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Abstract—Modern image quality assessment (IQA) indices, e.g.
SSIM and FSIM, are proved to be effective for some image
distortion types. However, they do not exploit the characteristics
of the human visual system (HVS) explicitly. In this work, we
investigate a method to incorporate the human visual saliency
(VS) model in these full-reference indices, and call the resulting
indices SSIMV S and FSIMV S , respectively. First, we decompose
an image into non-overlapping patches, calculate visual saliency,
and assign a parameter ranging from 0 and 1 to each patch.
Then, the local SSIM or FSIM values of the patches are weighed
by the said parameter. Finally, the weighed similarity of all
patches are integrated into one single index for the whole image.
Experimental results are given to demonstrate the improved
performance of the proposed VS-enhanced indices.

I. INTRODUCTION

The mean-squared-errors (MSE) index has been
widely used to assess the quality of distorted images
or videos with respect to their original ones for a
long history. Human visual experience is affected
by several psychovisual factors [1], [2], but the
MSE index does not take these factors into account.
Quite a few full-reference image and video quality
assessment indices have been proposed during the
last decade to capture human visal experience more
accurately [3], [4]. Such image quality assessment
(IQA) indices use statistical features to measure
perceived image quality. They characterize statisti-
cal properties of local image patches such as those
related to luminance, contrast and structure (e.g.
edges). The index of the whole image is the average
of IQA values from all patches, where each patch
in an image weighs equally.

Based on psychovisual experiments [5], the HVS
tends to focus on one particular region of an image
while neglecting others in its surroundings. This is
known as visual saliency (VS) or visual attention.
While the VS effect has been demonstrated, few
feature-based IQA indices take it into account. Intu-
itively speaking, if the VS can be properly integrated

in IQA indices, we should obtain more accurate
ones.

In this work, we investigate to incorporate the
VS in exemplary IQA indices such as SSIM and
FSIM, and call the resulting ones SSIMV S and
FSIMV S , respectively. To be specific, we first de-
compose an image into non-overlapping patches,
calculate the visual saliency degree (a higher value
implying higher saliency), and assign a parameter
ranging from 0 and 1 to each small patch. Then,
the similarity degree of the corresponding patches
is weighed by the associated VS parameter. Finally,
the similarity of all patches are integrated into one
single index for the whole image.

An example is given in Fig. 1 to illustrate the
above idea. Fig. 1 (a) is a blurred image from the
TID2008 database [7]. Its visual saliency (VS) map,
generated by a method in [8], is shown in Fig. 1
(b). The values of these maps are normalized in
[0, 1], where a brighter region has a larger value.
As indicated by the VS map in Fig. 1 (b), the
airplane is more visible to the HVS as compared
to the background while the yellow propeller region
receives the highest attention. Thus, we should give
a different weight to the IQA value of a different
region.

The rest of this work is organized as follows.
The related previous work is reviewed in Section II.
Then, the details of the proposed HVS-based IQA
indices are presented in Section III. Experimental
results are shown in Section IV and concluding
remarks are given in Section V.

II. REVIEW OF PREVIOUS WORK

In this work, we will choose two representative
full-reference IQA indices; namely, SSIM [9] and



(a) Blurred image (b) VS map of the reference image

Fig. 1. An example of a blurred image and its VS map.

FSIM [10], and focus on their enhancement by in-
corporating the VS attribute. These two IQA indices
are reviewed in this section.

The SSIM index[9] can be written as

SSIM = SSIM(x)x∈Ω, (1)

where x denotes a co-located block of the distorted
and reference images, whose size is typically set to
11 × 11, and SSIM(x) is a function defined as

SSIM(x) =

(2µd(x)µr(x) + c1)(2σd,r(x) + c2)

(µ2
d(x) + µ2

r(x) + c1)(σ2
d(x) + σ2

r(x) + c2)
, (2)

and where µd and µr are block means, σd and σr
are block standard deviation, and σd,r are block
cross-standard-deviation of block x in distorted and
reference images, respectively. The SSIM index is
developed to measure the local change in luminance,
contrast, and structure. As shown in Eq. (1), it is the
mean of local SSIM values over the entire image
domain denoted by Ω.

There are two FSIM indices[10] one for gray-level
images and the other for color images. The gray-
level FSIM index can be expressed as

FSIM =
Σx∈Ω [Spc(x)] [SG(x)] [PCm(x)]

Σx∈Ω [PCm(x)]
, (3)

where Spc and SG measure the similarities in phase
congruency (PC) and gradient magnitude (GM),
respectively, and PCm denotes the maximum phase
congruency of co-located block x between the dis-
torted and the reference images. The color FSIM

index is of the following form:

FSIMC =

Σx∈Ω [Spc(x)] [SG(x)] [SC(x)]λ [PCm(x)]

Σx∈Ω [PCm(x)]
, (4)

where SC measures similarities of the color compo-
nents in the YIQ color space.

As discussed earlier, both SSIM and FSIM do
not take the VS into account. In the next section,
we investigate a way to incorporate it to get their
enhanced versions.

III. VS-ENHANCED SSIM AND FSIM

There are several methods to improve the per-
formance of existing IQA indices. One is to fuse
them together. A machine learning method was
used in [11] to fuse multiple IQA methods for
performance improvement. In this work, we would
like to improve a single IQA index by adaptively
changing the weighting of contribution from its
spatial components.

We adopt the method in [8] to generate the VS
map for an input image. It consists of three steps: 1)
extracting certain features over the image, 2) form-
ing activation maps based on the extracted features,
and then 3) normalizing them and highlighting key
locations. An input image Boat and its VS map
normalized to [0, 1] are shown in Fig. 2. As shown
in Fig. 2(a), the boat and the shore attract most of
the HVS attention while the ocean is less important.
This experience is consistent with the generated VS
map in Fig. 2(b).



(a) Boat Image (b) The VS map of the boat image

Fig. 2. The input boat image and its VS map.

The proposed VS-enhanced SSIM (SSIMV S) and
VS-enhanced FSIM (FSIMV S) are built based on
the SSIM map and the FSIM map and weighed by
the VS map. Mathematically, we have

SSIMV S =
Σx∈Ω [SSIM(x)]θ [V S(x)]ν

Σx∈Ω [V S(x)]ν
, (5)

where

θ = KSSIM × SSIMx∈Ω(x), (6)
ν = KV S × CORR(V Sr(x), V Sd(x))), (7)

As shown above, the SSIMV S includes local SSIM
and VS, where the VS value is normalized to [0, 1].
The exponent parameter, θ, is used to adjust the
contribution of local SSIM values. The exponent
parameter, ν, depends on the correlation between
the reference and the distorted images. If these
two images have lower correlation, then the visual
attention is changed by the distortions, and the
contribution from the VS value would be reduced.
Furthermore, these parameters are adaptive to image
content since one can choose KSSIM and KV S to
be adaptive to the input image. Similarly, we can
define the VS-enhanced FSIM and FSIMC indices
as follows:

FSIMV S =

Σx∈Ω [Spc(x)]α [SG(x)]β [PCm(x)]γ [V Sc(x)]ν

Σx∈Ω [PCm(x)]γ [V Sc(x)]ν
, (8)

and

FSIMCV S =

Σx∈Ω [Spc(x)]α [SG(x)]β [PCm(x)]γ [SC(x)]λ [V S(x)]ν

Σx∈Ω [PCm(x)]γ [V S(x)]ν
,

(9)

where

α = Kpc × Spc,x∈Ω(x) + PCm,x∈Ω(x), (10)
β = KG × SG,x∈Ω, (11)
γ = KPCm × PCm,x∈Ω(x), (12)
λ = KColor × SI,x∈Ω + SQ,x∈Ω(x). (13)

The parameters, Kpc, KG, KPCm and KColor, are
determined by experiments. They should be kept in
a range so that each component would not dominate
in FSIMV S and FSIMCV S . Also, parameter α is
controlled by both the PC and the PCm maps to
amplify the PC effect in the resulting index.

IV. EXPERIMENTAL RESULTS

We conducted the performance evaluation on the
proposed SSIMV S , FSIMV S and FSIMCV S using
the TID2008 database [7] since it contains a wide
range of distortion types. We chose the following
parameters empirically based on a subset of the
TID2008, containing 10 reference images and their
680 distorted images:

KSSIM = 0.09, KV S = 1.25, KJND = 0.48,

Kpc = 0.7, KG = 0.41, KPCm = 1.96,

KColor = 0.02.



TABLE I
PERFORMANCE OF SSIMV S

KROCC PLCC SROCC RMSE
SSIM 0.5768 0.7732 0.7749 0.8511
SSIMV S 0.6409 0.8258 0.8336 0.7567

TABLE II
PERFORMANCE OF FSIMV S

KROCC PLCC SROCC RMSE
FSIM 0.6946 0.8738 0.8805 0.6525
FSIMV S 0.7133 0.8929 0.8941 0.5997

The performance measures in this work in-
clude: the Spearman rank-order correlation coeffi-
cient (SROCC), the Kendall rank-order correlation
coefficient (KROCC), the Pearson linear correlation
coefficient (PLCC), and the root mean squared error
(RMSE). The first two are used to measure the
prediction monotonicity of an IQA index. The third
one, PLCC, computes the correlation coefficient
between the MOS and the predicted MOS obtained
by an IQA index to evaluate the prediction accuracy.
The last one, RMSE, is used to measure the error
between the predicted and the true MOS.

We compare the performance of SSIMV S ,
FSIMV S and FSIMCV S with that of SSIM, FSIM
and FSIMC in Tables I, II and III, respectively.
We see consistent performance improvement of the
proposed method with respect to all performance
measures in these three tables.

V. CONCLUSION AND FUTURE WORK

In this work, we have incorporated the visual
saliency (VS) model in SSIM, FSIM and FSIMC
and showed that the resulting indices, SSIMV S ,
FSIMV S and FSIMCV S outperform the original in-
dices, respectively, when they have tested on the
TID-2008 IQA database. It has been demonstrated
that a VS model can facilitate better visual quality
prediction. The proposed metric can be used as eval-
uation feedback for image enhancement algorithms.

We would like to extend the current work along
two directions in the near future. First, it is in-
teresting to consider other HVS attributes such as

TABLE III
IMPROVED PERFORMANCE OF FSIMCV S

KROCC PLCC SROCC RMSE
FSIMC 0.6991 0.8762 0.8840 0.6468
FSIMCV S 0.7226 0.8997 0.9021 0.5871

the masking effect and see what they enhance IQA
indices alongside with a VS model. Second, it is
worthwhile to incorporate the HVS attributes to
video quality assessment (VQA) indices , since VS
is more meaningful in video; For example, a viewer
may have time to view all details throughout the
image given a reasonable time interval, while he or
she definitely has no time to examine every detail
in video given a typical frame rate. We attempt to
understand the HVS in temporal temporal saliency
and explore these attributes to design VQA indices.
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