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Abstract— We propose an effective method to measure the 
capture-to-display delay (CDD) of a visual communication 
application. The method does not require modifications to the 
existing system, nor require the encoder and decoder clocks to be 
synchronized. Furthermore, we propose a solution to solve the 
multiple overlapped-timestamp problems due to the response 
time of the display and the exposure time of the camera. We 
implemented the method in software to measure the capture-to-
display delay of a cellphone video chat application over various 
types of networks. Experiments confirmed the effectiveness of 
our proposed methods.  

I. INTRODUCTION 

End-to-end delay is an important concern for two-way visual 
communication applications. Video codec manufacturers need 
to measure the end-to-end delay of a video codec system in 
order to develop low-delay video codecs. Network service 
providers need to make sure the end-to-end delay of a visual 
communication application is within the application 
requirement. A simple and general tool for measuring the end-
to-end delay of a visual communication system is invaluable 
for applications related to two-way visual communications.  

Figure 1 shows an example of a mobile video chat system. 
Video captured by the device camera is compressed by a 
video encoder. The encoder usually contains an encoder 
buffer to smooth the video bit-rate as described in [1]. The 
video bit-stream is then packetized and transmitted over the 
network. At the decoder side, the video is decoded and 
displayed. The decoder usually contains a decoder buffer to 
smooth out the network jitter and to buffer the bit-stream 
before the video decoding. The encoder and decoder buffers 
can result in a relatively long delay. The end-to-end delay in 
this example is the latency from frame capturing at the 
encoder side to the frame display at the decoder side, which 
we call capture-to-display delay (CDD), including the whole 
chain of video encoding, encoder buffering, packetization, 
network transmission, decoder buffering, and video decoding.  

The traditional way to measure the latency is by using time 
stamps. A time stamp is a code representing the global time. It 
can be generated by a counter from a network clock 
commonly available to both the encoder and the decoder. To 
measure the time delay between two points A and B, a time 
stamp is inserted at Point A, retrieved at the Point B, and 
compared to the global time at Point B. For example, for the 
visual communication system shown in Fig. 1, to measure the 
end-to-end delay of the network part, time stamps are 

generated from the network clock and inserted at the network 
interface point in the encoder side. These time stamps are 
retrieved at the network interface point at the decoder side to 
compare to the global time. Similarly, to measure the CDD, 
we can insert timestamps at the video capture point, and 
observe the timestamps relative to the global time at the 
display point. As long as a network clock is available or the 
encoder clock and the decoder clock are synchronized, the 
delay can be calculated. However, in order to do this, we need 
to be able to modify the hardware or software to insert the 
timestamps, and retrieve the timestamps at the desired points. 
In many situations including our application scenario, 
cellphone video codecs are implemented in hardware and 
software by the developers. Thus, we cannot access the inside 
of a cellphone to insert or retrieve the time stamps. Also, 
usually the encoder clock and the decoder clock are not 
synchronized. These make the measuring of the CDD 
particularly challenging.  

Boyaci et al. [2] presented a tool to measure the CDD of a 
video chat application which does not need any changes in 
video application software or need specialized hardware. 
Their approach adds timestamps represented in barcodes at 
the encoder side. After the video is decoded at the decoder 
side, the barcodes are recognized and compared to the time at 
the decoder side. However, this method still requires the 
development of new software inside the encoder and decoder 
machines in order to insert and recognize the barcodes and 
compare the recognized timestamps to the system time. 
Moreover, the encoder clock and the decoder clock need to be 
synchronized. In our case, since we cannot access the video 

 

 
 

Fig. 1.   An end-to-end visual communication system. 
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encoder and decoder systems, nor can we guarantee that the 
encoder clock and the decoder clock in the cellphones on 
different sides are synchronized, this scheme is not feasible 
for our situation. To overcome the aforementioned problems, 
we propose a method that can be used to measure the CDD of 
any visual communication applications, which does not 
require modification to the application source code and access 
to the system. It also does not require the encoder and decoder 
clocks to be synchronized.  It is based on the simultaneous 
recognitions and comparisons of visual patterns of both 
timestamps captured at the encoder side and displayed at the 
decoder side. Our contributions include: (1) propose a new 
CDD measurement method that does not require modification 
to the visual communication system nor synchronize the 
encoder and decoder clocks, and (2) a solution to the 
multiple-overlapped-timestamp problem encountered using 
this approach. 

The organization of the rest of this paper is as follows. In 
Section 2, we discuss our approach of measuring the CDD. In 
Section 3, we discuss the problem of multiple overlapped 
timestamps and our proposed solution. In Section 4, we 
present experimental results to show the effectiveness of our 
proposed methods. Section 5 concludes the paper. 

  

II. DELAY MEASUREMENT SYSTEM DESIGN 

A. The CDD Measurement System 

The proposed CDD measurement system is shown in 
Figure 2. Timestamps representing a stopwatch with 
millisecond precision are displayed on the screen of an 
external PC. Cellphone1 and Cellphone2 make the video chat 
connection. The timestamps shown on the screen of the PC is 
captured by the Cellphone1 camera. The video of Cellphone1 
is encoded and transmitted to Cellphone2. The decoded video 
is displayed on the screen of Cellphone2. A digital video 
camera records the timestamps on both the screens of the PC 
and Cellphone2. The delay measurement system in the PC 
receives the video from the digital video camera, and 
performs pattern recognitions for the two timestamp patterns 
in the video frame. The value of the difference between the 
two timestamps is the CDD. Note that this system is intended 
to be used in research for investigating the end-to-end delay. 
In the application scenario, the network provider has the 
control on routing the packets or using a network simulator to 
simulate the network. So the sender/receiver/PC have to be at 
the same site is not a serious limitation of the proposed 
approach. 

The system is implemented in an external PC which 
includes two applications: CDD-T and CDD-R. The CDD-T 
application generates and displays timestamps on the PC 
screens every M milli-seconds (in the experiments, we set 
M=30). The CDD-R application receives the captured video 
from the digital video camera, performs timestamp pattern 
recognitions, and calculates and displays the CDD of every 
frame. At the end of a measurement session, the CDD-R 
application will also output the delay statistics such as the 
minimum, maximum, and mean CDD and the stand deviation. 

B. Timestamps 

The timestamps can be represented in different patterns. 
Three example patterns we investigated to encode the 
timestamps are shown in Figure 3. Figure 3(a) represents a 
timestamp in digits and Figure 3(b) represents a timestamp in 
a QR code [3]. The digit timestamps can be read by the user 
to get a quick read of the CDD. There is public domain 
software that can recognize the digit and QR-code timestamps. 
The QR code is not human readable. However, the fast 
readability and greater storage capacity compared to the 
standard barcodes make the QR code increasingly popular. 
For error-resiliency, Boyaci et al. [2] used an EAN-8 barcode 
because of its checksum mechanism. The EAN-8 barcode 
with a checksum can allow to detect whether the timestamp is 
contaminated, and refuse to read the barcode if it is damaged 
or distorted. The QR code not only has the checksum 
mechanism but also the error correction capability. Even if a 
QR code has some local breakage, it still can restore the 
original information. Furthermore, the QR code is designed 
with open standards. Figure 3(c) is a set of special visual 
patterns we designed to represent the 10 digits. It is still 
human readable, and due to the simplicity of the pattern, it 
allows us to see the extent of the multiple overlapped 
timestamp problem as will be discussed in details in the next 
section.  

 

 

Fig. 3.   Examples of timestamp formats (a) digits, (b) 
QR code and (c) special visual patterns. 

 
Fig. 2. The proposed approach to measure the CDD. 
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III. PROBLEM OF MULTIPLE OVERLAPPED TIMESTAMPS AND 

SOLUTION 

Although the concept of the above proposed approach 
looks simple, it has a problem of multiple overlapped 
timestamps due to the limited response time [4] of the PC and 
cellphone screens, and the limited camera shutter speed. 

A. Problems of Multiple Overlapped Timestamps 

When we use a camera to capture the timestamps, the 
camera needs some time to expose a frame. The exposure 
process is related to the camera’s aperture and shutter speed 
[5]. The Liquid Crystal Display (LCD) refresh rate [6] is the 
number of times per second in which the display draws the 
data it is being given. Due to the limited response time of the 
display, when a new pattern is displayed, the old pattern may 
not have completely disappeared. This results in multiple 
overlapped timestamps on the display as shown in Figure 4. 
Using public domain software to recognize the multiple 
overlapped timestamp patterns causes serious errors. We 
cannot just discard the blurred timestamp frames, because 
only about 50% of the frames are clear in our experiments. 
Here, a clear frame means that the timestamps on both the PC 
and the Cellphone2 screens are clearly recognizable. 

To investigate the extent of the multiple overlapped 
timestamps, we use the visual patterns we developed for 
representing the digits as shown in Figure 4(c). Since the 
bright squares in the patterns appear at different locations for 
different digits, we can easily see how many timestamps are 
overlapped by counting the numbers of brighter squares in the 
area representing a digit.  In our experiments, we found the 
number of overlapped timestamps could be as high as four in 
some occasions. 
 

 
Fig. 4. Multiple overlapped timestamps: (a) with digits, (b) 

with QR code, (c) with special visual patterns. 
 

B. Solution to the multiple overlapped timestamp problem 

We solve the problem with space diversity, i.e., displaying 
consecutive timestamps at different locations so that they do 
not overlap before they disappear. The number of space 
diversity depends on the maximum possible number of 
overlapped timestamps. Since the maximum number of 
overlapped timestamps is four in our simulations, we display 
four consecutive timestamps at four different columns. A 
video frame showing the QR codes with a space diversity of 
four is shown in Fig. 5. 

 

 
 

Fig. 5. A video frame showing the QR codes with a space 
diversity of four. 

 
We use bssGenerator [7], a commercial QR code generator 

Demo SDK, to encode the system time into a QR-code 
timestamp. With the space diversity of four, the multiple 
overlapped timestamp problem is solved, but it could result in 
four faded QR code patterns. In the QR-code recognition, 
CDD-R first carries out the binarization for every QR-code 
pattern. Our thresholding method used in the binarization is 
based on the Otsu algorithm. The details for the Otsu 
algorithm can be found in [8]. After binarization, the QR code 
timestamp appearance is much enhanced. Experimental 
results show that the thresholding in the binarization 
contributes to improve the recognition accuracy significantly. 
The binary image is read using ZXing [9], an open source, 
multi-format 1D/2D barcode reader. The reading accuracy of 
the QR code shown on the LCD monitor reaches 99.7% and 
the one on the Cellphone2 screen is above 90% in the 
experiments (See Section 4). Given four columns of QR codes, 
CDD-R recognizes all of them first. The columns without QR 
code observed are removed. The timestamp with the latest 
time value is chosen as the time of the current video frame. 
When no recognition of the QR code is successful, the system 
marks its time as “Invalid”. The system performs a correction 
process for the invalid timestamps after all frames have been 
recognized. Since the timestamp refresh time is 30ms, the 
difference between any two timestamps should be a multiple 
of 30 ms. We can interpolate the invalid time from the 
successful recognition results based on this property. Since 
the rate of invalid time is less than 10%, and most of the 
invalid time is isolated, the delay correction process is quite 
effective. 

IV. SIMULATION RESULTS 

In our experiments, we pay special attention to the accuracy, 
precision, and recognition time of different methods. The 
precision is the percentage of the number of correct 
recognitions to the total number of successful reads. A 
successful read does not mean a correct recognition because 
of possible recognition errors.  The accuracy is the rate of the 
number of frames recognized correctly to the number of all 
frames.  

In the beginning of our experiments, we tested the 
timestamps in digits without spatial diversity as in Section 
III.B. The accuracy and precision for the timestamps on the 
PC screen are 95.5% and 99.4%, respectively which is good. 
However, the accuracy and precision for the timestamps on 
the Cellphone2 screen are only 17.2% and 46.9%, 
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respectively. It means that among 25 frames, only about 12 
frames are read successfully and only 4 frames are recognized 
correctly. The poor result is due to the multiple overlapped-
timestamp problem. We also investigated the recognition time. 
Without applying the proposed diversity scheme, it takes 30.7 
ms/frame. The computer we used has a 3.1 GHz Intel Core i3-
2100 CPU, 4GB of RAM, and a NVIDIA GeForce 7600 GT 
graphics card. The machine runs the Windows 7 operating 
system. 

We then experiment the QR code and the visual patterns in 
Fig.3 (c) with a spatial diversity of four. Table I shows the 
results. These results confirm the effectiveness of our 
proposed strategy. The precision of the QR code reaches 100% 
for both the PC and Cellphone2 screens due to its checksum 
mechanism and error correction capability. The results using 
the visual patterns in Fig. 3 (c) is also good. 

Table I also shows the read time of a frame with a 
resolution 720×1280. The read time includes the recognition 
time and the selection time. The system needs to read two 
groups of timestamps (one on the PC screen and the other on 
the Cellphone2 screen) and select the latest time (among four 
columns due to the diversity of four) for each group 
separately. The system based on the QR-code takes 69.3 ms to 
process a frame. The system based on the visual patterns in 
Fig. 3(c) takes 38.7 ms/frame. The system based on digits in 
Fig.3 (a) takes 22.0 ms/frame. It should be noted that we have 
not tried to optimize the speed of the code. With optimization, 
the speed should be able to be further improved. The QR-code 
takes more time due to its error correction function. 

We have fully implemented the delay measurement system 
and successfully measured the CDD of many two-way visual 
communication applications over various networks. Figure 6 
shows the performance of using FaceTime over the UW WiFi 
network when a video session is established through a stable 
wireless connection. To show the resultant figure clearly, we 
choose a video consisting of 400 frames to conduct the 
experiment. From the figure, we can clearly see that the 
delays of all frames in this example are relatively stable. The 
minimal delay is 210 ms, the maximal delay is 360 ms, the 
mean delay is 284 ms, and the standard deviation is about 26 
ms. 

V. CONCLUSIONS 

We developed an approach to measure the capture-to-
display delay of visual communication applications. The 
approach does not require modifications to any video 
application source code nor access to the internal of the 
existing system. Also, it does not require the encoder and 
decoder clocks to be synchronized. The method is universal 
so that it can be used to measure the capture-to-display delay 
of any visual communication applications. It has been 
successfully implemented in software. We have also proposed 
a solution with spatial diversity to solve the multiple-  
overlapped-timestamp problem associated with the proposed 
approach. Experimental results confirm the effectiveness of 
the proposed approach. 
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Fig. 6   CDD of a video char session with the QR code. 

TABLE   I   ACCURACY, PRECISION, AND RECOGNITION TIME 

OF TIMESTAMPS RECOGNITION FOR ONE FRAME 

(RESOLUTION 720×1280) 
 

  
QR 

Code 
Visual 

Patterns 
Digits 

Accuracy 
(%) 

TimeOnPC 99.7 98.8 97.1 
TimeOn 
Phone 

90.8 95.2 60.5 

Precision 
(%) 

TimeOnPC 100 98.9 99.5 
TimeOn 
Phone 

100 95.4 83.4 

Read Time 
(ms/frame) 

 
69.3 38.7 22.0 

 
 

* The accuracy is the rate of the number of frames read correctly to the 
number of all frames. The precision is the percentage of the number of 
correct recognitions to the total number of successful reads.


