
PicWall: Photo Collage On-the-fly

Zhipeng Wu and Kiyoharu Aizawa
Department of Information and Communication Engineering, the University of Tokyo, Tokyo, Japan.

E-mail: zhipengwu@hal.t.u-tokyo.ac.jp
E-mail: aizawa@hal.t.u-tokyo.ac.jp

Abstract— Photo collage, which constructs a compact and vis-
ually appealing representation from a collection of input images,
provides the best convenient and impressive user experience.
Previous approaches for automatic collage generation are always
analogized as optimization problems, in which the researchers
are trying to find the best balance between maximizing the visi-
bility of photos’ salient areas as well as compactly arrange the
collage canvas layout. However, automatic saliency detection can
sometimes be harmful since we cannot guarantee all of the user’s
interest areas are well-kept. On the other hand, the rapid devel-
opment of mobile technology also calls for a robust solution of
fast collage generation without any computation-expensive pro-
cesses such as saliency detection and graph-cut. The PicWall
approach proposed in this paper offers real-time collage genera-
tion. Given the expected canvas sizes, it tightly packs the input
images while keeping their aspect ratios and orientations un-
changed. Experiments show that it costs less than 0.5ms for a
100-photo collage generation. Besides, various PicWall-based
applications are also demonstrated.

I. INTRODUCTION

“A picture is said to be worth a thousand words.” With the
rapid development of multimedia technology and the popular-
ity of digital devices, people can conveniently access to any
kinds of digital photographic devices (e.g. digital camera,
mobile phone, tablet PC, and web camera) and we are getting
used to log our daily lives by taking photos rather than using
text. Nevertheless, without advanced photo organization and
visualization strategy, the huge amount of image resources
such as hundreds of vacation photos in a single folder or thou-
sands of images returned by a web query may draw a poten-
tial problem with respect to information access and acquisi-
tion. Recently, a new image visualization technique, namely
photo collage, provides a compact and pleasing representation
for summarizing and displaying a set of photos on single can-
vas. The main advantage of collage is that it allows the user to
efficiently browse multi-images at once while still keeping the
important details of them.

For collage generation, one typical idea is to minimize the
viewing areas of the input images first, only leaving the ROIs
(Region of Interest), and then create a layout and organize
them into the main canvas. As a representative work, re-
searchers first extracted the salient regions of each image and
then arrange them by solving a Maximum a Posterior (MAP)
problem [1]. They introduced a very efficient Markov chain
Monte Carlo (MCMC) method for the optimization and illus-
trated potential applications such as desktop image browsing

as well as image search summarization. Xiao et al. presented
an image segmentation based saliency detection algorithm [2].
They first reduced the image to around 20 representative color
clusters. Then, the clusters were assigned with a
back/foreground probability and further classified as “subject”,
“background”, or “distraction”. The final ROIs were defined
based on the region labels with an expanded margin. In [3],
the saliency computation was accelerated by introducing an
integral map (similar to integral image) thus it was easy to get
the sum of importance values in a rectangular region. In “Au-
toCollage” [4], saliency areas were extracted by graph-cut
with a special respect to particular objects (e.g. faces). To
create a seamless transition between input images that are
adjacent in the canvas, alpha-poisson blending was also in-
cluded in the collage generation.

Meanwhile, since automatic ROI extraction is usually time-
consuming and it may have the potential harm for losing im-
age’s content information, some non-saliency detection based
approaches were proposed as alternatives. Intuitively, they
proposed to use pre-defined layout templates [5]. The collage
was then filled by matching the metadata of photos to the
template cells based on an optimization algorithm. Although
templates were always carefully designed which make the
final generated collage compact in composition and the can-
vas area to be fully utilized, while coping with a set of images
with different aspect ratios (width/height) and orientations,
the main drawback was that it requires pre-processing steps
such as cropping and shrinking. On the other hand, in [6],
Atkins proposed BRIC (Block Recursive Image Composition)
which ensured to keep the original aspect ratios without crop-
ping the input photos. BRIC adopted the “slicing structure”
used in floorplan design [7]. It solved two linear equations of
N (number of input images) variables in O(N3) complexity. In
[8], Fan further improved BRIC under the framework of ge-
netic algorithm. His work included a “slicing structure”-based
fast computation of photo layout as well as a new definition
of cost function.

As a novel image visualization technique, photo collage has
been applied to many fields and applications. For consumer
photo album, a genetic algorithm was proposed to generate
the personalized album pages [9]. And in [10], applications
for photo-on-photo composition were considered. It is also
worth mentioning “Tiling Slideshow”, in which they created
music-driven photo collages for images having similar char-
acteristics [11]. For video summary, “video collage” was gen-
erated by first selecting representative frames, extracting

ROIs, and seamlessly arranging on the canvas [12]. Compar-
ing with traditional video summarization schemes, “video
collage” enabled a more compact and visually appealing
presentation of video content, and thus it is seen as an effec-
tive and efficient presentation for video browsing and under-
standing. In [13], the media files were formed into a matrix-
like representation according to when and where they were
taken. The user can easily browse the media collection by
scrolling the time or space axis. On mobile platform, “iPhoto-
book” was proposed as a solution to the problem of photo
book creation on mobile devices. It constructed mobile-
oriented collages and help the user better organize photos
with great convenience [14].

In this paper, we propose a fast photo collage generation
method – PicWall. As a general solution oriented to multiple
usage contexts and device platforms, PicWall prevails other
approaches in the following points.

1. Fast: Given a set of input images, PicWall can generate
photo collage on-the-fly, which is particular suitable for real-
time applications such as image retrieval service, online
games, and human-computer interaction. According to exper-
imental results, it costs less than 0.5ms for a 100-input-photo
collage generation (excluding the time for image reading),
and less than 0.1ms for 20-input-photo collage.
2. User-Adjustable: PicWall allows the user to customize the
size of collage by setting canvas height and width.
3. Content-Preserved: PicWall assures to fully preserve the
visual content of input images. Although these photos can be
stretched, their aspect ratios are strictly kept, and there is no
cropping as well as changing of orientations.

In Section II, we are going to introduce the basics of binary
tree based collage generation for non-size-adjustable canvas.
Section III and IV further extends this algorithm and show
how to create a size-adjustable collage. The experimental re-
sults and demo applications are shown in Section V. Finally,
we give the conclusion in Section VI.

II. NON-SIZE-ADJUSTABLE COLLAGE GENERATION

Our collage generation algorithm is enlightened by the idea
of “slicing structure” and full binary tree [6], [8]. The notion
of “slicing structure” originates from floorplan design in
VLSI circuit layout [7]. We have the following definitions.

 Canvas dissection: A subdivision of a given rectangle
canvas by horizontal (“H”) cut and vertical (“V”) cut into a
finite number of non-overlapping tile boxes.

 Horizontal cut: As shown in Fig. 1, by drawing a hori-
zontal cut line on the canvas, it is divided into two non-
overlapping tile boxes.

 Vertical cut: Same to horizontal cut. A vertical cut line is
drawn on the canvas to divide it into two tile boxes.

A “slicing structure” is a canvas dissection that can be ob-
tained by recursively cutting rectangles into smaller rectan-
gles. Intuitively, we can map a full binary to any kinds of
“slicing structure”. The full binary tree requires each of its

nodes to be either a leaf or a node with exactly two children.
Fig. 1 illustrates a simple slicing structure and the correspond-
ing full binary tree.

This observation motivates us to generate a random binary

tree first and then map the tree into a collage layout. Given N-
image dataset, the generated binary tree should have exactly N
leaves. Meanwhile, for all the other N – 1 inner nodes, either
“H” or “V” label is assigned. Once a full binary tree is con-
structed, how can we place all the input tile boxes into the
canvas? The layout generation has two steps: (1) Bottom-up
recursively calculating aspect ratio ar. (2) Top-down propa-
gating image position.

The aspect ratio arparent of a parent rectangle (inner node)
can be calculated from its left and right child arleft and arright.
It is proved that:

 “V” cut: arparent = arleft + arright. (1)
 “H” cut: 1/arparent = 1/arleft + 1/arright. (2)

Before showing the details of collage generation algorithms,
we first define the data structure of a binary tree node.

TABLE I

 DATA STRUCTURE OF BINARY TREE NODE

SYMBOL DATA TYPE DESCRIPTION

Split char Denote the dissection type. “H” for
horizontal, “V” for vertical.

ar float The current aspect ratio of this node.

arexp float The expected aspect ratio of this node.

lchild TreeNode* Pointer to its left child (if exists).

rchild TreeNode* Pointer to its right child (if exists).

parent TreeNode* Pointer to its parent (if exists).

Vertical cut

Horizontal cut

Fig. 1 Mapping a full binary tree to “slicing structure”.

Vertical cut

Horizontal cut I1 I2

I1 I2

I1 I2

I1

I2

Once the aspect ratios are calculated, we can set the size of

the canvas accordingly. For example, we have a pre-defined
canvas width (w = 800px), and the calculated aspect ratio
(Algorithm 1) for the whole canvas is 2, which indicates the
height is 400px (h = w / ar). Then, the positions for each of
the inner and leaf nodes can be propagated top-to-down, from
the tree-root to the bottom layer (Algorithm 2).

For N input images, the full binary tree has (N - 1) inner

nodes and N leaf nodes. Generating random tree, calculating
aspect ratio, and propagating position have O(N) complexity,
respectively. In all, non-fixed-aspect ratio generation can be
finished in O(N) time.

III. SIZE-ADJUSTABLE COLLAGE GENERATION

The algorithms in Section II enable photo collage genera-
tion. However, many applications have a size requirement on
the canvas, and such a “random-size” collage generation
seems to be useless. For instance, some mobile displays re-
strict the resolution to be 320×480 or 240×320. And it turns to
be 1024×768 on Tablet PC and Laptop. In this section, we are
going to improve the approaches in Section II and make the
canvas size / aspect ratio adjustable for the user.

Given N input images and an expected canvas size, the
proper generation of binary tree based photo layout is not easy.
For instance, we have 20 images, the generated full binary
tree has:

n0 = 20 (0-child leaf-node)
n1 = 0 (1-child inner-node)
n2 = n0 - 1 = 19 (2-child inner node)

 The total node number is n = n0 + n2 = 39. For n-node full
binary tree, the number of different tree structures H(n) satis-
fies a modified Catalan sequence:

 0, 1
()

(0) (1) ... (1) (0) 2
n n

H n
H H n H n H n

=⎧
= ⎨ ⋅ − + + − ⋅ ≥⎩

 (3)

H(39) = 1767263190. For each of the 19 inner nodes, its
split-type can be either ‘H’ or ‘V’. The total tree number T(n)
= 1767263190× 219 ≈ 927 trillion. Noted T(n) exponentially
grows as n gets larger, how to efficiently find a suitable solu-
tion among extremely large search spaces (trillions or even
thousands of trillions) is the problem to be solved.

Look back at the collage generation algorithm in Section II.
The result is a “random-sized” collage which is not adjustable
by the user. This is because of the following random factors:

a) Leaf nodes are randomly associated with images.
b) Inner nodes are randomly set with a split type, either “H”
(Horizontal cut) or “V” (Vertical cut).

Rather than cover all the search spaces, the demand of real-
time processing requires us to rapidly generate an acceptable
near-optimal solution. On the other side, we improve the
“random” algorithm in Section II and propose a “guided” tree
generation scheme by using “divide-and-conquer” paradigm

A divide-and-conquer algorithm recursively breaks down
the original problem into sub-problems of the same type, until
it becomes simple enough to be solved directly. To be more
specific, we have the following steps.

A. Preparation: Prepare the input image list L, expected
aspect ratio arexp, create the initial tree root node, and set
the number of associated images N.

B. Divide step: Given input tuple (L, arexp, N, node*) ,
assuming N ≠ 1 and N ≠ 2 (base cases):

1) Randomly generate a split type (“V” or “H”)
for the current node.

2) Create child nodes l_node and r_node
3) Set the number of associated images with the

newly generated child nodes:
Nleft = Nright = N / 2

4) Set split type (“V” or “H”) to node
5) If split type is “V”, initialize:

arexp-left = arexp-right = aexp / 2
Else: arexp-left = arexp-right = arexp × 2

C. Conquer step: Solve sub-problems recursively:
(L, arexp-left, Nleft, l_node*)

(L, arexp-right, Nright, r_node*)

In any recursive algorithm, base cases serve as the termina-
tor for recursion and there is considerable freedom in the
choice of the base cases. Without loss of generality, since the
number of associated images is decreasing in a geometrical
ratio, we select base cases when it is 1 or 2. As you can find
in Table II, the two base cases exist when we are going to
generate leaf nodes for the binary tree. In other words, it per-
forms the action of dispatching images from the input list to
the tree leaves.

Case N = 1: Given the expected aspect ratio and the input
list L, we need to select one image i with respect to the ex-
pected aspect ratio arexp and remove i from L. This can be
down by pre-sorting L at the initialization step and do binary
search when it is invoked.

Case N = 2: Given the expected aspect ratio and the input
list L, we need to select two images i and j to best fit arexp.
Considering the split type of parent node*, we have the fol-
lowing situations.

 “V” cut: arexp ≈ ari + arj (4)

 “H” cut: 1/arexp ≈ 1/ari + 1/arj (5)

TABLE II
TREE GENERATION BY USING DIVIDE-AND-CONQUER

Once we sort the input images according to their aspect ra-
tios, the solution for i and j can be found by traversing the
sorted list with two pointers Pfront and Prear. Noticing if the
images are sorted in ar ascending order, they are also sorted
in (1/ar) descending order, without loss of generality, we only
consider the “V” cut situation in Algorithm 3.

The complexity for finding two images by Algorithm 3 is
O(N). Finding one image (case 1) by binary search is O(logN).
Thus, generating a N-leaf tree can be finished in O(N2).

IV. TREE ADJUSTMENT

Although the algorithm in Section III improves the tree
generation by using divide-and-conquer paradigm, it still can-
not guarantee that the generated canvas meets the user’s size
(aspect ratio) requirement. In this section, we propose a novel
top-down adjustment algorithm to refine the generated binary
tree. We achieve this by traversing the inner nodes and adjust-
ing their split types (“H” or “V”). The algorithm runs with the
complexity of O(N).

Intuitively, “V” cut makes the node’s aspect ratio larger as
it is the sum of its child nodes’ aspect ratios. On the contrary,
“H’ cut makes the node’s aspect ratio smaller. Since we have
already defined the expected aspect ratio for the whole canvas
(the top-level root node in the binary tree), the basic idea is:

 If current node’s ar is too large than arexp, the split type
should be “H”, and we can set arexp for its child nodes
accordingly.

 If current node’s ar is too small than arexp, the split type
should be “V”, and we can set arexp for its child nodes
accordingly.

Algorithm 4 shows the proposed fast tree adjustment. It is
understandable that certain values of aspect ratio are impossi-
ble to reach (e.g. given 3 images with aspect ratio [1.0, 1.3,
1.5] but the target aspect ratio is 5.0). We skip over these cas-
es and set an acceptance range (e.g. [arexp ± 5%]) for near-
optimal solution. The PicWall system iteratively runs tree
adjustment until the result aspect ratio is acceptable. In most
cases, this scheme performs successfully. However, another
round of tree generation is invoked again under the following
cases:

1) The adjustment number exceeds the maximum al-
lowed value (defines as 100 in current implementation).

2) After tree adjustment, no node has been updated.

<leaf node> : select one image i from set L.
The aspect ratio of i should best fit the arexp

<leaf node> : select two image i, j from set L.
Their aspect ratio should best fit the arexp

<inner node> : split the number N (3 =1 + 2).
Create two child nodes and recursively
calculate.

<inner node> : split the number N (4 =2 + 2).
Create two child nodes and recursively
calculate.

V. EXPERIMENTS

In this section, we first show the performance comparison
with state-of-the-art approaches [6, 8]. Then a comprehensive
test of efficiency is given. Finally, we illustrate several Pic-
Wall-based applications on various device platforms.

A. Performance Comparison

The first experiment compares PicWall with BRIC [6] and
FAST [8]. Since all of the three approach provides content-
preserved collage generation as well as user-personalized
canvas size and aspect ratio, we simply use the image dataset
and evaluation criterion proposed in [8].

 Dataset: [8] introduced two datasets. One is called “San
Francisco” dataset which includes 10 images with the
following aspect ratios {2.05, 1.53, 1.49, 1.74, 0.54, 1.58,
0.67, 1.20, 2.08, 1.46}. Another one is 25-photo Hawaii
dataset with aspect ratios as {0.88, 1.33, 1.44, 0.94, 1.84,
1.82, 1.61, 1.35, 1.17, 1.87, 1.65, 1.49, 1.49, 1.73, 1.65,
0.64, 1.91, 0.50, 0.88, 1.74, 1.49, 0.50, 1.70, 1.77, 1.43}.

 Canvas setting: For San Francisco dataset, the canvas is
set as 13×19 (inches2). For Hawaii dataset, it is 24×16
(inches2).

 Evaluation metric: [8] proposed two cost functions C1
and C2. C2 measures the coverage of the canvas.

1

2
0

1
N

i
i

C s
−

=

= −∑ (6)

where N is the number of input images, si = (wi×hi)/S is the
normalized size of the i-th image (S is the canvas size).

In [6] and [8], the user is allowed to select several high-
lighted photos to show them in bigger tile boxes. For instance,
in San Francisco dataset, the desired size for “Golden Gate
Bridge” image is up to 5 and others are set to 1. In Hawaii

dataset, the “Waipio Valley Lookout” is set to 5 and others
are set to one. PicWall approach also enables the user to set
desire sizes to a sub-set of input images. As shown in Fig. 2,
the region I (green) is generated based on the sub-set images
with respect to their desired sizes. After laying region I at the
top-left corner of the main canvas, we can further generate
two collages to fill the blank areas (region II and region III).
The difference between Fig. 2-(a) and (b) is the generation
order of region II and III - whether to fill the horizontal blank
first or the vertical blank first.

Cost function C1 is proposed for evaluating the matching of

image sizes to the user’s expectation.

1

2
1

0
()

N

i i i
i

C k s t
−

=

= −∑ (7)

where ti is the normalized desired size of the i-th image. And
ki equals to 5 if (si/ti) < 0.5. Otherwise, ki equals to 1. Experi-
mental results are shown in Table III and IV (T is calculated
excluding the time of image I/O).

TABLE III

PERFORMANCE COMPARISON ON 10-IMAGE DATASET

Run
BRIC FAST PicWall

C1 C2 T(s) C1 C2 T(s) C1 C2 T(ms)
1 0.32 0.23 0.16 0.0065 0.035 0.49 0.07294 0.04461 0.055

2 0.56 0.30 0.17 0.0058 0.038 0.49 0.07321 0.03538 0.050

3 0.022 0.19 0.16 0.0098 0.090 0.48 0.07270 0.04769 0.049

4 0.56 0.30 0.16 0.0200 0.048 0.47 0.07321 0.03538 0.031

5 0.058 0.03 0.17 0.0054 0.047 0.48 0.07109 0.03833 0.048

Avg 0.30 0.21 0.16 0.0096 0.052 0.48 0.07263 0.040278 0.047

TABLE IV
PERFORMANCE COMPARISON ON 25-IMAGE DATASET

Run
BRIC FAST PicWall

C1 C2 T(s) C1 C2 T(s) C1 C2 T(ms)
1 0.092 0.068 3.8 0.0092 0.034 4.2 0.05287 0.01583 0.129

2 0.12 0.032 3.8 0.018 0.039 4.1 0.04698 0.02000 0.118

3 0.18 0.065 3.8 0.014 0.027 4.1 0.04292 0.02125 0.113

4 0.13 0.065 3.8 0.012 0.037 4.2 0.06548 0.00333 0.172

5 0.007 0.26 3.8 0.011 0.035 4.2 0.04747 0.01750 0.110

Avg 0.092 0.099 3.8 0.013 0.035 4.2 0.05114 0.01558 0.128

Both FAST and PicWall perform better than BRIC. FAST

shows its advantage with respect to user-desired sizes (C1).
However, the proposed PicWall can generate a more accurate

(a) (b)

Region I Region I

Region II Region III

Region III

Region II

Fig. 2 Collage with user-customized image sizes.

canvas with precise width and height. One thing worth to
mention is that the processing time for both BRIC and FAST
grows rapidly while the number of input images increases.
Even for the FAST approach, when the number of images is
up to 25, it requires several seconds for collage generation
and that seems to be unacceptable in scenarios such as online
image retrieval and human-computer interaction. On the other
hand, PicWall runs 104 times faster, which shows its capacity
for real-time applications. Fig. 3 shows the photo collage gen-
erated by our approach.

B. Efficiency Analysis

We then show the evaluation with respect to the efficiency
of PicWall. Our dataset includes 100 images returned by
Google image search. Their aspect ratios range from 0.67 to
2.00.

The first evaluation aims to find the relationship between
the number of input images and algorithm efficiency (num. of
tree adjustments, num. of tree generations, and processing
time). We fix the expected canvas aspect ratio to 1.5 and
change the number of input images from 20 to 100. Table V
shows the experimental details (Results in rows are the aver-
age values of 1000 runs).

TABLE V

EVALUATION FOR DIFFERENT NUMBER OF INPUT IMAGES.

Number of
Input images

Tree
Adjustment

Tree
Generation

Processing
Time (ms)

20 13.035 1.104 0.055785
30 45.094 1.407 0.127750
40 29.645 1.259 0.144606
50 9.543 1.071 0.131016
60 1.883 1.000 0.136629
70 2.165 1.004 0.171236
80 14.561 1.121 0.261470
90 23.611 1.206 0.349438

100 25.182 1.218 0.413838

Intuitively, the processing time is closely related to the
number of tree adjustments and tree generations. And the tree
generation depends on a random factor since we randomly set
the split type to a newly generated node. According to the
experimental results, the number of tree generations and ad-
justments not only depends on the number of input images but
also depends on input aspect ratios and the expected canvas

size. In all, what we noticed is that the processing time rough-
ly increases when the number of input images gets larger.
Besides, the proposed PicWall can swiftly generate photo
collages. It requires less than 0.5ms for a 100-image input and
less than 0.1ms for 20-image input. Fig. 4 illustrates the re-
sults of collages with different number of input photos.

In accordance with previous analysis, processing time is in-

fluenced by many factors such as the input images and the
expected canvas aspect ratio. We also find that when the input
image number is fixed, the trend of processing time is in cor-
respondence with the trend of tree adjustment and tree genera-
tion (Fig. 5).

Fig. 5 Evaluation for collages with different number of images.

Num. of tree adjustments

Num. of tree generations

Processing time (ms)

Aspect ratio

Aspect ratio

Aspect ratio

(a) 20-image collage. (b) 60-image collage.

 (d) 100-image collage. (c) 80-image collage.

Fig. 4 Collages generated by different number of images.

San Francisco Hawaii

Fig. 3 Generated collages by PicWall.

It is worth noticing that the processing time is roughly in
direct proportion with the number of tree generations. Com-
paring with tree adjustment (O(N)), the complexity of tree
generation is much higher (O(N2)), and it accounts for the
majority of the total processing time when we chose a large N
(here, N=60). Besides, we still notice that the proposed algo-
rithm has the ability to deal with rare aspect ratios such as
0.10 and 10.00. In all, the canvases can be generated efficient-
ly, usually in less than 0.5ms.

C. Applications

As a real-time photo collage generation algorithm, PicWall
shows its potential to be applied in various usage contexts and
devices platforms. We demonstrate five applications with
respect to (1) Retrieval result presentation; (2) Personal photo
album visualization; (3) Mobile image browsing; (4) Video
summarization; (5) Image to manga conversion.

(1) Retrieval result presentation

Modern online image search engines such as Google Imag-
es provide the best convenience for user to retrieval images
based on text query and visual content. While focusing on the
retrieval precision and recall, how to help users effectively
visualize the returned results still remains a problem. As
shown in Fig. 6, once a visual query is submitted, the retrieval
results are listed in rows. Since these images usually have
different orientations and aspect ratios, to compactly arrange
them together, image resize and cropping are employed. As
illustrated in Fig. 6, after entering the visual query, a list of
images with different aspect ratios are returned. To effectively
arrange the results in a user-friendly interface, cropping is
adopted for some images. The photo on the top-right is the
original image returned by the 20-th result. Because of the
existence of image cropping (dashed box), some of the visual
contents are lost.

As illustrated in Fig. 7, PicWall provides a novel represen-

tation for the returned images as well as preserves their origi-

nal content. Moreover, as shown in the yellow rectangle, the
top-K returned images are highlighted with bigger size and
placed on the top-left corner. However, the downside for the
collage-based image retrieval is that it loses the sequence in-
formation of the result images. The user cannot distinguish
which one ranks exactly at the top-10 place and which one
ranks at the top-100 place.

(2) Personal photo album visualization

Fig. 9 illustrates our demo for using photo collage to visu-
alize the user’s personal photo repository. Our demo system
organizes all the local photos by their related social con-
tacts/friends. At the very beginning, the user can chose one of
the friends for photo browsing (Fig. 9-a). Then, all the
events/folders related with that person are listed (Fig. 9-b). As
shown in (Fig. 9-c), PicWall provides compact and palatable
photo visualization with strong visual impact. If the user is
interested in specific image, he can further view the details by
clicking that photo (Fig. 9-d).

(3) “Shake & Show” – Mobile Image Browsing

Recently, the rapid development of mobile devices and the
fast-growing of smartphone market have aroused great atten-
tion. One of the most remarkable advantages for mobile is its
portability and rich human interaction such as swipe, pinch,
and touch-hold. Based on the PicWall algorithm, we can pro-
vide an interesting feature called “Shake & Show” for brows-
ing images on mobile phone. As shown in Fig. 8, when the
user is browsing images, once he shakes his mobile, a new
collage will be immediately generated and shown on the
screen.

 Fig. 8 Shake & Show for mobile image browsing.

Fig. 7 Retrieval result presentation by PicWall.
(The top-5 returned results are high-lighted with bigger size)

Fig. 6 Retrieval interface of Google Image.

Input Query

Returned Results

(4) Video Summarization and Visualization

Video is the collection of sequential frames/images. Previ-
ous works such as “Video Collage” [12] enabled the selection
of representative frames, extraction of salient regions, and
seamless ROI arrangement on a given canvas. In this paper,
we propose a dynamic “Video Wall” which combines video
collage and video player together. Given an input video, the
generated video collage is a kind of synthesized image that
enables the user to quickly learn the whole story. Meanwhile,
since the video player has already been embedded in Video
Wall, the user is able to skip to any parts of the video by
clicking the tile boxes. Currently, we have two kinds of video
collages: Shots Wall and Highlights Wall.

 The Shots Wall splits the video into shots and organizes
the cover frames into the collage canvas. At the very be-
ginning, the input video is automatically segmented into
m shots, where m refers to the user customized shots
number. Then, representative cover frames are extracted
and further organized together. All the shots are sorted
sequentially according to their timestamps. As shown in
Fig. 10 (a), the pre-sorted video shots are arranged from
top to bottom and from left to right.

 In Highlights Wall, the video highlights are firstly de-
tected based on the motion feature. Then, all the high-
light shots are ranked according to their ‘highlight
scores’. In the step of collage generation, shots with
higher scores are intended to be matched to larger tile
boxes. As shown in Fig. 10 (b), the numbers in the or-
ange circles stand for the rank of highlight scores.

(a) Shots Wall: The whole video is segmented into 30 shots and all the
sequential shots are arranged from top to bottom/from left to right. (Num-
bers in the blue circles)

Fig. 10 Video Wall for video summarization and visualization.

(b) Highlights Wall: A serious of highlight shots is firstly extracted and
used as video summary. For the collage composition, larger tile box
corresponds to higher highlight score. (Numbers in the orange circles)

(a) (b) (a) (b)

(d) (c)
Fig. 9 Personal photo album visualization.

(5) Image to Manga Conversion

With the rapid progress of multimedia technology, ama-
teur-oriented image to manga conversion has caused wide
research interest recently [15, 16]. Meanwhile, manga page
layout has also become a core problem in computational
manga [17].

Comparing with general photo collage, manga layout gen-

eration has the following uniqueness.

1) Fixed reading sequence. Rather than presenting a collec-
tion of static images, the images in a manga page are deliber-
ately arranged in order to tell a story. This means that the se-
quential order of the input images should be strictly preserved.

As shown in Fig. 12, for each of the inner node, its left
child Nleft is guaranteed to locate on the left side (or top) of its
right child Nright. The conventional reading order (left-to-right
and top-to-bottom) can be naturally preserved by sequentially
assigning input image to tree leaves.

It is also worth mentioning the RIGHT-TO-LEFT reading
order of Japanese manga. Traditional Japanese manga starts at
the back of the book. It is read from right-to-left. Then skip
down to the next row. Speech bubbles, words and sound ef-
fects are also read from right-to-left. To mimic this, the image
arrangement scheme should be slightly changed. For each of
the “V” cut node, its left child should be placed on the right
side of its right child. Fig. 13 illustrates the comparison be-
tween general cartoon reading order and Japanese manga
reading order.

2) Portrait manga page & vertically aligned rows. Manga
pages are divided into several rows (Fig. 11). Each of these
rows is read from right-to-left, and then skips down to the
next row. The composition of vertically aligned rows deter-
mines the portrait print orientation of manga pages. In other
words, the aspect ratio is always less than 1.0 and the slit type
for top-level root node should be fixed to “H”.

For commercial manga, the number of images displayed on
single canvas is usually less than 10. According to our exper-
imental results, the binary tree based layout generation runs
super-fast. The computation can be finished in less than one
millisecond.

N1 N2

V

N1 N2

H Nleft

= N1
Nright

= N2

Ntop = N1

Nbottom=N2

(a) “V” cut (b) “H” cut

Fig. 12 Relationship between leaf order and image position.

Input 1

Input 2

Input 3

Input 4

Input 5

Output Manga Page

H

H V

V

1 2

3 4 5

Layout tree

Row 1

Row 2

Row 3

Fig. 11 Image to manga conversion.

(c) Combining “V” and “H” cut.

VI. CONCLUSION

We propose PicWall, a real-time photo collage solution in
this paper. Our approach characterizes on three points: (1)
Fast collage generation; (2) User-customized canvas size; (3)
Content-preserved layout. Motivated by the “slicing struc-
ture” in floorplan design, we first generate a full binary tree
and then it can be mapped into a collage composition. To
generate collages with user-customized sizes, we further im-
prove the tree generation scheme by introducing “divide-and-
conquer” paradigm as well as a fast tree adjust algorithm. In
the experiments, we compare our approach with existing col-
lage generation schemes with respect to efficiency and effec-
tiveness. Moreover, several PicWall-based applications have
also been discussed.

REFERENCES

[1] T. Liu, J. Wang, J. Sun, N. Zheng, X. Tang, and H.-Y. Shum,
“Picture Collage,” IEEE Transactions on Multi-media, vol. 11,
no. 7, pp. 1225–1239, Nov. 2009.

[2] J. Xiao, X. Zhang, P. Cheatle, Y. Gao, and C. B. Atkins,
“Mixed-initiative photo collage authoring,” in Proceeding of the
16th ACM international conference on Multi-media, 2008, pp.
509–518.

[3] Y. Yang, Y. Wei, C. Liu, Q. Peng, and Y. Matsushita, “An im-
proved belief propagation method for dynamic collage,” The
Visual Computer, vol. 25, no. 5–7, pp. 431–439, Mar. 2009.

[4] C. Rother, L. Bordeaux, Y. Hamadi, and A. Blake, “Au-
toCollage,” ACM Transactions on Graphics, vol. 25, no. 3, pp.
847–852, Jul. 2006.

[5] N. Diakopoulos and I. Essa, “Mediating photo collage author-
ing,” in Proceedings of the 18th annual ACM symposium on Us-
er interface software and technology, 2005, pp. 183–186.

[6] C. B. Atkins, “Blocked recursive image composition,” in Pro-
ceedings of the 16th international conference on Multimedia,
2008, pp. 821–824.

[7] D. F. Wong and C. L. Liu, “A New Algorithm for Floor-plan
Design,” in ACM/IEEE Design Automation Conference, 1986,
pp. 101–107.

[8] J. Fan, “Photo Layout with a Fast Evaluation Method and Ge-
netic Algorithm,” in 2012 IEEE International Conference on
Multimedia and Expo Workshops, 2012, pp. 308–313.

[9] J. Geigel and A. Loui, “Using genetic algorithms for album
page layouts,” IEEE Multimedia, vol. 10, no. 4, pp. 16–26, Oct.
2003.

[10] A. Tian, X. Zhang, and D. R. Tretter, “Content-aware photo-on-
photo composition for consumer photos,” in Proceedings of the
19th ACM international conference on Multimedia, 2011, pp.
1549–1552.

[11] W.-T. Chu, J.-C. Chen, and J.-L. Wu, “Tiling Slideshow: An
Audiovisual Presentation Method for Consumer Pho-tos,” IEEE
Multimedia, vol. 14, no. 3, pp. 36–45, Jul. 2007.

[12] T. Mei, B. Yang, S.-Q. Yang, X.-S. Hua, “Video Collage: Pre-
senting a Video Sequence Using a Single Image,” The Visual
Computer, vol. 25, pp. 39-51, Jan. 2009.

[13] Q. Xu, Z. Wu, G. Li, L. Qin, S. Jiang, and Q. Huang, “Memory
matrix,” in ACM Multimedia, 2010, pp. 927–930.

[14] J. Xiao, N. Lyons, C. B. Atkins, Y. Gao, H. Chao, and X. Zhang,
“iPhotobook,” in Proceedings of the internation-al conference on
Multimedia, 2010, pp. 1551–1554.

[15] Y. Qu, T.-T. Wong, and P.-A. Heng, “Manga colorization,”
ACM TOG, vol. 25, 2006.

[16] Y. Qu, W.-M. Pang, T.-T. Wong, and P.-A. Heng, “Richness-
preserving manga screening,” ACM TOG, vol. 27, no. 5, Dec.
2008.

[17] Y. Cao, A. B. Chan, and R. W. H. Lau, “Automatic stylistic
manga layout,” ACM TOG, vol. 31, no. 6, Nov. 2012

H
H V

V

1 2

3 4 5

General Cartoon
Reading Order

H
H V

V

2 1

3 5 4

JP Manga
Reading Order

Fig. 13 JP manga reading order V.S. general cartoon reading order.

