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Abstract—In this paper, we propose a new approach for image
compression using graph-based biorthogonal wavelet filterbanks (referred
to as graphBior filterbanks). These filterbanks, proposed in our previous
work, operate on the graph representations of images, which are formed
by linking nearby pixels with each other. The connectivity and the link
weights are chosen so as to reflect the geometrical structure of the
image. The filtering operations on these edge-aware image graphs avoid
filtering across the image discontinuities, thus resulting in a significant
reduction in the amount of energy in the high frequency bands. This
reduces the bit-rate requirements for the wavelet coefficients, but at the
cost of sending extra edge-information bits to the decoder. We discuss
efficient ways of representing and encoding this edge information. Our
experimental results, based on the SPIHT codec, demonstrate that the
proposed approach achieves better R-D performance than the standard
CDF9/7 filter on piecewise smooth images such as depth maps.

I. INTRODUCTION

The wavelet transform has been successfully used in image com-
pression for many years due to its ability to exploit spatial and
frequency correlation in typical images. Image discontinuities, e.g.,
strong edges in between smooth regions, require a significant amount
of rate in typical image coders. This is because the standard separable
wavelet transform produces large magnitude coefficients around the
edge location across multiple subbands. At low bit-rates, significant
errors in representing these coefficients lead to ringing artifacts in the
reconstructed images.

In order to alleviate this problem, researchers have made ef-
forts to design directional wavelet filterbanks based on the image
geometry in order to emphasize the filtering along edges rather
than across edges. In general, previous works can be divided into
two categories: designing filters adaptively based on the geometric
flows of the images [3][2], or applying fixed filterbanks on the
rotated images [11][1]. However, these approaches suffer from two
drawbacks. First, the design complexity is high [3][2]. For instance,
the design of adaptive filters requires image classification and the
filter selection. Second, over-sampling [11][1] may not suitable for
image compression. To alleviate the over-sampling problem, a set
of critically sampled contourlets is proposed in[4] but this approach
involves significant complexity for directional filter design and FIR
approximation. Moreover, all of the filters mentioned above are non-
separable.

In [7] and [5], graph-based wavelet filterbanks with quadrature
mirror filters (QMF) are proposed and applied to images. The
framework achieves edge adaptation while using critically sampled
separable filterbanks, as in standard wavelet transforms. Edge aware-
ness is achieved by representing images as graphs, with each pixel
corresponding to a graph node. The advantage of a graph structure lies
in its flexibility for expressing diverse image geometries. In the image
compression case, we assign smaller (but fixed) link weights to pairs
of pixels that are in different sides of an image edge, and transmit
the location of these weak links as side information to the decoder.
As will be shown, this selection can reduce the amount of energy due

to edges present in the high frequency wavelet subbands. In [5] we
showed that our method achieves promising results when compared
with a standard wavelet approach based on non-linear approximation
performance.

In this paper, we use these ideas to build a practical system
for image compression. We make use of our proposed biorthogonal
wavelet filterbanks (graphBior)[6], due to their perfect reconstruction
and compact support properties. In particular, we show that the
graphBior(2, 2) filterbanks are identical to standard CDF filterbanks
for unweighted 4 connected image graphs, and provide a natural
extension of standard filters on edge-aware weighted image graphs.
Further, we also include, for the first time, the cost of sending extra
edge information to the decoder in the overall transform cost. For
this, we propose efficient ways for the generation, compression and
transmission of edge side information to the decoder. We encode the
wavelet coefficients generated by our filters using set partitioning in
hierarchical trees (SPIHT)[9]. The paper is organized as follows: In
Section II, we will review graph wavelet filterbanks, and their appli-
cation to image signals. The generation, compression and encoding
of edge information is discussed in Section III. We present our results
in Section IV, and conclusion in Section V.

II. GRAPH WAVELET TRANSFORMS FOR IMAGES

A. Graph Representation

In the graph signal processing (GSP) framework [10], we represent
images as undirected graphs G = (V, E), where V is the set of pixels
(nodes) indexed as 1, 2, 3, ..., N , and E is the set of links between
pixels. A link is denoted as a triplet (i, j, wij), where i and j are the
end pixels and wij is the link strength which is often measured as the
spatial and/or photometric similarity between pixels i and j. Note that
the graph representation is not unique, and the choice of a particular
topology depends upon various factors such as the geometric structure
of the image, the desired complexity of the resulting graph filters,
and the side information needed to generate identical graphs at both
encoder and decoder. In this paper, we choose a 4-connected graph
representation of images, as shown in Figure 2(a), in which each
pixel is connected to its 4 nearest neighbors in horizontal and vertical
directions. In an unweighted graph representation all links have equal
weights, whereas in an edge-aware graph representation the weights
are adapted to the given image, as will be discussed in Section III.

B. Graph Signals and Graph Filters

The pixel intensities in GSP framework are represented as a 1D
vector x, such that x(i) is the value of pixel i. We denote the
adjacency matrix as A, where A(i, j) = wij if (i, j, wij) ∈ E and
0 otherwise. Given A, the Laplacian matrix as L = D−A, where
D (called the degree matrix) is diagonal, with D(i, i) =

∑
j A(i, j).

The corresponding symmetric normalized Laplacian matrix is L =
D−1/2LD−1/2. We consider only undirected graphs without self



loops for which L is a symmetric positive semi-definite matrix.
Therefore, it has the eigenvalue decomposition:

L = UΛUt =

N∑
i=1

λiuiu
t
i, (1)

with a diagonal eigenvalue matrix Λ containing non-negative eigen-
values {λ1, λ2 . . . λN} arranged in a non-decreasing order at the
diagonal, and a unitary matrix U containing corresponding eigen-
vectors ui. The eigenvector-eigenvalue pair is used to define Fourier
transform for signals [10]. Eigenvalues λi are the graph frequencies
and eigenvectors serve as the corresponding projection basis. Every
graph signal can be represented with basis U as x =

∑
i x̃iui, where

x̃i is the projection of x onto ui. The graph wavelet filters [10] are
defined as:

H = Uh̃(Λ)Ut =

N∑
i=1

h̃(λi)uiu
t
i, (2)

where h̃(λi) is the spectral response or spectral kernel of the filter
H. Given input signal x, the output signal can be obtained as y =
Hx in vertex domain, and as ỹi = h̃(λi)x̃i in the graph frequency
domain. Thus, the spectral response h̃(λ) can be designed to enhance
or attenuate the contribution of input signal at a frequency λ in the
output signal.

C. Graph Wavelet Filterbanks

The graph wavelet filterbanks proposed in [6], [7] are implemented
as 1D filterbanks on bipartite graphs, and as multi-dimensional
separable filterbanks on arbitrary graphs via bipartite subgraph de-
composition. A bipartite graph has the form B = (L,H,E), where
L and H are the partitions of the vertex set such that all the
links in the set E connect nodes of different partitions. The 4-
connected image graph G (Figure 2(a)) used in this paper can be
decomposed into 2 bipartite subgraphs B1 and B2 (Figure 2(b)-
(c)), containing all the links in the horizontal and vertical directions,
respectively. These subgraphs are bipartite with their partitions shown
as nodes of different colors in 2(b)-(c)). In [7], [5], we proposed
graphQMF filterbanks which are perfect reconstruction and provide
an orthogonal decomposition of signals. However, these filters cannot
be implemented as FIR filters in the image domain. As an alternative,
in [6] we proposed biorthogonal graphBior filterbanks which have
compact support and satisfy perfect reconstruction conditions. These
filterbanks are specified as graphBior(k, k) so that the filter lengths
of H0 and H1 are 4k + 1 and 4k − 1 1, respectively, in the image
domain. These filterbanks are implemented as 2D separable two
channel filterbanks on images, as shown in Figure 1. The graphBior
filterbanks is described in detail in [6].

In image applications, an all constant signal (a DC signal) has a
physical interpretation, and the highpass filters should be designed
to have zero response to the DC signal. A direct implementation
of graphBior filterbanks does not guarantee this DC annihilation
property, as the highpass filters are designed to have zero response
to eigenvalue 0 of the normalized Laplacian matrix L, which corre-
sponds to eigenvector D1/21, which is not constant. This problem
is solved by pre-multiplying input signal with D1/2 before the
transform and post-multiplying output signal with D−1/2 after the
transform. Thus, given a wavelet filter H of the form (2), we operate
on the scaled input xs = D1/2x, and the output ys = Hfs is scaled

1The k in graphBior(k,k) denotes the number of roots in low pass filter H0

and high pass filter H1 at λ = 0 and λ =2 respectively. It leads to polynomial
filters involving up to 2k-hops and (2k − 1)-hops neighbors in the graph,
which are equivalent to 4k + 1 and 4k − 1 pixels for line graphs.

back to y = D−1/2ys. In an iterative multilevel decomposition, this
step is repeated at each level for all filters.

Fig. 1: 2-D separable graph wavelet filterbanks

Fig. 2: Two dimension decomposition of images into one bipartite graph
with horizontal links and the other with vertical links

III. EDGE-AWARE GRAPH REPRESENTATION

The primary motivation of using edge-aware image graphs in image
coding is to assign a lower weight to the links across discontinuities.
Figure 3(a) shows a piecewise constant 1D image with a sharp
discontinuity in the middle. The unweighted 1D line graph is formed
by linking each pixel with its left and right neighbors with all
links having unity weights. The graphBior(2, 2) filters on the
unweighted line-graph are identical (upto numerical precision
10−12) to the standard CDF9/7 for 1D signals. The graph can be
made edge aware by assigning a lower weight (in this case w = 0.01)
to the link between pixels 15 and 16, situated at the discontinuity. The
impulse responses of the graphBior(2, 2) filters at node 16 on the
resulting weighted line-graph (Figure 3(d)) are largely concentrated
to the right of the node (i.e., away from the discontinuity). This means
that the edge-aware graph filters avoid filtering across the edges which
leads to reduction in the significant highpass coefficients. This in turn
should reduce the bits required to encode wavelet coefficients leading
to better compression.

However, in order to use this framework as a practical tool, the
following problems must be addressed: a) How to create edge-aware
image-graphs (i.e., how to detect weak links in an otherwise regular
4-connected image-graph and assign weights to these weak links)?
b) How to efficiently represent and transmit the location and weights
of these weak links to the encoder and decoder in order to create
identical graphs at both ends. c) The extra edge-information costs
extra bits which reduces the gain obtained from reduction in the
significant highpass coefficients. How to find an optimal point in this
trade-off? In this paper, we provide reasonable but somewhat ad-hoc
solutions to each of these problems. A more thorough formulation of
these problems is part of our ongoing work.

A. Weak Link Detection

From the graph transform perspective, the optimal way to design
edge-aware image graph is to start with an unweighted 4-connected
graph, and assign link-weights proportional to some measure of
similarity in the intensities of the connected pixels. For example,
the link-weights could be computed as bilateral weights as proposed



(a) line graph (b) CDF9/7 response

(c) unweighted graph filter response (d) weighted graph filter response

Fig. 3: impulse response for a 1-D signal in (a) near discontinuity and at the
boundary. (a)1-D signal and its line graph representation for graph-based

filterbanks. (b) impulse response for CDF9/7 (c) unweighted graph
filterbanks. (d) weighted graph filterbanks

in [8]. However, this is not feasible in image coding, since the
cost of transmitting the link weights to the decoder would be more
expensive than transmitting the raw image itself. The weights can
be thresholded, i.e., only links whose weights are below a threshold
are assigned non-unity weights. However, it is still expensive to send
both weights and location of weak links to the decoder. Besides,
thresholding leads to fragmented noisy edges which are not suitable
for the transform. Therefore, we break the problem into two parts:
First, we apply standard edge detection methods on the input image
that avoid the problem of fragmentation and noise, and lead to long
connected edges. The output of these edge detection methods is in
the pixel domain, i.e., we only obtain pixels situated on the edges
(termed as edge pixels). In the second step, we find weak links only
amongst the links that are directly connected to edge pixels. Further,
to minimize the weight information, we assign a lower but fixed
weight to all the weak links, which is known to both encoder and
decoder. As a result, we only need to transmit the locations of the
weak links to the decoder in order to create identical graphs.

In the first step, any standard edge-detection method can be used
(we use Prewitt’s method in our experiments). This works well for
piecewise constant images such as that in Figure 5(a). However, nat-
ural images are often noisy or have texture regions which create lots
of small fragmented edges, and so should be supressed or ignored. A
popular method for finding piecewise constant approximation of any
image is iterative bilateral filtering [12]. In our experiments, we use
bilateral filtering to obtain a smooth piecewise constant image and
use it for edge detection.

In the second step, we need to find weak links connected to edge-
pixels. A simple way to do this is by thresholding all the links
connected to the edge pixels according to their weights. This is
problematic for two reasons: First, this method sometimes creates
weak links on both sides of an edge pixel in the horizontal or vertical
direction. The resulting graph filters in that direction avoid filtering
across pixels on both sides. As a result, the edge pixel has no change
in its value after filtering in one direction, and this sometimes appear
as a discontinuity in the other direction. Second, the weak links
obtained by this method are not completely contained on one side

of the edge. As a result the graphs of objects separated by the edge
are not completely disconnected, and filtering still occurs across the
edges which leads to poor performance.

We propose a method that avoids these problems by a) allowing
at most one weak link in each direction per edge-pixel, and b)
detecting weak links according to the direction of the edge. In our
proposed method, we compute intensity gradients gh(i) and gv(i)
in the horizontal and vertical directions, respectively, and the angle
of the gradient θ(i) = atan(gv(i)/gh(i)) at each pixel i of the
input image. For example, |θ(i)| ≈ 0 implies an almost horizontal
edge, therefore at such pixels the weak link is detected in the vertical
direction only. The vertical link across which the intensity change is
maximum is selected as weak link. The other values of θ(i) are
interpreted similarly. The algorithm to detect weak-links is given in
Algorithm 1. In a multilevel decomposition, the the link-weights of
the downsampled graph are computed as the sum of the weights of
the 2-hop paths connecting LL nodes in the previous level graph,
where the weight of the path is equal to the product of the weights
of the links that it consists of.

Algorithm 1 Algorithm to detect weak links in an image graph. I(v):
pixel intensity, ∂I(v, u) = |I(v)−I(u)|, ∂I(v,S) =

∑
u∈S ∂I(v, u)

1: Perform edge detection to obtain edge pixels in the image.
2: for each edge pixels u do
3: Compute gradient angle θ(u).
4: if horizontal edge (|θ(u)| ≈ 0) then
5: Define S1 = {topLink}, S2 = {bottomLink};
6: else if vertical edge (|θ(u)| ≈ π/2) then
7: Define S1 = {leftLink}, S2 = {rightLink};
8: else if acute angle edge (θ(u) > 0) then
9: Define S1 = {topLink, leftLink}, S2= {bottomLink

,rightLink};
10: else if obtuse angle edge (θ(u) < 0) then
11: Define S1 = {topLink, rightLink}, S2= {bottomLink ,left-

Link};
12: end if
13: if ∂I(u,S1) < ∂I(u,S2) then
14: Store links in set S2 as weak links.
15: else
16: Store links in set S1 as weak links.
17: end if
18: end for

Fig. 4: Graph links representation used for encoding. The
(2N − 1)× (2N − 1) link map can be shrunk into (2N − 1)× (N − 1)

map on the right by discarding the nodes corresponding to image pixels
since they do not carry the information needed for graph formation

B. Edge Information Encoding

Once we decide the locations of weak links, we can form an
edgemap as in Fig. 4(left), where the circles and triangles indicate



the horizontal and vertical links between image pixels (squares),
respectively. We assign 0 to all the regular links and 1 to all
weak links. Since the image pixels contribute nothing to the graph
construction, we can remove them from the edgemap to obtain a
reduced edgemap as in Fig. 4 (right), which can be stored as a binary
image of size (2N −1)× (N −1). Further, we assign a fixed weight
w to all weak links. As a result the reduced edgemap is sufficient
to generate identical image graphs at both encoder and decoder. We
encode the (2N − 1)× (N − 1) binary map by JBIG, which is the
binary image coding standard, and include the bits needed to encode
JBIG edgemap in the rate-distortion (R-D) evaluation.

IV. EXPERIMENTS

In this section, we use ballet image as our test image (shown
in Fig. 5(a)). The image is represented using a 4-connected graph.
We use Prewitt edge-detection algorithm to obtain edge-pixels in
the image , and then follow the algorithm given in Algorithm 1,
to detect weak links. From this we generate the reduced edgemap
and encode it as a JBIG image. The transmission of the JBIG file
along with the encoded wavelet coefficients requires 0.028 extra
bits per pixels (bpp), which is included in the R-D evaluation. We
apply 5-level wavelet decomposition and the coefficients, in both the
proposed methods and in standard CDF9/7 implementation, are
encoded using the Set Partitioning In Hierarchical Trees (SPIHT)
algorithm [9]. Figure 5 shows the comparison of proposed method
with the standard filterbank. The figures (Fig. 5(c) and Fig. 5(d))
show reconstructed images with wavelet coefficients encoded in bit
rate = 0.05 bpp. It can be observed that the edge-aware graph
filterbanks provide significantly better perceptual quality than the
standard filterbanks. Further, the edges in the image are better
preserved with proposed method than with the standard filterbanks,
which is quite important in depth-map compression applications. The
PSNR performance is shown in Figure 5(e), where we consider the
bit rate from 0.05bpp to 0.4 bpp with a step size of 0.05. Note
that the curve shift for weighted graphBior is due to the cost of
edge information. It can be seen that even after including the cost of
extra edge information, the edge-aware graphBior filterbanks provide
upto 7dB gain in PSNR over standard filterbanks. The results of
proposed method on standard uncompressed natural images such as
lena, barbara, cameraman etc. (all of size 512 × 512 px), did not
provide any gain over standard CDF filters. The reason is that the
most of the edges found in these images are already blurry (smooth)
at this resolution, and therefore do not produce significant highpass
coefficients with standard wavelets.

V. CONCLUSIONS

In this paper, we used the ideas from our previous work [5]
to design a practical system for image compression. Our proposed
method operates on graphs constructed from images, in which links
are adjusted to adapt to the edge-structure of the image. In addition,
we provided an efficient scheme for encoding edge information to
reconstruct the graphs at the decoder side. The results on piecewise
constant images show that even with edge information encoded,
the graphBior filterbanks provide better compression than standard
CDF9/7 filterbanks. However, the proposed design in this paper is
based on heuristics and does not optimize the tradeoff between the
performance gain and cost of transmitting extra edge-information.
The formulation of this tradeoff and extension of our approach to
natural images are our future work.

(a) (b) edgemap

(c) (d)

(e)

Fig. 5: Reconstructed Ballet using bit-rate = 0.05 of encoded wavelet
coefficients. (a) Original Image, (b) Edgemap (c) Standard CDF9/7, (d)

Edge aware graphBior filters (e) R-D plot: SPIHT encoding
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