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Abstract—Image quality assessment plays an important role in 
the development of many image processing systems. Many full-
reference image quality metrics have been proposed and aimed 
to give the prediction as close as possible to the subjective 
assessment made by human beings.  However, these metrics have 
a common restriction that pixel-wise correspondence must be 
established before the evaluation of metric scores.  Most of the 
existing metrics fail to result in accurate prediction even as a test 
image is differentiated from its original reference merely by one-
pixel misalignment.  Based on the fact that dissimilar image 
contents lead to random block correspondence, an image quality 
assessment method that primarily measures the randomness in 
the displacement between corresponding blocks from the images 
in comparison is proposed.  The performance of the proposed 
metric is verified by evaluating the quality of the test images 
contained in the LIVE and TID2008 databases and the same 
images translated by various amounts of distance. The 
correlation between subjective evaluation results and the 
objective scores evaluated by the proposed metric as well as 
other five well-know image quality assessment methods is 
examined.  Experimental results indicate that the proposed 
metric is an effective assessment method that can predict the 
image quality accurately without the preprocessing of image 
alignment.  

I. INTRODUCTION 

Image quality assessment (IQA) plays an important role in the 
development of image processing systems, such as 
image/video compression, content-based image retrieval, 
image registration and pattern recognition, etc.  Especially for 
those systems where processed images are to be viewed by 
human beings, an objective similarity metric that gives rise to 
the metric score highly correlated with the subjective 
assessment of human beings is highly demanded.  To achieve 
this goal, a number of full-reference IQA methods were 
proposed [1-13], in which VSNR [1], WSNR [2] and NQM 
[3] exploit characteristics of the human visual system (HVS) 
to improve the prediction performance.  The statistics of the 
natural scene are utilized in the information fidelity criterion 
(IFC) metric [8]. The visual information fidelity metric (VIF) 
[9] assesses the image quality by quantifying the mutual 
information between distorted and reference images.  In [6, 7], 
the information obtained from the singular value 
decomposition (SVD) of the image’s characteristic matrix is 
used in the evaluation of metric scores.  The structural 

similarity index (SSIM) [4-5] compares local patterns of pixel 
intensities as the normalized mean intensity and contrast.  The 
design of SSIM is based on the assumption that the human 
visual system is highly adapted to the structure information 
extracted from the perceived scene, and that the change in 
structural information can provide a good approximation to 
the perceived image distortion.  Many similar studies [10-11] 
are conducted to modify the SSIM index for more close to 
human perception.  In [12], the phase information embedded 
in images is taken as the representative features for evaluating 
the metric score.  The ideas behind this metric were motivated 
from the fact that if an image has some structural distortions, 
the distortions lead to consistent phase change. 
 
A common shortcoming of the above-mentioned IQA 
approaches is that they are very sensitive to geometric 
distortions.  Most of these IQA methods are not able to 
perform properly in predicting image quality if perfect image 
registration or pixel correspondence is not established before 
the evaluation of metric scores, and fail to predict the 
similarity between two identical images which are 
differentiated merely by a pixel wide of translation.  Only few 
literatures were published on the geometric translation 
problem in image quality assessment [13-15].  Based on the 
fact that small geometric image distortions lead to consistent 
phase changes in local wavelet coefficients, the complex 
wavelet SSIM (CW-SSIM) [13-14] was found robust to small 
translations and rotations.  In most cases, the process to 
establish the correspondence between pairs of pixels in the 
images to be compared can be computationally costly, and the 
result of the process may lead to an erroneous outcome 
depending on the contents of the two images.   
 
In this paper, a novel image quality metric called 
homogeneous correspondence index (HCI) is presented, 
which is able to accurately predict the similarity between two 
images without having to establish the pixel correspondence 
in the first place.  The idea behind the proposed metric is that 
the corresponding features contained in two similar images 
will not be randomly displaced if simple geometric distortion 
exists between the two images. In this paper, the 
correspondence refers to the pair of image blocks located in 
two different images that are most similar to each other, and 



associated by the relative displacement in between.  The 
homogeneous correspondence in this case implies that all 
pairs of corresponding blocks are associated by the same 
displacement. The probability associated with each possible 
displacement is used to evaluate the score of the proposed 
entropy-like metric. The proposed metric has a lower bound 
of zero and a finite upper bound, the value of which depends 
upon the number of sampling points for measuring the 
homogeneous of correspondence.  The performance of the 
proposed metric is verified by evaluating the quality of the 
test images contained in the LIVE [16] and TID2008 [17] 
databases and the same images translated by various amounts 
of distance. The correlation between subjective evaluation 
results and the objective scores evaluated by the proposed 
metric as well as other five well-know image quality 
assessment methods is examined. 

II. THE PROPOSED IMAGE QUALITY METRIC  

The proposed HCI metric is designed to primarily measure 
the uniformity of the displacements between the 
corresponding blocks in both reference and test images.  The 
functional block diagram for evaluating the objective score of 
the proposed metric is shown in Fig.1.  The metric score of 
HCI can be evaluated from two components as expressed by 
the following equation  
 

HCI (X,Y) = SH(X,Y)．SL(X,Y)           
    

(1) 
 
where X and Y denote the reference image and the test image 
to be assessed, respectively.  SH(X,Y) is responsible for 
measuring the homogeneity of the displacement vectors that 
associate the corresponding mean-removal blocks in the two 
images, and can be expressed as  
 

 SH(X,Y) = 1 - R(X,Y),              (2) 
 
where   
 

R(X,Y) = H(X,Y) / Hmax             (3) 
 
is the normalized randomness of the displacement vectors that 
associate the corresponding mean-removal blocks in the two 
images.  The H(X,Y) in Eq. (3) is an entropy function that 
measures the randomness of the displacement vectors, as can 
be derived as  
 

H(X,Y) = i

N

i
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1
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   (4) 

 
where N is the number of all possible displacement vectors 
that associate the corresponding blocks.  The value of N 
depends on the dimension of the search area involved in 
finding the best matched block in the reference image for each 
block from the test image.  The value of N will be (2d+1) 
(2d+1) if the full search in the reference image is ranged from 
–d to d along each of the two directions.  pi is the probability 
associated with the occurrences of the displacement vector 
indexed by i.  That is  
 

M
Mp i

i      for   1  i  N,                     (5) 

 
where M denotes the total number of image blocks partitioned 
from the test image and Mi the number of image blocks that 
deviate from their corresponding blocks by the displacement 
vector (△x, △y) indexed by i.  Hmax implies the maximum 
randomness, which can be reached as the probabilities of 

Fig. 1.  Block diagram for evaluating the objective score of the proposed metric 
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occurrences of all possible displacement vectors are 
approximately the same. That is  
 

Hmax = log2 N .                (6) 
  
In the case that two identical images differentiated by simple 
geometric translation are in comparison, the corresponding 
blocks from the two images are expected to have the same 
displacement.  The homogeneous correspondence will result 
in the near-zero value of R(X,Y) and thus the highest value of 
SH(X,Y).  As a demonstration, Fig. 2(d) displays the 
uniformity of the displacement vectors that associate the 
corresponding blocks (of size 88) in the reference image 
(Fig. 2(a)) and the same image translated by a displacement 
vector of (1, 1) (Fig. 2(b)).  Obviously, the slight translation 
does not affect the subjective quality of the translated image.  
A high score value is thus expected from the subjective 
quality assessment, and so should be from an effective 
objective quality metric.  Fig. 2 (e) displays the irregularity of 
the displacement vectors that associate the corresponding 
blocks in the reference image (Fig. 2 (a)) and the same image 
contaminated by AWGN (Fig. 2 (c)).  The lower score values 
evaluated from the subjective and an effective objective 
quality metrics are therefore expected.  
 
By considering that the human visual system is sensitive to 
the change in luminance, the similarity measure in luminance 
is also included in the proposed image quality assessment 
method.  SL(X,Y) in Eq.(1) functions to measure the similarity 
in the luminance of the two images, where the luminance 
correlations of all pairs of corresponding blocks are averaged 
to contribute to the metric score, as can be expressed by the 
following equation   

SL(X,Y) = 
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         (7) 

where xl denotes the l-th block in the reference image 
corresponding to block yl in the test image. (xl) and (yl)  
denote the mean luminance of the image block xl and yl, 
respectively.  The constant K is used to avoid the instability 
due to zero mean luminance, and control the dynamic range 
of the score value.    
 

In the process of locating the corresponding block for each 
block in the test image, the full-search block matching 
algorithm is applied to the reference image data within the 
search area defined by the location of the test image block and 
the parameter of maximum possible displacement.  The 
criterion for determining the best matched block is, in this 
paper, the mean squared error evaluated from mean-removed 
image blocks. 

III. SIMULATION 

To investigate the validity of the proposed metric, the test 
images contained in the LIVE [16] and TID2008 [17] 
databases are employed in the simulation.  Some of the test 
images are modified by the translations of various extents for 
measuring the translation affect.  Due to the absence of the 
subjective evaluation results on the translated images, the 
subjective experiments that follow the ITU-R procedure [18] 
were conducted to assess the quality of the translated images, 
where 22 subjects were involved in the experiment.  The 
mean opinion scores (MOS) obtained from assessing each 
translated image in the subjective experiment is normalized to 
the range from 0.0 to 1.0.  In evaluating the score of the 
proposed metric, non-overlapping 88 blocks are sampled in 
the test image for reducing the intensive computational 
complexity, particularly when search area is enlarged. 
The performance of the proposed quality metric is first 
investigated by the correlation between the subjective 
evaluation results and the objective evaluation results as the 

Fig. 2 (a) The original image (monarch); (b) the original image translated by the displacement vector of (1, 1), (MOS=0.999 HCI=1.0, SSIM=0.508); (c) the 
original image contaminated by AWGN (MOS=0.689 HCI=0.625, SSIM=0.638); (d) the displacement vector field associated with the translated image of 
(b); (d) the displacement vector field associated with the distorted image of (c). 
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extent of translation varies.  Fig. 3 illustrates the behavior of 
the averaged scores evaluated from five image quality metrics 
as the extent of translation is increased. The test image, in this 
case, is identical to the reference image but displaced by a 
specified number of pixels along the horizontal direction.     
The curves indicate that the behavior of the proposed metric 
closely agrees with that of subjective metric.  The proposed 
metric is more correlated with the subjective metric than other 
metrics. The results also verify that the CW-SSIM metric is 
only robust to small translations (less than 25 pixels).  
 
The performance of the proposed quality metric is also 
compared with those of the metrics including SSIM [5], CW-
SSIM [13-14], VIF [9], VSNR [1], PSNR in terms of 
Pearson's correlation coefficients.  In this case, non-linear 
regression is used to fit the experimental data that model the 
correlation of the objective and subjective metric scores.  The 
comparison results obtained from assessing more than 700 
images in the LIVE database are shown in Table I.  These 
images are contaminated by five types of distortion including 
those due to JPEG and JPEG2000 compression, additive 
white noises, Gaussian blurring and fast fading.  The images 
distorted by geometric translation are not involved in this 
comparison.  The comparison results shown in Table II are 
obtained from assessing even wider spectrum of test images 
including the general test images and translated test images. 
These test images are obtained from the TID2008 and LIVE 
databases.  
 
From the experimental results, it can be found that the 
proposed metric is able to reflect an accurate image quality 
assessment while the test image occur the translation effect as 
show in Fig. 4 (e)-(h). The comparison results shown in 
Tables I and II indicate that the proposed metric is not only 
insensitive to the distortion due to geometric translation but 
also has the performance comparable to the existing well-
known metrics (such as SSIM and VIF) in predicting the 
perceptual quality of the test image.   

IV. CONCLUSIONS 

In this paper, a novel image quality assessment method that 
measures the uniformity of the displacements that associate 
the corresponding blocks from the images to be compared is 
proposed.  The method is verified not only robust to the 
translation occurred in the image to be assessed but also has 
the ability to predict the image quality in a quantified level 
close to that judged by human beings.  The proposed metric 
can cooperate with the existing quality metrics to further 
enhance the overall performance in predicting image quality 
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Fig. 4 Comparison of image quality measures for images with different types of distortions and translation. (a)-(d) non-translation images (a) original image , 
(b) white noise image, (c)blur image, (d)jpeg image; (e)-(h) Add translation insensitive to the test images by 5 pixels to the left 

(a) MOS=1, SSIM=1 
CWSSIM=1, HCI=1 

(e) MOS=0.999, SSIM=0.608 
CWSSIM=0.987, HCI=0.999 

(b) MOS=0.649, SSIM=0.644 
CWSSIM=0.687, HCI=0.652 

(f) MOS=0.647, SSIM=0.438 
CWSSIM=0.671, HCI=0.649 

(c) MOS=0.542, SSIM=0.485 
CWSSIM=0.527, HCI=0.505 

(g) MOS=0.539, SSIM=0.303 
CWSSIM=0.515, HCI=0.506 

(d) MOS=0.419, SSIM=0.362 
CWSSIM=0.499, HCI=0.424 

(h) MOS=0.415, SSIM=0.312 
CWSSIM=0.487, HCI=0.423 


