
1

A Capture-to-Display Delay Measurement System for
Visual Communication Applications
Chao Wei*, Haoming Chen**, Mingli Song*, Ming-Ting Sun** and Kevin Lau†

*Zhejiang University, ** University of Washington, † T-Mobile USA
E-mail: *weichaohnu@gmail.com, brooksong@zju.edu.cn, **haominghoward@gmail.com, sun@ee.washington.edu,

†Kevin.Lau@T-Mobile.com

Abstract— We propose an effective method to measure the
capture-to-display delay (CDD) of a visual communication
application. The method does not require modifications to the
existing system, nor require the encoder and decoder clocks to be
synchronized. Furthermore, we propose a solution to solve the
multiple overlapped-timestamp problems due to the response
time of the display and the exposure time of the camera. We
implemented the method in software to measure the capture-to-
display delay of a cellphone video chat application over various
types of networks. Experiments confirmed the effectiveness of
our proposed methods.

I. INTRODUCTION

End-to-end delay is an important concern for two-way visual
communication applications. Video codec manufacturers need
to measure the end-to-end delay of a video codec system in
order to develop low-delay video codecs. Network service
providers need to make sure the end-to-end delay of a visual
communication application is within the application
requirement. A simple and general tool for measuring the end-
to-end delay of a visual communication system is invaluable
for applications related to two-way visual communications.

Figure 1 shows an example of a mobile video chat system.
Video captured by the device camera is compressed by a
video encoder. The encoder usually contains an encoder
buffer to smooth the video bit-rate as described in [1]. The
video bit-stream is then packetized and transmitted over the
network. At the decoder side, the video is decoded and
displayed. The decoder usually contains a decoder buffer to
smooth out the network jitter and to buffer the bit-stream
before the video decoding. The encoder and decoder buffers
can result in a relatively long delay. The end-to-end delay in
this example is the latency from frame capturing at the
encoder side to the frame display at the decoder side, which
we call capture-to-display delay (CDD), including the whole
chain of video encoding, encoder buffering, packetization,
network transmission, decoder buffering, and video decoding.

The traditional way to measure the latency is by using time
stamps. A time stamp is a code representing the global time. It
can be generated by a counter from a network clock
commonly available to both the encoder and the decoder. To
measure the time delay between two points A and B, a time
stamp is inserted at Point A, retrieved at the Point B, and
compared to the global time at Point B. For example, for the
visual communication system shown in Fig. 1, to measure the
end-to-end delay of the network part, time stamps are

generated from the network clock and inserted at the network
interface point in the encoder side. These time stamps are
retrieved at the network interface point at the decoder side to
compare to the global time. Similarly, to measure the CDD,
we can insert timestamps at the video capture point, and
observe the timestamps relative to the global time at the
display point. As long as a network clock is available or the
encoder clock and the decoder clock are synchronized, the
delay can be calculated. However, in order to do this, we need
to be able to modify the hardware or software to insert the
timestamps, and retrieve the timestamps at the desired points.
In many situations including our application scenario,
cellphone video codecs are implemented in hardware and
software by the developers. Thus, we cannot access the inside
of a cellphone to insert or retrieve the time stamps. Also,
usually the encoder clock and the decoder clock are not
synchronized. These make the measuring of the CDD
particularly challenging.

Boyaci et al. [2] presented a tool to measure the CDD of a
video chat application which does not need any changes in
video application software or need specialized hardware.
Their approach adds timestamps represented in barcodes at
the encoder side. After the video is decoded at the decoder
side, the barcodes are recognized and compared to the time at
the decoder side. However, this method still requires the
development of new software inside the encoder and decoder
machines in order to insert and recognize the barcodes and
compare the recognized timestamps to the system time.
Moreover, the encoder clock and the decoder clock need to be
synchronized. In our case, since we cannot access the video

Fig. 1. An end-to-end visual communication system.

Video

Video
Communicatoin
Application

Software/Hardware
Encoder

Buffer
Management

Display

Video
Communicatoin
Application

Software/Hardware
Decoder

Buffer
Management

Transmission
Network

Capture-to-
Display
Delay

2

encoder and decoder systems, nor can we guarantee that the
encoder clock and the decoder clock in the cellphones on
different sides are synchronized, this scheme is not feasible
for our situation. To overcome the aforementioned problems,
we propose a method that can be used to measure the CDD of
any visual communication applications, which does not
require modification to the application source code and access
to the system. It also does not require the encoder and decoder
clocks to be synchronized. It is based on the simultaneous
recognitions and comparisons of visual patterns of both
timestamps captured at the encoder side and displayed at the
decoder side. Our contributions include: (1) propose a new
CDD measurement method that does not require modification
to the visual communication system nor synchronize the
encoder and decoder clocks, and (2) a solution to the
multiple-overlapped-timestamp problem encountered using
this approach.

The organization of the rest of this paper is as follows. In
Section 2, we discuss our approach of measuring the CDD. In
Section 3, we discuss the problem of multiple overlapped
timestamps and our proposed solution. In Section 4, we
present experimental results to show the effectiveness of our
proposed methods. Section 5 concludes the paper.

II. DELAY MEASUREMENT SYSTEM DESIGN

A. The CDD Measurement System

The proposed CDD measurement system is shown in
Figure 2. Timestamps representing a stopwatch with
millisecond precision are displayed on the screen of an
external PC. Cellphone1 and Cellphone2 make the video chat
connection. The timestamps shown on the screen of the PC is
captured by the Cellphone1 camera. The video of Cellphone1
is encoded and transmitted to Cellphone2. The decoded video
is displayed on the screen of Cellphone2. A digital video
camera records the timestamps on both the screens of the PC
and Cellphone2. The delay measurement system in the PC
receives the video from the digital video camera, and
performs pattern recognitions for the two timestamp patterns
in the video frame. The value of the difference between the
two timestamps is the CDD. Note that this system is intended
to be used in research for investigating the end-to-end delay.
In the application scenario, the network provider has the
control on routing the packets or using a network simulator to
simulate the network. So the sender/receiver/PC have to be at
the same site is not a serious limitation of the proposed
approach.

The system is implemented in an external PC which
includes two applications: CDD-T and CDD-R. The CDD-T
application generates and displays timestamps on the PC
screens every M milli-seconds (in the experiments, we set
M=30). The CDD-R application receives the captured video
from the digital video camera, performs timestamp pattern
recognitions, and calculates and displays the CDD of every
frame. At the end of a measurement session, the CDD-R
application will also output the delay statistics such as the
minimum, maximum, and mean CDD and the stand deviation.

B. Timestamps

The timestamps can be represented in different patterns.
Three example patterns we investigated to encode the
timestamps are shown in Figure 3. Figure 3(a) represents a
timestamp in digits and Figure 3(b) represents a timestamp in
a QR code [3]. The digit timestamps can be read by the user
to get a quick read of the CDD. There is public domain
software that can recognize the digit and QR-code timestamps.
The QR code is not human readable. However, the fast
readability and greater storage capacity compared to the
standard barcodes make the QR code increasingly popular.
For error-resiliency, Boyaci et al. [2] used an EAN-8 barcode
because of its checksum mechanism. The EAN-8 barcode
with a checksum can allow to detect whether the timestamp is
contaminated, and refuse to read the barcode if it is damaged
or distorted. The QR code not only has the checksum
mechanism but also the error correction capability. Even if a
QR code has some local breakage, it still can restore the
original information. Furthermore, the QR code is designed
with open standards. Figure 3(c) is a set of special visual
patterns we designed to represent the 10 digits. It is still
human readable, and due to the simplicity of the pattern, it
allows us to see the extent of the multiple overlapped
timestamp problem as will be discussed in details in the next
section.

Fig. 3. Examples of timestamp formats (a) digits, (b)
QR code and (c) special visual patterns.

Fig. 2. The proposed approach to measure the CDD.

3

III. PROBLEM OF MULTIPLE OVERLAPPED TIMESTAMPS AND

SOLUTION

Although the concept of the above proposed approach
looks simple, it has a problem of multiple overlapped
timestamps due to the limited response time [4] of the PC and
cellphone screens, and the limited camera shutter speed.

A. Problems of Multiple Overlapped Timestamps

When we use a camera to capture the timestamps, the
camera needs some time to expose a frame. The exposure
process is related to the camera’s aperture and shutter speed
[5]. The Liquid Crystal Display (LCD) refresh rate [6] is the
number of times per second in which the display draws the
data it is being given. Due to the limited response time of the
display, when a new pattern is displayed, the old pattern may
not have completely disappeared. This results in multiple
overlapped timestamps on the display as shown in Figure 4.
Using public domain software to recognize the multiple
overlapped timestamp patterns causes serious errors. We
cannot just discard the blurred timestamp frames, because
only about 50% of the frames are clear in our experiments.
Here, a clear frame means that the timestamps on both the PC
and the Cellphone2 screens are clearly recognizable.

To investigate the extent of the multiple overlapped
timestamps, we use the visual patterns we developed for
representing the digits as shown in Figure 4(c). Since the
bright squares in the patterns appear at different locations for
different digits, we can easily see how many timestamps are
overlapped by counting the numbers of brighter squares in the
area representing a digit. In our experiments, we found the
number of overlapped timestamps could be as high as four in
some occasions.

Fig. 4. Multiple overlapped timestamps: (a) with digits, (b)

with QR code, (c) with special visual patterns.

B. Solution to the multiple overlapped timestamp problem

We solve the problem with space diversity, i.e., displaying
consecutive timestamps at different locations so that they do
not overlap before they disappear. The number of space
diversity depends on the maximum possible number of
overlapped timestamps. Since the maximum number of
overlapped timestamps is four in our simulations, we display
four consecutive timestamps at four different columns. A
video frame showing the QR codes with a space diversity of
four is shown in Fig. 5.

Fig. 5. A video frame showing the QR codes with a space
diversity of four.

We use bssGenerator [7], a commercial QR code generator

Demo SDK, to encode the system time into a QR-code
timestamp. With the space diversity of four, the multiple
overlapped timestamp problem is solved, but it could result in
four faded QR code patterns. In the QR-code recognition,
CDD-R first carries out the binarization for every QR-code
pattern. Our thresholding method used in the binarization is
based on the Otsu algorithm. The details for the Otsu
algorithm can be found in [8]. After binarization, the QR code
timestamp appearance is much enhanced. Experimental
results show that the thresholding in the binarization
contributes to improve the recognition accuracy significantly.
The binary image is read using ZXing [9], an open source,
multi-format 1D/2D barcode reader. The reading accuracy of
the QR code shown on the LCD monitor reaches 99.7% and
the one on the Cellphone2 screen is above 90% in the
experiments (See Section 4). Given four columns of QR codes,
CDD-R recognizes all of them first. The columns without QR
code observed are removed. The timestamp with the latest
time value is chosen as the time of the current video frame.
When no recognition of the QR code is successful, the system
marks its time as “Invalid”. The system performs a correction
process for the invalid timestamps after all frames have been
recognized. Since the timestamp refresh time is 30ms, the
difference between any two timestamps should be a multiple
of 30 ms. We can interpolate the invalid time from the
successful recognition results based on this property. Since
the rate of invalid time is less than 10%, and most of the
invalid time is isolated, the delay correction process is quite
effective.

IV. SIMULATION RESULTS

In our experiments, we pay special attention to the accuracy,
precision, and recognition time of different methods. The
precision is the percentage of the number of correct
recognitions to the total number of successful reads. A
successful read does not mean a correct recognition because
of possible recognition errors. The accuracy is the rate of the
number of frames recognized correctly to the number of all
frames.

In the beginning of our experiments, we tested the
timestamps in digits without spatial diversity as in Section
III.B. The accuracy and precision for the timestamps on the
PC screen are 95.5% and 99.4%, respectively which is good.
However, the accuracy and precision for the timestamps on
the Cellphone2 screen are only 17.2% and 46.9%,

4

respectively. It means that among 25 frames, only about 12
frames are read successfully and only 4 frames are recognized
correctly. The poor result is due to the multiple overlapped-
timestamp problem. We also investigated the recognition time.
Without applying the proposed diversity scheme, it takes 30.7
ms/frame. The computer we used has a 3.1 GHz Intel Core i3-
2100 CPU, 4GB of RAM, and a NVIDIA GeForce 7600 GT
graphics card. The machine runs the Windows 7 operating
system.

We then experiment the QR code and the visual patterns in
Fig.3 (c) with a spatial diversity of four. Table I shows the
results. These results confirm the effectiveness of our
proposed strategy. The precision of the QR code reaches 100%
for both the PC and Cellphone2 screens due to its checksum
mechanism and error correction capability. The results using
the visual patterns in Fig. 3 (c) is also good.

Table I also shows the read time of a frame with a
resolution 720×1280. The read time includes the recognition
time and the selection time. The system needs to read two
groups of timestamps (one on the PC screen and the other on
the Cellphone2 screen) and select the latest time (among four
columns due to the diversity of four) for each group
separately. The system based on the QR-code takes 69.3 ms to
process a frame. The system based on the visual patterns in
Fig. 3(c) takes 38.7 ms/frame. The system based on digits in
Fig.3 (a) takes 22.0 ms/frame. It should be noted that we have
not tried to optimize the speed of the code. With optimization,
the speed should be able to be further improved. The QR-code
takes more time due to its error correction function.

We have fully implemented the delay measurement system
and successfully measured the CDD of many two-way visual
communication applications over various networks. Figure 6
shows the performance of using FaceTime over the UW WiFi
network when a video session is established through a stable
wireless connection. To show the resultant figure clearly, we
choose a video consisting of 400 frames to conduct the
experiment. From the figure, we can clearly see that the
delays of all frames in this example are relatively stable. The
minimal delay is 210 ms, the maximal delay is 360 ms, the
mean delay is 284 ms, and the standard deviation is about 26
ms.

V. CONCLUSIONS

We developed an approach to measure the capture-to-
display delay of visual communication applications. The
approach does not require modifications to any video
application source code nor access to the internal of the
existing system. Also, it does not require the encoder and
decoder clocks to be synchronized. The method is universal
so that it can be used to measure the capture-to-display delay
of any visual communication applications. It has been
successfully implemented in software. We have also proposed
a solution with spatial diversity to solve the multiple-
overlapped-timestamp problem associated with the proposed
approach. Experimental results confirm the effectiveness of
the proposed approach.

VI. ACKNOWLEDGEMENT

The authors would like to thank the support of Chao Wei and
Mingli Song from the National High Technology Research
and Development Program of China (863 Program) under
grant No. 2013AA040601. The views presented are as
individuals and do not necessarily reflect any position of T-
Mobile USA.

REFERENCES
[1] A. R. Reibman and B. G. Haskell, “Constraints on variable bit-rate

video for ATM networks,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 2, pp. 361-372, Dec, 1992.

[2] O. Boyaci, A. Forte, S. Abdul Baset, and H. Schulzrinne. “vDelay: A
tool to measure capture-to-display latency and frame rate,” Multimedia,
International Symposium on, 0:194-200, 2009.

[3] E. Ohbuchi, H. Hanaizumi, and L. A. Hock, “Barcode Readers using the
Camera Device in Mobile Phones,” Proceedings of the 2004
International Conference on Cyberworlds, pp. 260-265, November 2004.

[4] R. I. McCartney, “A liquid crystal display response time compensation
feature integrated into an lcd panel timing controller,” in Proc. SID Dig.,
2003, pp. 1350–1353.

[5] Jacobson, Ralph E. The manual of photography: photographic and
digital imaging. Focal Press, 2000.

[6] M. Menozzi, F. Lang, U. Naepflin,C. Zeller, & H. Krueger, “CRT
versus LCD: Effects of refresh rate, display technology and background
luminance in visual performance,” Displays 22.3 (2001): 79-85.

[7] Bss QR Code Generator SDK.
http://www.barcodesoftwaresolutions.com.

[8] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Trans. Biomed. Eng., vol. BME-9, pp. 63–66, 1979.

[9] ZXing barcode reader. http://code.google.com/p/zxing/.

Fig. 6 CDD of a video char session with the QR code.

TABLE I ACCURACY, PRECISION, AND RECOGNITION TIME

OF TIMESTAMPS RECOGNITION FOR ONE FRAME

(RESOLUTION 720×1280)

QR

Code
Visual

Patterns
Digits

Accuracy
(%)

TimeOnPC 99.7 98.8 97.1
TimeOn
Phone

90.8 95.2 60.5

Precision
(%)

TimeOnPC 100 98.9 99.5
TimeOn
Phone

100 95.4 83.4

Read Time
(ms/frame)

69.3 38.7 22.0

* The accuracy is the rate of the number of frames read correctly to the
number of all frames. The precision is the percentage of the number of
correct recognitions to the total number of successful reads.

