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Abstract—Cell selection with cell range expansion (CRE) that
is a technique to expand a pico cell range virtually by adding
a bias value to the pico received power, instead of increasing
transmit power of the pico base station (PBS), can make coverage,
cell-edge throughput, and overall network throughput improved.
Many studies about CRE have used a common bias value among
all user equipments (UEs), while the optimal bias values that
minimize the number of UE outages vary from one UE to another.
The optimal bias value that minimizes the number of UE outages
depends on several factors such as the dividing ratio of radio
resources between macro base stations (MBSs) and PBSs, it is
given only by the trial and error method. In this paper, we
propose a scheme to select a cell by using Q-learning algorithm
where each UE learns which cell to select to minimize the number
of UE outages from its past experience independently. Simulation
results show that, compared to the practical common bias value
setting, the proposed scheme reduces the number of UE outages
and improves network throughput in the most cases. Moreover,
instead of the degradation of the performances, it also solves the
storage problem of our previous work.

I. INTRODUCTION

Heterogeneous networks (HetNets) whereby low power base
stations (BSs) are deployed within the macro cell, has recently
received significant attention because of the rapid increase
of the traffic amount [1]. HetNets are discussed as one of
the proposed solutions as part of the Long Term Evolution-
Advanced (LTE-Advanced) by the third generation partnership
project (3GPP) [2]. Among the low power BSs, for instance,
pico BS (PBS), femto BS, and relay BS, PBSs are mostly
considered, because they usually have the same backhaul as
MBS and are placed near the hotspot where the traffic amount
is high [3]. If pico cells cover the hotspot areas, PBSs can
serve UEs within those areas and improve the throughput of
the downlink (DL) channel. However, because the hotspot’s
location and amount of traffic change dynamically, PBSs
cannot always cover that area and UEs may have to access
the MBSs even if the PBS may be closer to them.

In [1], the authors discuss cell range expansion (CRE),
which is a technique that adds a bias value to pico received
power during the handover as if pico cell range is expanded,
and many works focus on this topic [1], [3]–[5]. CRE can
make more UEs to access PBSs even if the received power
of MBS’s signals is larger than the that of PBS’s signals.
However, those UEs that access PBSs whose the received
power from PBS is smaller than that from MBSs, referred
to as expanded region (ER) UEs [1], are affected by a large

amount of interference from MBSs. Therefore, to eliminate
the interference, inter-cell interference coordination (ICIC)
may be needed, and many papers have worked on optimal
configuration of ICIC.

Many papers about CRE apply ICIC realized by dividing the
radio resource: between two categories of MBS and PBS, ICIC
is usually realized by stopping MBS’s transmission on some
radio resources [5]. In 3rd-generation partnership project long
term evolution (3GPP-LTE) system, Resource blocks (RBs)
introduced as blocks of subcarriers [6] can also realize ICIC by
dividing them. However, in terms of the scalability, to decide
the bias value or the connected cell should be focused on rather
than to setting the dividing ratio of radio resources because
using different spectrum between MBS and PBS is recently
discussed in [7]. There are no differences between to decide
the bias value and the connected cell under applying CRE
because both allow UEs to send their access requests to PBS
even if the powers of the MBS signals are larger than those
of the PBS ones.

In general, UEs are set to use the same, fixed, bias value
[1], [3]–[5]. The appropriate bias values of each UE depend
on the ratio of RBs of each BS and the location of UEs and
BSs that is hard to get [4]. From the aforementioned reason,
the optimal bias values are obtained only by the trial and error
method.

Instead of the trial and error method, we propose to use
Q-learning [8], a reinforcement learning (RL) technique, to
determine the connected cell. Using RL in a radio communi-
cation system is becoming popular [9]–[11], because the recent
complicated situations that have different radio systems in the
same area make it harder to adjust parameters. Q-learning has
been applied to many other areas such as: cognitive radio
[9] and self-optimization of capacity and coverage scheme
in HetNets [10]. Moreover, it has also been applied to set
transmit powers, radio resources, and a bias value of CRE [11].
However, this work optimizes each PBS bias value although
the bias value should have been defined for each UE [4].
Though our previous work [12] also applied it to set a bias
value of CRE independently-learned by each UE, there was
a storage problem of the Q-table because all UEs have to
store the Q-values of all bias values. Because of this, it is
largely affected by the curse of dimensionality, and has little
scalability to add other types of BSs.

In this paper, each UE learns which cell to connect to min-



imize the number of UE outages individually by Q-learning.
Simulation results show that the proposed scheme can make
the size of a Q-table smaller than our previous work. Moreover,
compared to the practical common bias value setting, the
proposed scheme reduces the number of UE outages and
improves network throughput in the most cases.

II. HETEROGENEOUS NETWORK

Though HetNets encompass many types of BSs, out of
concern for simplicity, this work shall be limited to the case
where only two types of BSs, namely MBS and PBS, as
this is also the case in the majority of the related works.
PBSs are typically deployed within macro cells for capacity
enhancement and coverage extension. Moreover, they usually
have the same back-haul and access features as MBSs [1].

Although PBSs are deployed within macro cells to avoid
hotspot UEs from accessing MBSs, the limited coverages of
PBSs still cause many UEs to be outage with the reference
signal received power (RSRP) based cell selection that has
always allowed UEs to connect the BSs that serve the strongest
received power of the reference signal (pilot signal). Path
loss based cell selection schemes have also been discussed to
balance loads [1]. Since it allows UEs to connect to the BSs
that have the smallest path loss, more UEs tend to connect to
the PBSs. However, in terms of load balancing, UEs should
adapt the connected cell for the surrounding environment,
which is realized by CRE [3] explained in the subsequent
paragraph.

A. Cell Range Expansion
CRE is usually applied with RSRP based cell selection [1].

A bias value is added to the pico received signal, and more
UEs can connect to PBSs, which is as if pico cell range is
expanded, that is, UEs connect to:

MBS, when (pM)dB > (pP)dB + (Δbias)dB (1)
PBS, when (pM)dB < (pP)dB + (Δbias)dB (2)

where (pM)dB, (pP)dB, and (Δbias)dB represent the decibel
value of pilot signal power from MBS and PBS, and bias
value, respectively [1].

In this way, the pico cell range can be artificially expanded.
However, since ER UEs connect to BSs that do not provide the
strongest received power, they suffer from interference from
MBS [1].

Thus, we need ICIC that can eliminate the interference from
MBS to PBS. We apply ICIC by dividing the radio resource
between MBSs and PBSs to avoid the interference between
them [1]. Although each PBS’s signal can interfere with other
PBSs’ ones, it is not a big problem because they have almost
the same transmit power.

Although the bias values in eqs. (1) and (2) are defined to
be the common one by BSs, they are possible to be decided
differently by each UE. Each UE should define bias values or
should select the cell because the optimal bias values of each
UE that minimize the number of UE outages are affected by
the ratio of radio resource and UEs’ distribution [4]. However,

because of the difficulty to find the optimal one suitable for
those factors, most papers use the common bias value [1], [3].

III. REINFORCEMENT LEARNING

Although supervised learning is effective, it may be hard to
get training data on this field. Thus, RL represents a suitable
alternative as it only uses the experiences of agents that learn
automatically from the environment. In the RL, instead of the
training data, agents get scalar values referred to as costs, and
only these costs provide knowledge to agents [8].

A. Q-Learning
Q-learning is one of the typical methods of RL that is proved

to converge [8]. Agent i at time t has the following parameters:
• State sit ∈ S; S is a set of states.
• Action ait ∈ A; A is a set of states.
• Cost cit ∈ S ×A → R;
The goal of the agents is to minimize costs after selecting

actions. RL will consider not only instant costs but also
cumulative costs in the future that are represented as scalar
value referred to as Q-value. It is defined as follows:

Q(s, a) = E

{ ∞∑
t=0

γtc(st, at)|s0 = s, a0 = a

}
(3)

where γ, c(st, at), s0, and a0 represent discount factor (0 ≤
γ ≤1), the cost of the set of state st and action at, initial
state, and initial action, respectively [9]. If the terminal state
can be defined, costs are calculated up to the final one with
eq. (3). However, since it can be rarely defined, the final time
becomes infinity and future costs make Q-values diverse.

To make it converge, Q-learning provides the agents Q-
tables storing the sets of states, actions, and Q-values that
represent the effectiveness of the sets. The Q-values of all the
state and action pairs are stored and updated repetitively, which
realizes eq. (3) directly. Because of this, it can be said that the
Q-table may inherently have a memory problem. Since this
concept is simple, it makes the analysis of algorithm easier.

We describe the flow of Q-learning, illustrated in Fig. 1, as
follows.

1. Agent i observe their states sit from the environment and
find the sets that have the state sit in the Q-table. They
also get costs cit from the environment as the evaluation
of the selected actions.

2. Using the state sit and cost cit that are known at step 2,
the Q-value selected at the previous state and action is
updated.

3. Following an action selection policy, for instance ε-
greedy policy mentioned later, an action ait is selected
making use of the Q-values of observed states at step 1.

Through above steps, eq. (3) has been realized in Q-learning.
Q-value is updated as follows:

Q(st, at) ← (1− α)Q(st, at) + α
[
ct+1 + γmin

a
Q(st+1, a)

]
(4)

where α represents the learning rate (0 < α ≤1) that controls
the amount of the change of Q-value and “←” means update.
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Fig. 1. The flow of Q-learning.

Fig. 2. UE’s distribution (+ expresses UEs, red line means pico cell and
MBS is the center of this circle.)

IV. LEARNING BASED CELL SELECTION

The bias value defined by BSs is usually set to be the
common one among all UEs although the optimal bias values
that minimize the number of UE outages vary from one
UE to another [4]. To solve it, we propose learning based
cell selection scheme that allows UEs to learn which cell to
select to minimize the number of UE outages from its past
experience independently with Q-learning. While the usual
CRE technique provides the same bias value among all UEs,
our proposed scheme allows UEs to select cells, which makes
a better effective use of the frequency vacancies of the BSs.

Because all UEs learn by themselves and never share their
Q-tables, this system is a multi-agent system, referred to as
distributed Q-learning in [9]. Fig. 2 describes the example of
UE distribution where some UEs are allocated in the hotspot
areas around PBSs.

We use RBs as radio resources, blocks of subcarriers in
this paper, that are the basic resource allocation units for
scheduling in 3GPP-LTE system [6]. Although one or more
RBs are considered to be allocated to UEs in 3GPP-LTE
system [6], UEs can be allocated only one RB in this paper.
To eliminate the interference from MBSs to ER UEs, RBs
should be divided into MBSs and PBSs [1]. If UEs use the
same RBs simultaneously, there will be interference among
the UEs. UEs that do not get allocated any RB cannot access
radio services.

A. Definition of State, Action, and Cost
The definition of state, action, and cost is as follows.
• State: The state of agent i at time t is defined as:

sit = {piM, piP} (5)

where piM and piP denote the received powers of the pilot
signals from MBS and PBS, respectively. Although UEs
can hear many signals from various BSs, they use the
largest macro and pico ones.

• Action: The action of agent i at time t is defined as:

ait = j (6)

where j denotes the category of cells, that is, macrocell
or picocell. UE will send an access request to the BS
that serves the largest received power in the selected cell
type.

• cost: The cost of agent i at time t is defined as:

cit = n (7)

where n denotes the number of UEs that cannot get the
radio service because of no spectrum vacancy or weak
received power, referred to as UE outages. Using the
backhaul between BSs, we can calculate this number and
broadcast it to UEs.

On this definition, UEs decide the cell that they send an ac-
cess request to minimize the number of UE outages depending
on the received power from each BS. Furthermore, considering
the amount of radio resources, when there are many macro
RBs (MRBs), access to the MBS may be better even if the
difference is small, and vice versa. Each UE can cope with
aforementioned situations and decide the appropriate cell by
using Q-learning.

In our system, when the agents find a new state, if they
always add them to the Q-table, the size of Q-table increases,
which is not allowed by the memory constraint. Moreover, this
makes the learning time longer. We quantize received powers
used as the state and set upper and lower limits to check and
remove outlier values. After outlier checking and quantization,
the state is added. By introducing this, the required memory
size becomes smaller and the convergence becomes faster.

UEs keep having the data of the Q-table when they move
to another PBS coverage area because even if the situation
changes and if situations may have some similarities, the data
got in one situations helps to learn in another situation [13].
UEs use the data as the initial values of next learning, because
we expect that it helps a learning algorithm to converge faster.
Even in different situations, UEs learn environment so that the
table is updated.

V. SIMULATION MODEL AND RESULTS

Each PBS has one hotspot, and hotspots are placed ran-
domly around PBSs. A hotspot area has 25 UEs inside it
and they are uniformly distributed. The rest 50 UEs are
also uniformly distributed inside the macro cell. The learning
parameters are set as α = 0.5, γ = 0.5, and ε = 0.1. We



Algorithm 1 Q-learning algorithm for UE i.
Initialize:

let t = 0
for each s ∈ S , a ∈ A do

initialize the Q-value, Q(sit, a
i
t).

end for
Learning:
loop

receive pilot signals from all BSs.
choose the largest piM and piP.
if Q-table of UE i does not have sit = {piM, piP} then

add sit to the Q-table.
end if
generate a random number r (0 ≤ r ≤ 1).
if r < ε then {ε-greedy policy}

select a cell type ait randomly.
else

select the cell type ait that has minimum Q-value.
end if
send an access request based on eqs. (1) and (2).
each UE is allocated to each RB by BSs randomly.
get the number of UE outages as a cost from BSs.
update the Q-value Q(sit, a

i
t) based on eq. (4).

sit = sit+1

end loop

TABLE I
SIMULATION PARAMETERS [1], [3]

Macro cell radius 289 m
Pico cell radius 40 m

Carrier Frequency 2.0 GHz
Bandwidth 10 MHz

RBs 50
Thermal noise density -174 dBm/Hz

Macro BSs 1
Pico BSs 2
hotspots 2

Macro BS transmit power 46 dBm
Pico BS transmit power 30 dBm
Macro path loss model 128.1 + 37.6log10(R) dB (R [km])
Pico path loss model 140.1 + 36.7log10(R) dB (R [km])

Velocity of UEs 3 km/h
Channel Rayleigh fading

show the simulation parameters in Table I. Furthermore, in
this simulation, when macro signals are stronger than pico
ones, as far as the difference of them is smaller than 32 dB,
UEs can send access requests to PBSs.

At first, we would like to mention the storage problem that
Q-learning inherently has because Q-learning has to store the
Q-values. As for states, agents in our scheme add new one
to Q-table if they find it. Because of this characteristic, the
number of states is not fixed. During the simulation, about
1600 states are observed. In Table II, the number of observed
Q-values compares with our previous work [12]. Our proposed

TABLE II
THE APPROXIMATE NUMBER OF THE OBSERVED Q-VALUES.

UE-bias [12] UE-CS (proposed)

38000 3300

scheme has about 3300 Q-values that are two seventeenth of
our previous work, which is equal to the difference of the
number of the actions.

From now on, we compare four schemes after 5 × 105

trials: the proposed Q-learning scheme (UE-CS), our previous
Q-learning scheme (UE-bias), no learning scheme (best bias
value), and no learning scheme (fixed bias value). Both no
learning schemes use common bias values among all UEs
and the trial and error method, and search the bias value that
minimizes the number of UE outages. No learning scheme
(best bias value) searches the bias value that minimizes the
number of UE outages with the trial and error method every
time. Although it can get the minimum number of UE outages
by a common bias value, this is not practical because the
best bias value can be found after checking the number of
UE outages of all bias values. Since the channel condition
changes dynamically, they check these values every trial,
in other words, this approach has the best performance in
the case using common bias value. However, since it takes
a bit long time to do that, it is not suitable in the real
environment. Because of this, no learning scheme (fixed bias
value) uses the trial and error method only at the first trial as
a practical scheme. The difference between our previous work
and proposed one is the action: the action of our previous one
is a bias value of each UE, while that of our proposed one is
a cell that try to connect.

As shown in both Figs. 3, 4, the number of UE outages and
the UE’s average throughput change depending on the ratio of
pico RBs (PRBs). This is because bias values that minimize
the number of UE outages also differ according to the ratio
of RBs between MBS and PBS.

No learning scheme (best bias value) has less number of
UE outages than any other schemes in Fig. 3, though it
is impractical scheme. Comparing with No learning scheme
(fixed bias value), our proposed scheme can decrease the
number of UE outages more than no learning scheme (fixed
bias value) except when the ratio of PRBs is 80 %. When
the ratio of PRBs is 80 %, because many UEs distributed
uniformly in the macro cell try to connect to MBSs, many
UEs become outage in the proposed scheme. The previous Q-
learning scheme always has less UE outages than the proposed
one. It is because its large numbers of the actions can express
the surrounding situations of UEs well.

The average throughput of no learning scheme (best bias
value) is also the highest one in the schemes of Fig. 4, though
it is impractical scheme. Although our proposed scheme
has lower average throughputs than our previous Q-learning
scheme, it still keeps higher values than No learning scheme
(fixed bias value).
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Fig. 5. CDF of UE throughput
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Fig. 3. Average number of UE outages at each ratio of RBs.

The CDF of average throughputs of all UEs through all trials
is shown in Fig. 5. In the two cases that PRB ratio is more than
50 %, macro UEs are desirable to connect to PBSs because the
number of allocated PRBs is larger than the number of hotspot
UEs. The throughputs of cell-edge UE become worse with the
increase of the PRB ratio in our proposed scheme. This is
because the cell-edge UE in the macro cell do not connect to
PBSs. However, comparing with No learning scheme (fixed
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Fig. 4. Average throughput of all UEs at each ratio of RBs.

bias value), it can be seen that almost all UEs have higher
throughputs in all PRB ratios.

VI. CONCLUSION AND FUTURE WORK

We propose a cell selection scheme without the RSRP based
cell selection or usual CRE schemes. In CRE, the bias value
of each UE depends on several factors such as the dividing
ratio of radio resource between MBSs and PBSs, and it is
determined only by the trial and error method. Thus, in this



paper, we proposed a scheme using Q-learning that UEs learn
which cell to connect to minimize the number of UE outages
from past experience.

We got the results of the average throughput which show
that after thousands of trials, the proposed approach can
perform better than the practical common bias value setting.
Moreover, instead of the degradation of the throughput and
the number of UE outages, our proposed scheme has less Q-
values than our previous one. For these results, our proposed
scheme is most preferred in some severe storage situations.

In the real environment, more types of BSs are placed in
the same cell than our system. As one of the future work, we
expect to add other types of BSs, for instance, femto BS, to
this system to apply our work in the real situation.
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