video player together. Given an input video, the 
generated video collage is a kind of synthesized image that 
enables the user to quickly learn the whole story. Meanwhile, 
since the video player has already been embedded in Video 
Wall, the user is able to skip to any parts of the video by 
clicking the tile boxes. Currently, we have two kinds of video 
collages: Shots Wall and Highlights Wall.  

 The Shots Wall splits the video into shots and organizes 
the cover frames into the collage canvas. At the very be-
ginning, the input video is automatically segmented into 
m shots, where m refers to the user customized shots 
number. Then, representative cover frames are extracted 
and further organized together. All the shots are sorted 
sequentially according to their timestamps. As shown in 
Fig. 10 (a), the pre-sorted video shots are arranged from 
top to bottom and from left to right. 

 In Highlights Wall, the video highlights are firstly de-
tected based on the motion feature. Then, all the high-
light shots are ranked according to their ‘highlight 
scores’. In the step of collage generation, shots with 
higher scores are intended to be matched to larger tile 
boxes. As shown in Fig. 10 (b), the numbers in the or-
ange circles stand for the rank of highlight scores. 

 

 

(a) Shots Wall: The whole video is segmented into 30 shots and all the
sequential shots are arranged from top to bottom/from left to right. (Num-
bers in the blue circles) 

Fig. 10   Video Wall for video summarization and visualization. 

(b) Highlights Wall: A serious of highlight shots is firstly extracted and
used as video summary. For the collage composition, larger tile box 
corresponds to higher highlight score. (Numbers in the orange circles) 

(a) (b) (a) (b)

(d) (c) 
Fig. 9   Personal photo album visualization. 



 

(5)   Image to Manga Conversion 

With the rapid progress of multimedia technology, ama-
teur-oriented image to manga conversion has caused wide 
research interest recently [15, 16]. Meanwhile, manga page 
layout has also become a core problem in computational 
manga [17].  

 
Comparing with general photo collage, manga layout gen-

eration has the following uniqueness. 

1)   Fixed reading sequence. Rather than presenting a collec-
tion of static images, the images in a manga page are deliber-
ately arranged in order to tell a story. This means that the se-
quential order of the input images should be strictly preserved.  

As shown in Fig. 12, for each of the inner node, its left 
child Nleft is guaranteed to locate on the left side (or top) of its 
right child Nright. The conventional reading order (left-to-right 
and top-to-bottom) can be naturally preserved by sequentially 
assigning input image to tree leaves. 

It is also worth mentioning the RIGHT-TO-LEFT reading 
order of Japanese manga. Traditional Japanese manga starts at 
the back of the book. It is read from right-to-left. Then skip 
down to the next row. Speech bubbles, words and sound ef-
fects are also read from right-to-left. To mimic this, the image 
arrangement scheme should be slightly changed. For each of 
the “V” cut node, its left child should be placed on the right 
side of its right child. Fig. 13 illustrates the comparison be-
tween general cartoon reading order and Japanese manga 
reading order. 

2)   Portrait manga page & vertically aligned rows. Manga 
pages are divided into several rows (Fig. 11). Each of these 
rows is read from right-to-left, and then skips down to the 
next row. The composition of vertically aligned rows deter-
mines the portrait print orientation of manga pages. In other 
words, the aspect ratio is always less than 1.0 and the slit type 
for top-level root node should be fixed to “H”.  

For commercial manga, the number of images displayed on 
single canvas is usually less than 10. According to our exper-
imental results, the binary tree based layout generation runs 
super-fast. The computation can be finished in less than one 
millisecond. 

N1 N2 

V 

N1 N2 

H Nleft 

= N1 
Nright 

= N2 

Ntop = N1 

Nbottom=N2 

(a) “V” cut (b) “H” cut 

Fig. 12   Relationship between leaf order and image position. 

Input 1 

Input 2 

Input 3 

Input 4 

Input 5 

Output Manga Page 
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H V 

V 

1 2 

3 4 5 

Layout tree 

Row 1 

Row 2 

Row 3 

Fig. 11   Image to manga conversion. 

(c) Combining “V” and “H” cut. 



 

 

VI. CONCLUSION 

We propose PicWall, a real-time photo collage solution in 
this paper.  Our approach characterizes on three points: (1) 
Fast collage generation; (2) User-customized canvas size; (3) 
Content-preserved layout. Motivated by the “slicing struc-
ture” in floorplan design, we first generate a full binary tree 
and then it can be mapped into a collage composition. To 
generate collages with user-customized sizes, we further im-
prove the tree generation scheme by introducing “divide-and-
conquer” paradigm as well as a fast tree adjust algorithm. In 
the experiments, we compare our approach with existing col-
lage generation schemes with respect to efficiency and effec-
tiveness. Moreover, several PicWall-based applications have 
also been discussed. 
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Fig. 13   JP manga reading order V.S. general cartoon reading order. 


