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Abstract—It is difficult for language learners to produce 

unfamiliar speech sounds accurately because they may not 

manipulate articulatory movements precisely by auditory 

feedback alone. Visual feedback can help identify the errors and 

promote the learning progress, especially in language learning 

and speech rehabilitation fields. In this paper, we propose a 

visualization method for Mandarin phoneme pronunciation 

using a three-dimensional (3D) articulatory physiological model 

driven by Chinese Electromagnetic Articulographic (EMA) data. 

A mapping from EMA data to physiological articulatory model 

was constructed using three points on the mid-sagittal plane of 

the tongue. To do so, we analyzed configurations of 30 Chinese 

phonemes based on an EMA database. At the same time, we 

designed nearly 150,000 muscle activation patterns and applied 

them to the physiological model to generate model-based 

articulatory movements. As the result, we developed a visualized 

articulation system with 2.5 dimensional and 3D views 

respectively. The mapping was evaluated using MRI data.  It is 

found that the mean deviation was about 0.21cm for seven 

vowels. 

I. INTRODUCTION 

The studies of pronunciation learning have shown that 

detailed and accurate error feedback is effective in correcting 

the errors addressed in the learning process [1] and visualized 

feedback is playing an important rule. Learners will evaluate 

their learning through auditory feedback if there is no other 

feedback available. However, even if the learner can 

recognize the discrepancy between their utterance and the 

target speech sounds, it is difficult for them to adjust their 

articulations. In language learning process, explicit guidance 

is more effective than implicit introduction [2]. A Computer 

Assisted Language Learning (CALL) system which contains 

visual feedback makes the learners easier to correct their 

articulations by providing a visualized articulatory target. In 

this study, we put forward a Mandarin phoneme 

pronunciation visualization method by using Chinese EMA 

data to drive the 3D articulatory physiological model. 

With the development of speech analysis and observation 

technology, the observation and presentation of pronunciation 

visualization is becoming much easier. On the one hand, some 

researchers used two-dimensional (2D) model to visualize 

articulation. For example, Kaburagi and Honda proposed a 2D 

model to predict articulator movements for continuous speech 

based on EMA data [3]. A 2D visual-speech synthesizer was 

presented to animate the human articulators by Wong et al [4]. 

LaRocca, et al. presented a system which used articulatory 

information in the form of a side-view of a transparent head to 

detect spoken segmental errors and provide corrected 

feedback so that the learner could see articulator placement 

[5]. As proposed by Eskenazi et al [6], a mid-sagittal 2D 

model was employed to present immediate corrected 

articulatory help for each type of possible phonetic or 

prosodic error made by the students. The accuracy of these 

methods may be guaranteed but they are not easy to 

understand. On the other hand, 3D model is used to present 

articulators movements. For example, Computer Graph (CG) 

technology is used to construct a 3D model for online Chinese 

learning [7]. If learners' pronunciation is incorrect, the system 

will demonstrate the correct articulator organs‟ movement, as 

well as wrong pronunciations made by learners themselves [8]. 

The 3D method above is easy to observe and understand but 

how to guarantee its accuracy is the biggest challenge. In the 

previous studies, one can see that in the field of articulation 

visualization, especially in Mandarin, higher accuracy and 

intuitive representation cannot be combined well in a 

visualization method.  

In this paper, we constructed a 3D visualization system for 

Chinese phoneme via jointing the advantage of EMA data‟s 

high temporal resolution and 3D physiological model‟s high 

space resolution, which was expected to provide intuitive and 

accurate visualization of articulator movements flexibly. Our 

visualization system consists of two modules. One is the 3D 

articulatory model which is extracted from a physiological 

model, and the other is 2D Chinese EMA data. We applied 

three points on the tongue in EMA data to select the best-

matched mid-sagittal shape of 3D model so that we can get 

the 3D visualized articulatory organ‟s movements for each 

Chinese phoneme. To evaluate the accuracy of our method, 

we compared the seven vowels‟ best-matched model data 

with Chinese MRI data. The result showed that the accuracy 

of our model is acceptable.  

The following paper is organized as below: PartⅡand Ⅲ
describe the details of the construction of Chinese EMA 

database and 3D model based database. Part Ⅳ introduces the 

method for building up the mapping, and partⅤshows the 



proposed system. Finally, part Ⅵ will give a summary. 

II.  PROCESSING OF A MULTICHANNEL CHINESE EMA 

DATABASE 

In this part, we first introduce the Chinese EMA database 

employed in this study. 

A. Corpus Design 

A corpus was designed to cover 30 Chinese phonemes 

which was presented in table Ⅰ, and recorded the articulatory 

data of continuous utterances from a native Mandarin speaker 

using the EMA system [9]. The corpus and speaker 

information are listed in table Ⅱ.  

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Data Labeling 

In this EMA database, the movements were synchronized 

to the speech waveform. So we labeled the speech in 

phoneme level and extracted the corresponding movement 

data. After label and extraction, all the included data are 

10647 phonemes. The first ten phonemes with highest 

occurrence are listed in table Ⅲ.   

 

 

 

 

 

 

 

 

 

C. Data Processing 

In EMA recording process, two sensors were placed on the 

speaker‟s lips, one coil on the jaw, three sensors on the tongue 

surface to record the internal movements, and three reference 

sensors on Nose Bridge and skull behind the ears respectively. 

After labeling, we got a central point of each phoneme 

segment by finding out the minimum velocity frame based on 

the 3 sensors on the tongue. Then, by means of checking the 

tongue movements‟ distribution of each phoneme, we 

excluded some incorrect points for the phonemes according to 

the deviation from the gathering center. 

As a result, we adopted acoustic and articulation method to 

screen EMA data. The procedure is as follow: (1) calculate 

the LPC coefficient of speech sound for the phonemes and 

transform the FFT to get their envelopes; (2) for a given 

phoneme, if its deviation from the mean envelop is more than 

two times of the standard deviation, the phoneme would be 

excluded; (3) repeat step (1) and (2) twice; (4) calculate the 

deviation from the mean articulation position for each 

pronunciation based on the three tongue sensors, by using the 

same approach as that for acoustics method. Fig. 1 shows the 

data distribution before and after the filtering. One can see 

that the isolated points were removed by this processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

III. CONSTRUCTION OF SIMULATION DATABASE USING 3D 

MODEL  

In this study, we applied a 3D continuum physiological 

model as the visualization platform shown in Fig. 2, which 

was constructed based on the previous work [10] by means of 

ArtiSynth [11], a 3D biomechanical simulation toolkit. 

 

 

 

 

 

 

 

 

 

 

A. Model Simulation 

In order to build an articulation database from model 

simulation, 149,275 muscle activation patterns were designed 

to cover the possible articulation based on the method used by 

Fang [12]. Each muscle activation pattern is a combination of 

18 muscle control parameters. By changing the size of the 

muscle force, we can control the movement of the model, 

especially the tongue‟s movement. Then, we applied these 

activation patterns to model to obtain articulatory simulation. 

B. Extract Tongue Shapes in  the Mid-Sagittal Plane 

After the model simulation was finished, we extracted the 

tongue‟s mid-sagittal plane data of each simulation to prepare 

for the mapping construction. In the mid-sagittal plane, 11 

points were used to present the tongue (see Fig. 3). 

 

 

TABLE   Ⅰ 

CHINESE PHONEME LIST 

 

Category Phoneme Number 

Vowel [a] [o] [ɤ] [i] [u] [y] [ə] 7 

Consonant 
[t] [tʻ] [n] [l] [p] [pʻ] [m] [f] [k] [kʻ] [x] [tɕ] 

[tɕʻ] [ɕ] ts] [tsʻ] [s] [tʂ] [tʂ„] [ʂ] [ʐ] [j] [w] 
23 

 

 

 

TABLE   Ⅱ 

CORPUS DESIGN 

 

Speak Sentence Syllable Duration 

Female, Age 24, 

Beijing, China 
374 7726 37mins 

 

 

TABLE   Ⅲ 

PHONEME FREQUENCY LIST 

 

Phoneme Frequency Phoneme Frequency 

[i] 1155 [t] 593 

[j] 901 [tɕ] 464 

[u] 667 [ʂ] 462 

[l] 663 [tʂ] 411 

[ɤ] 658 [w] 411 

 

 

Fig. 1   EMA data preprocessing. Left figure shows the original articulation 

distribution for phoneme [i], and right figure presents the filtered distribution. 

 

Fig. 2   Three-dimensional continuum physiological model we used. 

 

Fig. 5   Left figure: original distribution of EMA data and model. Right figure: 

matching between Chinese phoneme [ɤ] and 3-D model after TPS normalization. 
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IV. MAPPING BETWEEN EMA DATA AND MODEL 

SIMULATION 

We employed Chinese EMA data obtained in Section II to 

drive a 3D model which was extracted from a physiological 

model. Fig. 4 shows the fusion procedure. The mid-sagittal 

configuration of the tongue was extracted from the simulation 

database constructed in Section III. By matching the three 

points‟ data on the tongue of Chinese EMA data with 

tongue‟s mid-sagittal data of 3D model, the mapping function 

was obtained. 

 

 

 

 

 

 

 

 

 

 

 

A. Coordinate System Adjustment 

In this paper, we projected the EMA coordinate system to 

3D model. The hard palate was selected as the reference. 

Thin-plate spline (TPS) warping method [13] was used to 

project EMA data on the model in order to make palates in 

EMA data and 3D model data consistent. 

B. Calculation of Mapping Function  

After the adjustment of coordinate system, we could project 

EMA phoneme pronunciation data on 3D model‟s coordinate 

system. Allowing for the fact that points on the mid-sagittal 

tongue plane are too sparse, we adopted Lagrange 

interpolation method to insert 10 points between every two 

original tongue points. Since the EMA data of Chinese 

phoneme [ɤ] show best matching to the rest position of 3-D 

model, it is used for calibration. The best matching points for 

the first, second, third point of tongue EMA data are 9th, 27th, 

43rd points on the expanded 3D model tongue trajectory 

respectively, where their mean deviation was 0.09cm. Fig. 5 

shows original distribution and distribution after 

normalization. Therefore, we can use this mapping 

relationship to find the best match 3D model for other 

phonemes.  

 

 

 

 

 

 

 

 

 

 

 

 

C. Discussion and Evaluation 

Statistical analysis shows that the mean deviation for all 30 

phonemes between original EMA data and best matched 3D 

model is 0.16cm for the three match points. In the EMA data, 

only three points on the fontal and dorsal parts of the tongue 

can be observed. Once tongue‟s front part is fixed, how about 

the tongue‟s back part? Whether the tongue‟s back part will 

move without constraint or not? In this paper, two 

experiments were conducted for evaluation. 

A) Investigation of  the tongue’s back part 

At first, based on five Chinese people‟s MRI data, we 

investigated the mean deviation relationship between the 

tongue‟s front and back parts. When one produced seven 

vowels, the mean deviation of the tongue‟s front part and that 

of back part were calculated respectively. Fig. 6 displays the 

relationship between tongue‟s front and back parts. 

The 3D data were extracted from the model simulation. 

There are constraints on the physiological model, like volume. 

So, if the tongue‟s front part is moving, its back part will 

change with it possibly. Therefore, a 0.6cm mean deviation 

perturbation range for tongue‟s front part was set to select the 

best several models to investigate the movement of tongue‟s 

back part. The statistics show that the mean deviation for the 

tongue‟s back part is 0.63cm when that for the tongue‟s front 

part is 0.6cm. The above data are almost consistent with the 

observation from MRI data (see Fig.6), proving that using 

three points on the tongue front part as projection is feasible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

B) Compare with MRI data 

To confirm the method‟s accuracy, the tongue‟s mid-

sagittal data of the best-matched 3D model was compared 

with MRI data, based on seven vowel phonemes normalized 

by using TPS [13] method. The MRI data is presented in Fig. 

7. 

 

Fig. 3   Model mid-sagittal plane. 
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Fig. 4   Procedure of data fusion. 

 

Fig. 6   The relationship between tongue front and back parts. 

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
0.2

0.4

0.6

0.8

1

1.2

Mean deviation of tongue front part (cm)

M
e
a
n
 d

e
v
ia

ti
o
n
 o

f 
to

n
g
u
e
 b

a
c
k
 p

a
rt

 (
c
m

)

Relation between MRI data's tongue front part and back part

      

Fig. 5   Left figure: original distribution of EMA data and model. Right figure: 

matching between Chinese phoneme [ɤ] and 3-D model after TPS normalization. 
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The comparison indicates the mean deviation between the 

vowel‟s best-matched 3D model and MRI data is 0.21cm 

which is acceptable. 

V. VISUALIZATION PRESENTING SYSTEM 

Base on the above work, we built a visualization system 

according to the procedure shown in Fig. 8. 

 

 

 

 

 

 

 

 

 

 

When a phoneme is required to visualize its articulatory 

movement, the system will first judge whether the phoneme 

belongs to the Chinese 30 phonemes or not. If not, an error 

warning will be shown to remind users. Otherwise, the system 

will depend on the tongue‟s EMA data of the input phoneme 

and mapping relationship between EMA data and 3D model 

data. And then the system will search our model simulation 

database to find the best-matched mid-sagittal shape, and the 

corresponding 3D model simulation movement will be 

presented via a Matlab visualize program soon afterwards.  

Fig. 9 is visualization for Chinese phoneme [o] in 2.5-

dimensional and 3D views respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

VI. SUMMARY AND CONCLUSIONS 

In this paper, a Chinese phoneme pronunciation 

visualization method was proposed by combining Chinese 

EMA data and 3D articulatory physiological model. 

Comparing with MRI data, it is showed that our method 

provides an understandable and accurate description of 

articulator movements for Chinese phonemes. Furthermore, a 

visualization system is constructed based on the proposed 

method. For a practical learning-aid system, an inverse 

estimation modular is necessary. Besides, in order to extend 

the visualization method to words level, we need to attach 

great importance on co-articulation problem. These issues are 

remained for future study.  
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Fig. 8   Visualization system work procedure. 

 

Fig. 9   Visualization for Chinese phoneme [o]. 

 

Fig. 7   Chinese MRI data for phonemes [a] [ɤ] [ə] [i] [o] [u] [y] respectively. 


