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Abstract—We merge illumination normalization and compo-
nent features into the framework of Sparse Representation-based
Classification (SRC) for face recognition across illumination.
Unlike most SRC-based face recognition which constructs a
dictionary from a training set with sufficient illumination varia-
tion, the proposed method adopts a dictionary with illumination-
normalized training set. This can be the first attempt to show
that illumination normalization can upgrade the performance of
SRC-based face recognition. To further improve the performance,
we add in schemes exploiting local features, and prove its
effectiveness. Experiments on FERET and Multi-PIE databases
show that the performance of the proposed method can be
competitive to the state of the art.

I. INTRODUCTION

Many methods proposed for face recognition across illu-
mination focus on illumination normalization that removes
unbalnaced lighting and strong shadows cast on the face
and makes the face good to be recognized [1], [2], [3].
However, some research considers illumination variation in
the training phase, and proposes algorithms able to learn
the illumination variation and recognize faces under various
lighting conditions. Sparse Representation-based Classification
(SRC) is one such method, and it is proven effective handling
not just illumination, but also variations caused by expression
and occlusion as well [4], [5], [6], [7]. It is shown in [7] that
the SRC can yield a superb performance in recognition across
illumination given a training set with sufficient illumination
variation. However, the requirement of sufficient illumination
variation in the training set may not be easy to meet in
many practical applications. For example, in forensics and law
enforcement, there can be as few as one facial image available
for learning, and faces are to be recognized under various
illumination conditions.

The ESRC (Extended Sparse Representation-based Clas-
sification) [6] improves the regular SRC approach so that
the cases with as few as one training sample per subject
can be handled in the SRC framework. Assuming that the
basis of intraclass variation, caused by different expressions
and illumination conditions, can be considered similar across
different subjects, ESRC constructs an intraclass variant dic-
tionary to describe the variation between training and testing
images. The recognition problem is cast as finding a sparse
representation of the test subject in terms of the training set
and the intraclass variant basis, and the nonzero coefficients

are considered contributed by the same subject in the training
set and the combination of related intraclass variant basis.

Few, if any, works report the impacts made by illumination
normalization on SRC-based face recognition, and it is one
of the key issues discussed in this paper. We compared
several illumination normalization methods considered highly
effective in recent research, and point out which are good
to be included in the SRC framework for improving the
performance. In addition, we also studied the contribution
made by facial components to the recognition performance
as such a study is rarely explored in the SRC framework.
Extensive experiments on the FERET and Multi-PIE databases
[8] show that Illumination Normalization and Component Ori-
ented (INCO) SRC can lead to as much as 10% improvement
on the recognition rate.

We first review the selected illumination normalization
methods in Sec. II, followed by the proposed combination
of holistic and component-oriented SRC in Sec. III. Sec. IV
presents experimental setup and results. A conclusion of this
study is given in Sec. V.

Fig. 1. Input and output of each phase in the illumination normalization
proposed by Tan and Triggs [3]. From left to right, original, gamma-corrected,
DOG filtered and the contrast equalized.

II. REVIEW ON ILLUMINATION NORMALIZATION

A few illumination normlization methods which are proven
effective in illumination-robust face recognition are selected,
including the TT (named after the authors Tan and Triggs) [3],
GWLD (Gaussian-smoothed Weber Local Descriptor) [2] and
AR (Adaptive Retinex) [1]. TT is composed of several pro-
cessing phases, including gamma correction, DOG (Difference
of Gaussian) filtering, optional region masking and contrast
equalization. The optional mask is to block out the regions
inappropriate for normalization, such as beard and hair. The
core part of the TT algorithm lies on the design of the DOG
filter, which must be able to remove shading while maintaining
sufficient details of the face. Compared with various methods,



including Multiscale Retinex and Logarithmic Total Variation,
TT delivers the most satisfying results [3]. An example is given
in Fig. 1, which shows the input and output of each phase.

Following the Weber’s law [2], the GWLD implements a
Gaussian smoothed Weber local descriptor as follows,

IG = arctan

(
h ∗ Ig(x, y)
Ig(x, y)

)
(1)

where Ig(x, y) is the Gaussian smoothed image I(x, y) at
coordinates (x, y) and h is a high-pass spatial filter. h can
be, for example, a 3×3 filter with 8 in the center and −1
in its eight neighbors. An example with originals under 21
illumination conditions versus the GWLD processed is shown
in Fig. 2.

Fig. 2. An example from PIE database with 21 illumination conditions versus
the GWLD [2] processed. The upper three rows are originals.

Extended from the regular retinex that consists of illumina-
tion estimation and normalization, the AR (Adaptive Retinex)
[1] exploits adaptive smoothing at the estimation phase. The
original image is iteratively convolved with an averaging
spatial filter with coefficients able to reflect the discontinuity
at each pixel on the original. Fig. 3 shows an example
processed by the AR scheme [1]. The above three state-of-
the-art illumination normalization methods are compared in
terms of the performance in the SRC-based face recognition
when exploiting them in the sample preprocessing phase. The
comparison is reported in Sec.IV

Fig. 3. Left: the original I(x, y); Middle: Is(x, y) the smoothed using the
conduction function; Right: the result obtained by I(x, y)/Is(x, y).

III. COMPONENT-ORIENTED SPARSE REPRESENTATION

Two schemes that combine the holistic and component
features are proposed. One adopts a Dense-on-Features (DOF)
grid that has more nodes on local features than on other part
of the face, so that the details of the local features can be
better considered when forming the coding basis. Unlike most
grid based feature extraction with nodes uniformly distributed
across the face, the DOF grid has denser nodes on local
features, leading to sparse coding basis weighted more on
these features. The other adopts a bilayer structure with a
regular holistic coding on the first layer and a component
feature coding on the second layer, and the outcomes of the
two layers are combined using the Bayesian rule. A sample of
the DOF grid, compared with a regular grid, is shown in Fig. 4,
along with the bilayer structures considered in this study. The
one on the left shows dense nodes on three common features,
namely eyes, nose and mouth. The one in the middle shows
the component layers with eyebrows only, eyes only and both
eyes and eyebrows. We have considered nose and mouth for
the component layers as well, as shown on the right in Fig. 4.

Fig. 4. Left: Uniform grid (in black) versus DOF (Dense-on-Features) grids,
eyes in red grid, nose in yellow and mouth in blue; Middle: Component layers
with eyebrows only (in orange), eyes only (in dark blue) and both eyes and
eyebrows (the union); Right: holistic versus three component layers.

To apply SRC, we first form a matrix A = [A1,A2,...Ak]
from the training set, where Ai denotes the subset formed
by all training samples of Subject-i and k is the number of
subjects. Each column in Ai is a normalized downsampled
feature vector extracted from a training image, and the features
can be pixel intensities or others. We have considered the
features extracted by Local Binary Pattern (LBP) and Gabor
transform in the experiments for comparison purpose. An
extensive experimental study on these features is presented
in Sec. IV.

Given a probe q∗, the core part of SRC considers the linear
representation of q∗ in the span of A, i.e.,

q∗ = Ar∗ + µ∗ (2)

where r∗ is a sparse vector and µ∗ is a noise with bounded
energy, i.e., ||µ∗||2 < ϵ. Following the rules in compressing
sensing [4], r∗ can be obtained by solving the following l1-
minimization:

r̂∗ = argmin ||r||1, subject to ||q −Ar||2 ≤ ϵ (3)

A comprehensive discussion on the solutions for the above
l1-minimization is given in [9], where five fast algorithms



Fig. 5. Workflow of the proposed scheme.

were evaluated on the face recognition performance under
illumination variations.

Assuming that the intraclass variation in each gallery face
can be approximated by a linear combination of the intraclass
differences from a sufficient number of generic faces, the
ESRC [6] extends the coding basis to include the basis that
spans the intraclass differences in the training set, and change
(2) to the following form,

q∗ = Ar∗ +Diβ
∗ + µ∗ (4)

where D∗
i is the matrix with its columns assumed able to

span the associated intraclass variation. According to [6], Di

can represent the variation caused by unbalanced illumination,
different expressions, or occlusions that can not be captured
by the noise term µ. If there are redundant and over complete
variations in DI, the combination coefficients in β∗ would
also be sparse. The sparse representation r∗ and β∗ can thus
be recovered simultaneously by l1-minimization. The merit of
the ESRC is the addition of Di for accounting for intraclass
variation, on top of the interclass variation captured by the
basis in A.

The framework proposed in this paper follows the formula-
tion in (4), but with the following characteristics:

• A and Di are obtained from the illumination normalized
samples. A performance comparison of this setting with
the common setting that uses un-normalized, i.e., original,
samples is reported in Sec. IV to highlight its advantages.

• The features extracted to form A and Di are based on
the aforementioned DOF grid, instead of the common
uniform grid. A comparison of the two is also given in
Sec. IV.

We call the proposed method Illumination Normalized and
Component Oriented (INCO) SRC. Its workflow is shown in
Fig. 5, where the gallery set contributes to the interclass variant
basis, A, the training set contributes to the intraclass variant

basis, Di, and both A and Di are obtained by illumination-
normalized samples. Depending on different features con-
sidered, A and Di can be pixel intensities or the features
extracted using LBP or Gabor filter. Given a test image, its
illumination is first normalized, the holistic and component
oriented features are extracted using the DOF grid or bilayer
processing with Bayesian rule for decision making.

IV. EXPERIMENTS

The following issues are studied in the experiments:

1) Determine the features and related settings good for
SRC-based face recognition. Although many use LBP
and Gabor features [4], [5], [6], [7], what parameter
settings, for example the LBP cell size, can lead to better
performance is yet to be answered.

2) Determine the illumination normalization method good
to be combined with the SRC framework. A comparison
of the three aforementioned methods is carried out to
determine the best one for upgrading the performance.

3) Determine whether the holistic or component regions or
their combinations are good for the performance.

4) Determine how much improvement the DOF grid
scheme can make to the performance when using with
different features.

5) The performance comparison of the proposed INCO-
SRC with other state-of-the-art methods.

In response to the above issues, we ran experiments on two
benchmark databases, FERET and Multi-PIE. The FERET
database was collected in 15 sessions over three year. It
contains 1564 sets of images for a total of 14,126 images that
includes 1199 individuals and 365 duplicate sets of images. A
duplicate set is a second set of images of a person already
in the database and was usually taken on a different day.
For some individuals, over two years had elapsed between



their first and last sittings, with some subjects being pho-
tographed multiple times. Multi-PIE database contains 337
subjects, captured under 15 view points and 19 illumination
conditions in four recording sessions for a total of more
than 750,000 images. Only the subset with frontal pose and
neutral expression is considered in our experiments. For a
fair comparison, we followed the same settings used in the
previous works [4], [5], [6], i.e., applying Homotopy to solve
the l1-minimization with error tolerance ϵ = 0.05.

The results are shown in Tables I to VI. Considering the
original 128 × 128 image, the partition into 16 × 16× cells
and each cell transformed into LBP histogram with 59 bins
gives the best performance among other LBP cell partitions.
It outperforms a regular setup with downsampled 24 × 24
gray-scaled intensities. However, it is outperformed by the
one with Gabor features, which were obtained by applying
Gabor filter on the original with 5 scale and 8 orientations,
and downsampled to 16× 16 in size for better computational
efficiency. It must be noted that in all cases the ESRC performs
better than the regular SRC.

TABLE I
PERFORMANCE COMPARISON ACROSS DIFFERENT FEATURES WITH

VARIOUS SETTINGS (RANK-1 TEST).

FERET dup2 SRC ESRC
Intensity 24× 24 60.7 64.5(+3.8)
LBP 4× 4× 59 26.5 30.3(+3.8)
LBP 8× 8× 59 56.4 64.1(+7.7)

LBP 16× 16× 59 67.9 76.0(+8.1)
LBP 32× 32× 59 61.1 73.5(+12.4)

Gabor 16× 16× 40 69.6 81.6(+12.0)

Because of the comparison in Table I, we selected the
LBP(16×16×59) and Gabor(16×16×40) for the study on the
determination of illumination normalization. Table II shows
that AR appears slightly better than TT, and both are much
better than GWLD when using with LBP features. However,
when using with Gabor features, both TT and GWLD perform
ideally, and much better than AR. Because the performance
with TT appears the most consistent and satisfactory, it is
selected as the main tool for normalizing illumination in the
rest of experiments.

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR

ILLUMINATION NORMALIZATION.

IN-SRC ϵ = 0.05 FR-rank1
Illum. Norm. None AR TT GWLD

FERET LBP 72.1 89.2 86.0 74.2
Fc Gabor 97.4 93.3 98.4 98.4

Table III shows the performance with holistic and different
facial regions on the most challeging FERET subset Dup-2.
Due to the poor performance using mouth and nose, we only
consider eyes as the second layer classifier in the bilayer setup,
and the DOF grid scheme also covers the eyes region only.
Table IV shows the performance improved by the proposed

DOF grid. The improvements on LBP(8 × 8 × 59) are more

TABLE III
PERFORMANCE ON DIFFERENT FACIAL REGIONS, USING FERET DUP-2,

THE MOST CHALLENGING SUBSET.

FR-rank1 Gray LBP Gabor
Holistic 60.7 67.9 69.6

Eyes 48.7 55.5 66.2
Nose 33.8 37.6 39.7

Mouth 26.5 28.2 31.2

TABLE IV
PERFORMANCE COMPARISON OF SRC, ESRC, GRID-SRC AND

INCO-SRC (NO-GRID/WITH-GRID).

SRC ESRC Grid-SRC INCO-SRC
LBP 8× 8× 59 56.4 64.1 64.5 67.9/68.4

LBP 16× 16× 59 67.9 76.0 67.1 80.8/79.9
Gabor 69.6 81.6 82.0 93.1/-

obvious than on LBP(8× 8× 59). However, not shown in the
table, the processing speed is 3 to 4 times faster.

The comparison of the proposed INCO-SRC with other state
of the art is given in Table V, on FERET database, and in
Table VI, on Multi-PIE database. The top two are marked in
boldface. The INCO-SRC appears to outperform many others,
and performs the best when tested on the most challenging
subset Dup-2. Similar performance was also observed in
Table VI, where the proposed INCO-SRC outperforms others
in the subsets Sessions-3 and 4.

TABLE V
PERFORMANCE ON FERET PROTOCOL

Recognition Rate % Fb Fc Dup-1 Dup-2
FERET97 Best result [10] 96.0 82.0 59.0 52.0

ESRC with LBP [6] 97.3 95.4 93.8 92.3
ESRC with Gabor [6] 97.3 98.9 85.0 84.7
WPCA-POEM [11] 99.6 99.5 88.8 85.0

INCO-SRC 97.3 98.9 90.7 93.1

TABLE VI
THE CONSEQUENCE IN MULTI-PIE

FR-rank1 Session2 Session3 Session4
LBP[7] 95.2 94.7 93.5
SRC[7] 93.9 93.8 92.3
IN-SRC 93.0 93.9 94.1

INCO-SRC 94.2 95.2 95.2

V. CONCLUSION

We apply illumination normalization and component ori-
entation to the SRC framework for face recognition across
illumination. This may be the first attempt of altering the
SRC dictionary design so that the variation caused by different
illumination is substantially reduced, and the remaining variant
in the dictionary can better capture the interclass variation. The
component orientation emphasizes the features extracted from
local regions able to upgrade the performance when combining
with holistic features. Experiments show that both schemes can
effectively improve the performance.
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