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Abstract—We propose the approximate message passing
(AMP) algorithm for complex separable compressed imaging.
The standard formulation of compressed sensing uses one-
dimensional signals while images are usually reshaped into such
vectors by raster scan, which requires a huge matrix. In separable
cases like discrete Fourier transform (DFT), however, sensing
processes can be formulated using two moderate size matrices
which are multiplied to images from the both sides. We exploit
this formulation in our AMP algorithm. Since we suppose DFT
for the sensing process, in which measurements are complex,
our formulation applies to cases in which both target signals
and measurements are complex. We show that the proposed
algorithm perfectly reconstructs a 128×128 image, which could
not be handled by the raster scan approach on the same
computational environment. We also show that the compression
rate of the proposed algorithm is mostly same as the so-called
weak threshold.

I. INTRODUCTION

Compressed sensing is a technique to recover a sparse vector
with N elements from an undersampled set of random linear
measurements using a sensing matrix [1] [2]. One popular
class of reconstruction schemes is linear programming [3].
For instance, the interior point method [4] requires the com-
putational cost of O(N3) to solve an ℓ1 norm minimization
problem with linear constraints. To reduce the cost, various
iterative algorithms have been proposed so far [3]. Above
all, the approximate message passing (AMP) algorithm has
been paid attention as a low cost one that can attain the
same performance with the ℓ1 minimization [5]. For a fixed
number of iterations, the computational cost of AMP with
a dense sensing matrix generally becomes O(N2). Certain
sparse sensing matrices further reduce the cost to O(N).
Hence, methods to construct such matrices have been widely
studied [6].

This paper also focuses on the AMP, which was origi-
nally proposed for one-dimensional sparse vectors. In image
processing applications, however, target signals are given
naturally in the two-dimensional form. They can be treated
in one-dimensional form by the raster scan and then the
corresponding sensing matrix, which is formed by the Kro-
necker product, gets the size of O(N2). This treatment is
necessary for general sensing processes. However, typical
sensing processes for images, such as the two-dimensional
Fourier transform and the two-dimensional wavelet transform,

are separable, and we can exploit a concise formulation of
O(N), where two matrices are applied to images from both
sides. For the sensing matrices formed by the Kronecker
product, the restricted isometry constant, spark, incoherence,
null space property, and empirical performance have been
discussed [7], [8]. To the best of our knowledge, however, the
AMP algorithm for the separable sensing formulation has not
yet been proposed so far. In addition, the sensing formulation
should be able to take complex values because the discrete
Fourier transform is supposed, as is in [9] for one-dimensional
case. In this paper, we propose an AMP algorithm to recover
two-dimensional complex-valued signals with complex-valued
separable sensing formulation. This approach can be regarded
as a combination of the Kronecker compressed sensing [8]
and the complex-valued one-dimensional AMP [9]. We show
by simulations that the proposed algorithm effectively reduces
the memory and computational costs and achieves the com-
pression rate as same as the so-called weak threshold [5].

This paper is organized as follows. The next section briefly
reviews AMP for the one-dimensional real-valued case. Sec-
tion III proposes the complex-valued AMP for the separable
imaging formulation. Section IV is devoted to simulations.
Section V concludes the paper.

II. ONE-DIMENSIONAL SIGNAL RECOVERY

The real-valued one-dimensional compressed sensing prob-
lem is to recover an unknown sparse signal x ∈ RN from
a given sensing matrix A ∈ RM×N (M < N) and a given
undersampled set of random linear measurements

y = Ax0 ∈ RM . (1)

In general, the solution is indeterminate, since the number of
the constraints is less than that of the unknown variables. We
therefore call α = M/N the compression rate. If we know
that the signal x0 is K-sparse, that is x0 has K non-zero
elements at most, then there are cases in which we can recover
the vector by applying this prior knowledge. The ratio ρ :=
K/N is referred to as the signal density or the sparsity. As a
simple way for sparse recovery, it can be considered to infer
an estimate x ∈ RN that gives a minimum number of non-
zero elements, namely a minimum ℓ0 norm, in the set of the
vectors that satisfy the constraint y = Ax. Since this method,



however, becomes a combinatorial optimization problem with
respect to a support set of the unknown vector, it is impractical
to perform.

Instead, a method that is relaxed to the following ℓ1 norm
minimization has been widely discussed.

x = argmin
s∈RN

||s||1 s.t. y = As. (2)

The computational cost of this optimization problem is O(N3)
in the case where the interior point method is applied. To
reduce the computational cost, various algorithms based on
the iterative method have been proposed to solve this ℓ1
optimization problem [3]. In paricular, we now focus on AMP
[5] that is summarized as follows.

Let A⊤ denote transpose of A and I(P ) stand for the
indicator function that takes one if the proposition P is true, or
zero otherwise. The sign function, denoted by sgn(x), returns
1 if x > 0, 0 if x = 0, or -1 otherwise.

Algorithm 1 (AMP, Ref.[5]): Let ηt : R → R be a soft
threshold function that is applied componentwisely, as

ηt(x) :=

(
x− θtsgn(x)

)
I(|x| > θt)

with θt a threshold value proportional to an (empirical) mean
squared error (MSE). Starting from x0 = 0 and z0 = y, the
AMP algorithm proceeds iteratively according to

xt+1 =ηt(A
⊤zt + xt), (3)

zt =y −Axt +
1

α
zt−1⟨η′t−1(A

⊤zt−1 + xt−1)⟩, (4)

where η′t(x) stands for a derivative of η(x) with respect to x,
and ⟨·⟩ denotes an average of vector entries, i.e., ⟨a⟩ := p−1∑p

i=1 ai for p-dimensional vector a = (ai).
When a given appropriate termination condition is satisfied,

this algorithm stops and outputs the latest estimate xt.
The variable xt ∈ RN is the current estimate of x0, while

zt ∈ RM is the current residual. For a fixed number of
iterations and a fixed compression rate, the computational cost
of AMP with a dense sensing matrix becomes O(N2). It is
lesser than that of the interior point method. It is known that
there is the sparsity-undersampling tradeoff [5].

III. TWO-DIMENSIONAL SIGNAL RECOVERY

We consider the complex-valued two-dimensional com-
pressed sensing problem that is to recover an unknown com-
plex sparse image X0 ∈ CN1×N2 from a given complex
sensing matrices A ∈ CM1×N1 , B ∈ CN2×M2 and a given
complex undersampled set of random linear measurements

Y = AX0B ∈ CM1×M2 , (5)

where the sizes of the image and measurement are N :=
N1N2 and M := M1M2, respectively. The compression
rate is again α := M/N . It is possible to employ one-
dimensional compressed sensing schemes to this separable
sensing formulation [10]. However, when the sizes of the
sensing matrices A and B are proportional to that of the signal

N , the size of the corresponding sensing matrix denoted by
the Kronecker product A ⊗ B becomes O(N2) for a fixed
compression rate. On the other hand, when we directly exploit
(5), the total size of the sensing matrices is O(N), and we can
easily apply AMP to large-scale images.

We now consider the following ℓ1 optimization problem:

X = argmin
S∈CN1×N2

||S||1 s.t. Y = ASB, (6)

where the matrix norm is defined by ||U ||1 :=∑p
i=1

∑q
j=1 |uij | for U ∈ Cp×q . According to the derivation

of the original AMP [5] and the belief propagation [11], we
have the following complex-valued two-dimensional AMP
algorithm by means of the maximization of the posterior
marginals. We use the notation xR and xI to represent the
real and imaginary parts of a complex value, matrix, and
function x. The notation A∗ denotes complex conjugate
transpose of A.

Algorithm 2 (2D-CAMP): Let ηt : C → C be a soft
threshold function that is applied componentwisely, as

ηt(x) =

(
x− θt

x

|x|

)
I(|x| > θt) ∈ C, (7)

where θt ∈ R is a threshold value proportional to an (em-
pirical) MSE. Putting ηt(x) = ηRt (x

R, xI) + iηIt (x
R, xI), its

derivatives, which are real-valued, are written as

∂Rη
R
t (x) :=

∂ηRt (x
R, xI)

∂xR
, ∂Iη

R
t (x) :=

∂ηRt (x
R, xI)

∂xI
,

∂Rη
I
t (x) :=

∂ηIt (x
R, xI)

∂xR
, and ∂Iη

I
t (x) :=

∂ηIt (x
R, xI)

∂xI
.

Starting from X0 = O and Z0 = Y , the AMP algorithm
proceeds iteratively according to

Xt+1 =ηt(A
∗ZtB∗ +Xt), (8)

Zt =Y −AXtB

+
1

2α
⟨HRR

t−1 + iHRI
t−1⟩ZI

t−1

− 1

2α
⟨HIR

t−1 + iHII
t−1⟩ZR

t−1, (9)

where

HRR
t := ∂Rη

R
t (A

∗ZtB∗ +Xt),

HRI
t := ∂Iη

R
t (A

∗ZtB∗ +Xt),

HIR
t := ∂Rη

I
t (A

∗ZtB∗ +Xt),

HII
t := ∂Iη

I
t (A

∗ZtB∗ +Xt). (10)

Here, ⟨·⟩ denotes an average of matrix entries, i.e., ⟨A⟩ :=
(pq)−1

∑p
i=1

∑q
j=1 aij for p × q matrix A = (aij). When

a given appropriate termination condition is satisfied, this
algorithm stops and outputs the latest estimate Xt.

Derivation of the algorithm is given in Appenxdix A.

IV. SIMULATIONS

To verify the performance of the proposed algorithm, we
conducted computer simulations of two types. One is image
reconstruction by the proposed algorithm, the other is empir-
ical evaluations of perfect-reconstruction threshold.



A. Image Reconstruction

We first show an example of image recovery. Fig. 1(a) shows
the 128×128-pixel Shepp-Logan Phantom image, denoted by
T , in which Haar wavelet coefficients less than 0.1 were dis-
carded. The signal density ρ is 0.104. The coefficient matrix is
denoted by X0. To improve randomness, we employed random
permutation matrix R1 and R2, of which each column and row
always have a single one. They are random, but known, as well
as the random DFT below. Hence, the use of these matrices
does not degrade robustness of the proposed algorithm in any
sense, but well improves the randomness of the support of
X0. In this way, T is expressed by T = HTRT

1 X0R
T
2 H ,

where H is the one-dimensional Haar wavelet transform. The
observation process is the random DFT, which is formulated
by one-dimensional DFT matrices F1 and F2, whose rows
or columns are deleted randomly, applied from both side
of T . Finally, we have Eq. (5), where A = F1H

TRT
1 and

B = RT
2 HF ∗

2 . In this case, the target signal X0 is real and
the proximity operator reduces to the real-valued version, as

ηt(x) =

(
xR − θtsgn(x

R)

)
I(|xR| > θt) ∈ R. (11)

Therefore, the derivatives ∂Iη
R
t (x), ∂Rη

I
t (x) and ∂Iη

I
t (x)

vanish from Eq. (9).
We observed 112 × 112 measurements by Eq. (5). The

compression rate is α = 1122/1282 ≈ 0.766. Given the
complex measurement Y and the matrices A and B, we
reconstructed X0 by the proposed algorithm and then the
image T by HTRT

1 X0R
T
2 H . We implemented the algorithm

by MATLAB on a windows 7 computer with 2.99GB memory.
The results is shown in Fig. 1(b). Its mean square error (MSE)
was 6.89× 10−7. The computational time was 42.07 seconds,
which will be accelerated if the program is implemented
by C language. Note that the same simulation using one-
dimensional AMP with raster scan was not completed because
of lack of memory. These results show the effectiveness of the
proposed algorithm.

B. Evaluation of Perfect-Reconstruction Threshold

In the previous section, we showed that the proposed
algorithm successfully reconstructed sparse matrix of density
ρ = 0.104 from the measurements of compression rate
α ≈ 0.766. In this section, we show how much measurements
can be eliminated depending on the signal density ρ when the
signal is reconstructed by the proposed algorithm.

The target signal X0 in Eq. (5) is randomly generated
hundred times as follows. First, an independently, identically
distributed gaussian random image of the corresponding size
(32× 32 = 1024 or 48× 48 = 2304) is generated. The image
is dense and therefore a random mask is applied so that the
resultant image becomes sparse of the supposed signal density.
Each X0 is observed by Eq. (5), where A and B are the
random DFT matrices generated for each X0. By changing
the number of measurements, we repeated signal recovery
hundred times and recorded the compression rate at which
all hundred signals are perfectly reconstructed. This means

(a) Original image.

(b) Reconstructed image.

Fig. 1. Example of image recovery of 128× 128 pixel.

that the square error of the reconstructed image to the original
one is less than N × 10−8. The result is shown in Fig. 2.
The red and blue lines show the results for 32 × 32 = 1024
and 48 × 38 = 2304 dimensional cases, respectively. The
horizontal and vertical axes indicate ρ and α, respectively.
The dashed line denotes the weak threshold with the real-
valued one-dimensional ℓ1 recovery [5]. We can see that the
compression rate is mostly same or even less than the weak
threshold when 0.2 < ρ < 0.8.

It is worthy to note that in the raster scan formulation, any
combination of DFT coefficients can be deleted from the full
set of the coefficients, while in the formulation of Eq. (5), the
deletion is done by ‘row by row’ or ‘column by column’. This
implies that our formulation has less randomness than in the
raster scan formulation. It is interesting that, in spite of this,
the compression rate gets lower than the weak threshold in the
aforementioned range of ρ.
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Fig. 2. Empirically evaluated perfect-reconstruction threshold of the proposed
algorithm (2D-CAMP). The red and blue lines show the results for 32×32 =
1024 and 48× 48 = 2304 dimensional images, respectively. The horizontal
and vertical axes indicate ρ and α, respectively. The dashed line denotes the
weak threshold.

Let us close this section by stating the following comments
about the complex target and complex measurement setup.
Since both the real and imaginary parts take non-zero value at
a same time in the case, it becomes easier to infer a support set
of a signal. Therefore, the empirical performance can get lower
than the weak threshold of the real-valued one-dimensional
ℓ1 recovery [5], nevertheless the situation is similar to the
Kronecker compressed sensing.

V. CONCLUSION

We proposed the AMP algorithm for the complex-valued
two-dimensional compressed sensing. Our algorithm con-
tributes to the large-scale two-dimensional sparse recovery.
Some similar problems such as the dictionary learning, three-
dimensional sparse signal recovery may be able to be treated
by the similar framework addressed here. To discuss these
problems is our future work.
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APPENDIX

A. Derivation of Algorithm 2

We here show an outline of the derivation of Algorithm 2.
The optimization problem (6) is equivalent to the maximiza-
tion of the joint distribution:

µβ(S) :=
1

Z(β;Y )
e−2β||S||1δ(Y −ASB), (12)

with a parameter β > 0. An estimate can be, therefore, ob-
tained by solving the maximization of the marginal distribution
µβ,ij(Sij) :=

∫
dS\ijµβ(S) in the β → ∞ limit, namely

Xij = argmax
Sij

lim
β→∞

µβ,ij(Sij). (13)

The marginal distribution µβ,ij(Sij) can be approximately
evaluated using the message passing algorithm [11] as

µβ,ij(Sij) ∝ e−β|Sij |
∏
(ab)

ν̂t(ab)→(ij)(Sij), (14)

where the distribution ν̂t(ab)→(ij)(Sij) is a solution to the
following simultaneous functional equations with respect to
the distribution ν̂t(ab)→(ij)(Sij) and νt+1

(ij)→(ab)(Sij), which are
called the messages.

νt+1
(ij)→(ab)(Sij) ∝e−2β|Sij |

∏
(cd)̸=(ab)

ν̂t(cd)→(ij)(Sij) (15)

ν̂t(ab)→(ij)(Sij) ∝
∫
CN−1

∏
(kℓ) ̸=(ij)

νt(ij)→(ab)(Sij)

× δ(Yab − (ASB)ab)dS\(ij). (16)

To proceed evaluation of the message, we assume that the
distribution νt+1

(ij)→(ab)(Sij) is the complex normal distribution
with mean xt

(ij)→(ab) and variance τ t(ij)→(ab)/β.
Under this assumption, ν̂t(ab)→(ij)(Sij) becomes

ν̂t(ab)→(ij)(Sij) = exp

(
− β

τ̂ t(ab)→(ij)

|zt(ab)→(ij) −AaiSijBjb|2
)
,

(17)

where

zt(ab)→(ij) := Yab −
∑

(kℓ) ̸=(ij)

Aakx
t
(kℓ)→(ab)Bℓb, (18)

τ̂ t(ab)→(ij) :=
∑

(kℓ) ̸=(ij)

τ t(kℓ)→(ab)|Aak|2|Bℓb|2. (19)

Hence, the distribution ν̂t(ab)→(ij)(Sij) can be reagrded as
CN(zt(ab)→(ij)/(AaiBjb), τ̂ t(ab)→(ij)/(β|Aai|2|Bjb|2)). Sub-
stituting (17) into (15) and approximating τ t(ab)→(ij) ≈ τ̂ t

with

τ̂ t :=
∑
(ij)

τ t(ij)→(ab)|Aai|2|Bjb|2, (20)

we then have

νt+1
(ij)→(ab)(Sij) = fβ

(
Sij ;

∑
(cd)̸=(ab)

Aciz
t
(cd)→(ij)Bjd, τ̂

t

)
,

(21)

where x denotes the complex conjugate of a scalar complex
value x ∈ C. We defined the function (distribution) fβ as

fβ(s;x, b) :=
1

zβ(x, b)
exp

(
−2β|s| − β

b
|s− x|2

)
,

where zβ(x, b) denotes a normalization constant.



Let Z be a random variable which follows Z ∼ fβ(z;x, b).
We define the following two functions:

Fβ(x, b) := Efβ(z;x,b)[Z], (22)

Gβ(x, b) := Vfβ(z;x,b)[Z], (23)

where Eµ and Vµ denote the expectation and variance opera-
tors with respect to a random variable that follows µ, respec-
tively. Since we put the mean and variance of νt+1

(ij)→(ab)(Sij)

as xt
(ij)→(ab) and τ t(ij)→(ab)/β, these are represented by

xt
(ij)→(ab) = Fβ

( ∑
(cd)̸=(ab)

Aciz
t
(cd)→(ij)Bjd, τ̂

t

)
,

τ t(ij)→(ab)/β = Gβ

( ∑
(cd)̸=(ab)

Aciz
t
(cd)→(ij)Bjd, τ̂

t

)
,

respectively.
In the β → ∞ limit, Fβ(x, b) and Gβ(x, b) are dominated

by a value z which maximize the function fβ(z;x, b) for given
parameters (x, b). Such a value is given as

η(x, b) := argmax
s∈C

lim
β→∞

fβ(s;x, b)

=

{
x− b

x

|x|
if |x| > b

0 if |x| ≤ b,

which is called the proximity operator. We therefore have

lim
β→∞

Fβ(x, b) = η(x, b) (24)

lim
β→∞

βGβ(x, b) =

{
b if |x| > b
0 if |x| ≤ b

=: η̂(x, b) (25)

in the β → ∞ limit. We can summarize a result until here as
follows:

xt
(ij)→(ab) = η

( ∑
(cd)̸=(ab)

Aciz
t
(cd)→(ij)Bjd, τ̂

t

)
,

zt(ab)→(ij) := Yab −
∑

(kℓ)̸=(ij)

Aakx
t
(kℓ)→(ab)Bℓb,

τ̂ t =
τ̂

N1N2δ

∑
(ij)

η̂

( ∑
(cd) ̸=(ab)

Aciz
t
(cd)→(ij)Bjd, τ̂

t

)
.

We next consider the following generic algorithm that is
derived by omitting details of the proximity operator.

xt
(ij)→(ab) = ηt

( ∑
(cd)̸=(ab)

Aciz
t
(cd)→(ij)Bjd

)
, (26)

zt(ab)→(ij) := Yab −
∑

(kℓ)̸=(ij)

Aakx
t
(kℓ)→(ab)Bℓb, (27)

and assume that

xt
(ij)→(ab) = xt

ij + δxt
(ij)→(ab) +O(1/N), (28)

zt(ab)→(ij) = ztab + δzt(ab)→(ij) +O(1/N), (29)

δxt
(ij)→(ab) = O(1/

√
N), (30)

δzt(ab)→(ij) = O(1/
√
N). (31)

Substituting (28)–(31) into (26), we then have

xt
ij + δxt

(ij)→(ab)

= ηt

(∑
(cd)

Aci(z
t
cd + δzt(cd)→(ij))Bjd −Aaiz

t
abBjb

)
. (32)

Since the proximity operator is non-holomorphic, the term
δxt

(ij)→(ab) in (32) can be evaluated by expansion of the
proximity function as two “two-variable functions”, namely
ηt(x) = ηRt (x

R, xI) + iηIt (x
R, xI), with respect to a small

term Aaiz
t
abBjb. Using a similar way δzt(ab)→(ij) can be also

obtained. We therefore obtain

xt
ij =ηt

(∑
(ab)

Aaiz
t
(ab)→(ij)Bjb + xt

ij

)
, (33)

ztab =Yab −
∑
(kℓ)

Aakx
t
(kℓ)Bℓb

+
∑
(kℓ)

AakR(Aakz
t−1
ab Bℓb)Bℓb∂Rη

R
t (C

ab
kℓ )

+
∑
(kℓ)

AakI(Aakz
t−1
ab Bℓb)Bℓb∂Iη

R
t (C

ab
kℓ )

+ i
∑
(kℓ)

AakR(Aakz
t−1
ab Bℓb)Bℓb∂Rη

I
t (C

ab
kℓ )

+ i
∑
(kℓ)

AakI(Aakz
t−1
ab Bℓb)Bℓb∂Iη

I
t (C

ab
kℓ ), (34)

where Cab
kℓ :=

∑
(cd) ̸=(ab) Ackz

t−1
cd Bℓd+xt−1

kℓ , R(x) and I(x)
denote the real and imaginary parts of x. We assume that the
Onsager term, which is a summation from the third to the sixth
terms in the right-hand side of (34), is concentrated around
its expectation value. Evaluating the expectation value of the
Onsager term, we arrive at Algorithm 2.
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