
Image recognition based on
hidden Markov eigen-image models
using variational Bayesian method
Kei Sawada∗, Kei Hashimoto∗, Yoshihiko Nankaku∗ and Keiichi Tokuda∗

∗Department of Scientific and Engineering Simulation, Nagoya Institute of Technology, Nagoya, Japan
E-mail: {swdkei, bonanza, nankaku, tokuda}@sp.nitech.ac.jp Tel: +81-52-735-7549

Abstract—An image recognition method based on hidden
Markov eigen-image models (HMEMs) using the variational
Bayesian method is proposed and experimentally evaluated.
HMEMs have been proposed as a model with two advantageous
properties: linear feature extraction based on statistical analysis
and size-and-location-invariant image recognition. In many image
recognition tasks, it is difficult to use sufficient training data, and
complex models such as HMEMs suffer from the over-fitting
problem. This study aims to accurately estimate HMEMs using
the Bayesian criterion, which attains high generalization ability
by using prior information and marginalization of model param-
eters. Face recognition experiments showed that the proposed
method improves recognition performance.

I. INTRODUCTION

Statistical approaches have been successfully applied in the
field of image recognition. In particular, principal compo-
nent analysis (PCA) based approaches, such as the eigenface
(eigen-image) method [1] and subspace method [2], attain
good recognition performance. There are many significant
classifiers and feature representations. However, in the case
of conventional methods, some pre-processing for normalizing
image variations, e.g., geometric variations such as size, loca-
tion, and rotation, is usually applied to input images because
many classifiers cannot deal with such image variations. The
accuracy of these normalization processes affects recogni-
tion performance. Task-dependent normalization techniques
have thus been developed for each image recognition task.
However, the final objective of image recognition is not to
accurately normalize image variations for human perception
but to achieve high recognition performance. It is therefore
a good idea to integrate the normalization processes into
classifiers and optimize them on the basis of a consistent
criterion.

Statistical image recognition methods based on hidden
Markov models (HMMs) have been proposed to reduce the
effect of geometric variations [3], [4], [5]. Geometric matching
between input images and models is represented by discrete
hidden variables: i.e., the normalization process is included in
the calculation of output probabilities. However, the extension
of HMMs to multi-dimensions generally leads to an exponen-
tial increase in the amount of computation for model training.
Separable lattice HMMs (SL-HMMs) have been proposed to
reduce computational complexity while retaining good proper-
ties, i.e., in the case of two-dimensional data, elastic matching

in the vertical and horizontal directions, for modeling multi-
dimensional data [6]. This property enables modeling of not
only invariances in the size and location of objects but also
nonlinear warping in all dimensions. However, SL-HMMs still
have a limitation in their application to image recognition:
observations are assumed to be generated independently from
corresponding states. It is insufficient to represent variations
in images, e.g., lighting conditions and object deformation. To
overcome the limitation, hidden Markov eigen-image models
(HMEMs) have been proposed [7]. The basic idea of HMEMs
is that eigen-images are generated from an SL-HMM. In the
HMEMs, the eigen-images are represented by probabilistic
hidden variable models, such as probabilistic PCA (PPCA) [8]
and factor analysis (FA) [9], [10], [11], and geometrically
transformed to match an input image by incorporating the state
transition structure (into the loading matrix). HMEMs there-
fore have the advantageous properties of both eigen-images
and SL-HMMs based methods: linear feature extraction based
on statistical analysis and size-and-location-invariant image
recognition.

In spite of the above-mentioned properties, HMEMs suffer
from the over-fitting problem because they have a complex
model structure compared to PPCA, FA, and SL-HMMs.
Additionally, in many image recognition tasks, only a small
amount of training data is available and the efforts to achieve
high generalization ability are required. The maximum like-
lihood (ML) criterion has been used for training HMEMs.
However, the ML criterion produces a point estimate of model
parameters, so the estimation accuracy may be degraded due
to the over-fitting problem when the amount of training data
is insufficient. To overcome this problem, in the present
study, an image recognition technique using HMEMs based
on the Bayesian criterion and a training algorithm based on
the variational Bayesian (VB) method [12] is proposed. The
Bayesian criterion assumes that model parameters are random
variables, and high generalization ability can be obtained
by marginalizing all model parameters used in estimating
predictive distributions. Moreover, the Bayesian criterion can
utilize prior distributions representing useful prior information.
SL-HMMs estimated by the Bayesian criterion demonstrated
better recognition performance than those estimated by the
ML criterion [13]. HMEMs based on the Bayesian criterion
are therefore expected to achieve high generalization ability.
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Fig. 1. Model structure of PEMs in face image modeling.

The rest of the paper is organized as follows. Section II
explains the structure of HMEMs. Section III describes the VB
method for HMEMs. Section IV describes face recognition
experiments on the XM2VTS database [14], and Section V
concluded the paper.

II. HIDDEN MARKOV EIGEN-IMAGE MODELS

A. Probabilistic eigen-image models

Probabilistic principal component analysis (PPCA) [8] and
factor analysis (FA) [9] are statistical methods for model-
ing the covariance structure with a small number of hidden
variables. We called them probabilistic eigen-image models
(PEMs). In the case of PEMs, an E-dimensional observation
vector o is assumed to be generated from a G-dimensional
factor vector x (G < E) and an E-dimensional noise vector
v as follows:

o = Wx+ v, (1)

where W = [w1,w2, . . . ,wG] is an E ×G matrix known as
a factor loading matrix. Factor vector x is a hidden variable
assumed to be distributed in accordance with a standard
Gaussian density N (x |0, I), and noise vector v is distributed
in accordance with N (v |µ,Σ). If Σ is assumed to be a
diagonal matrix, this model is called FA, and PPCA is a special
case of FA in which the noise is isotropic, Σ = σ2I . Figure 1
shows the model structure of PEMs in face image modeling.
The likelihood of observation o given x can be written as

P (o |x,Λ) = N (o |Wx+ µ,Σ), (2)

because the product Wx becomes a constant vector added
to noise vector v. Figure 2 shows the graphical model of
PEMs. The marginal distribution of observation o is obtained
by integrating out the hidden variable x as follows:

P (o |Λ) =

∫
P (o |x,Λ)P (x)dx

= N (o |µ,WW⊤ +Σ). (3)

o1 o2 oE

x2 xGx1

Fig. 2. Graphical model representation of PEMs. The circles represent random
variables, clear ones means hidden variables, and shaded ones means observed
variables.

From the above equation, it is obvious that PEMs are a
Gaussian distribution whose covariance matrix is constrained
by the loading matrix and the noise covariance matrix. That is,
PEMs can capture the correlation structure among observations
by a small number of parameters instead of using the full
covariance matrix.

B. Separable lattice hidden Markov models

Separable lattice hidden Markov models (SL-HMMs) are
used for modeling multi-dimensional data [6]. In the case that
observations are two-dimensional data, e.g., pixel values of
an image, observations are assumed to be given on a two-
dimensional lattice as:

O = {Ot | t = (t(1), t(2)) ∈ T }, (4)

where t denotes the coordinates of the lattice in two-
dimensional space T and t(m) = 1, . . . , T (m) is the coordinate
of the m-th dimension for m ∈ {1, 2}. In two-dimensional
HMMs, observation Ot is emitted from a state indicated by
hidden variable zt. The hidden variables zt ∈ K can take one
of K = K(1)K(2) states, which are assumed to be arranged
on a two-dimensional state lattice K = {1, . . . ,K}. Since
observation Ot is only dependent on state zt as in ordinary
HMMs, dependencies between hidden variables determine
the properties and the modeling ability of two-dimensional
HMMs.

In SL-HMMs, to reduce the number of possible state
sequences, hidden variables are constrained to be composed
of two Markov chains as follows:

z = {z(1), z(2)}, (5)

z(m) = {z(m)

t(m) |1 ≤ t(m) ≤ T (m)}, (6)

where z(m) is the Markov chain along with the m-th coor-
dinate, and z

(m)

t(m) ∈ {1, . . . ,K(m)}. The composite structure
of hidden variables in SL-HMMs is defined as the product of
hidden state sequences as:

zt = (z
(1)

t(1)
, z

(2)

t(2)
). (7)

This means that the segmented regions of observations are con-
strained to rectangles. That is, it allows an observation lattice
to be elastic both horizontally and vertically. Figure 3 shows
the model structure of SL-HMMs in face image modeling. The
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Fig. 3. Model structure of SL-HMMs in face image modeling.
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Fig. 4. Graphical model representation of SL-HMMs. The rounded boxes
represent a group of variables, and the arrow to each box represents the
dependency in regard to all variables in the box instead of drawing arrows to
the all the variables.

joint likelihood of observations O and hidden variables z can
be written as:

P (O, z |Λ) = P (O |z,Λ)
2∏

m=1

P (z(m) |Λ)

=
∏
t

P (Ot |zt,Λ)

×
2∏

m=1

P (z
(m)
1 |Λ)

T (m)∏
t(m)=2

P (z
(m)

t(m) | z
(m)

t(m)−1
,Λ)

 , (8)

where Λ is a set of model parameters. Figure 4 shows graph-
ical model representation of SL-HMMs. In the application of
image modeling, SL-HMMs can perform an elastic matching
in both horizontal and vertical directions by assuming the
transition probabilities with left-to-right and top-to-bottom
topologies. However, SL-HMMs have a limitation in their
application to image recognition: observations are assumed
to be generated independently of corresponding states. It is
therefore insufficient to represent variations in images, e.g.,
lighting conditions and object deformation.
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Fig. 5. Model structure of HMEMs in face image modeling.
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Fig. 6. Graphical model representation of HMEMs.

C. Hidden Markov eigen-image models

Hidden Markov eigen-image models (HMEMs) are defined
as a model integrating a PEM and an SL-HMM [7]. The
basic idea of HMEMs is that eigen-images are generated from
an SL-HMM. Figures 5 and 6 show the model structure and
graphical model representation of HMEMs, respectively. The
likelihood function of HMEMs is defined as:

P (O |Λ) =
∑
z

∫
P (O |x, z,Λ)P (x)P (z |Λ)dx. (9)

where x is a factor vector distributed in accordance with
P (x) = N (x |0, I), and z represents state variables as used
in SL-HMMs. The transition probabilities are defined as:

P (z(m) |Λ) = P (z
(m)
1 |Λ)

T (m)∏
t(m)=2

P (z
(m)

t(m) | z
(m)

t(m)−1
,Λ), (10)

P (z
(m)
1 = i |Λ) = π

(m)
i , (11)

P (z
(m)

t(m) = j | z(m)

t(m)−1
= i,Λ) = a

(m)
ij . (12)



The output probabilities, given as x and z, are defined as:

P (O |x, z,Λ) =
∏
t

P (Ot |x,zt,Λ), (13)

P (Ot |x, zt = k,Λ) = N (Ot |W kx+ µk,Σk), (14)

where Λ is a set of model parameters
{π(m),a(m),W k,µk,Σk}: π(m) is a set of initial state
probabilities, a(m) is a set of state transition probabilities,
W k is the loading matrix at state k in two-dimensional
state space K, and µk and Σk denote the mean vector
and covariance matrix of the noise vector at state k. By
incorporating the state transition structure into the loading
matrix, eigen-images can be transformed to match an input
image, and this state transition structure performs size and
location normalization. Once the state sequences are given,
HMEMs are regarded as PEMs which given normalized data.
HMEMs therefore overcome the limitation of SL-HMMs
(i.e., the correlation among all observations can be modeled
through the factor variables) and thus share the advantageous
properties of both PEMs and SL-HMMs: a linear feature
extraction based on statistical analysis and invariances to size
and location of images. Moreover, the structure of HMEMs
includes conventional PEMs and SL-HMMs as special cases:
HMEMs with the same number of states as the number
of pixels of the input images become the conventional
PEMs, and HMEMs with zero factor become the standard
SL-HMMs.

III. HIDDEN MARKOV EIGEN-IMAGE MODELS USING
VARIATIONAL BAYESIAN METHOD

A. Bayesian criterion

The maximum likelihood (ML) criterion has been used to
train HMEMs in image recognition [7]. The optimal model
parameters ΛML in the ML criterion are estimated by maxi-
mizing the likelihood of training data as follows:

ΛML = argmax
Λ

P (O |Λ). (15)

The predictive distribution for testing data X in the testing
stage is given by P (X |ΛML). However, the ML criterion
produces a point estimate of model parameters, so the estima-
tion accuracy may decreased by the over-fitting problem when
there is an insufficient amount of training data.

On the other hand, the predictive distribution of the
Bayesian criterion is given by:

P (X |O) =

∫
P (X |Λ)P (Λ |O)dΛ. (16)

The posterior distribution P (Λ |O) for a set of model param-
eters Λ can be written with the Bayes’ theorem as:

P (Λ |O) =
P (O |Λ)P (Λ)

P (O)
, (17)

where P (Λ) is a prior distribution for Λ, and P (O) is an
evidence. The model parameters are integrated out in Eq. (16)
so that the effect of over-fitting is mitigated. That is, the
Bayesian criterion has higher generalization ability than the

ML criterion when there is an insufficient amount of training
data. However, the Bayesian criterion requires complicated
integral and expectation computations to obtain the posterior
distributions when the models include hidden variables, such
as HMEMs. The variational Bayesian (VB) method has been
proposed as an approximation to overcome this problem [12].
In this study, the VB method was applied to HMEMs for image
recognition.

B. Variational Bayesian method for HMEMs

1) Posterior distribution: The VB method is an approxi-
mate version of the Bayesian approach. That is, an approx-
imate posterior distribution is estimated by maximizing a
lower bound for log marginal likelihood F instead of the true
likelihood. The lower bound of the log marginal likelihood is
defined by using Jensen’s inequality as:

lnP (O) = ln
∑
z

∫∫
P (O,x, z,Λ)dxdΛ

= ln
∑
z

∫∫
Q(x, z,Λ)

P (O,x, z,Λ)

Q(x, z,Λ)
dxdΛ

≥
∑
z

∫∫
Q(x, z,Λ) ln

P (O,x, z,Λ)

Q(x, z,Λ)
dxdΛ

= F(Q), (18)

where Q(x, z,Λ) is an arbitrary distribution. The relation
between the log marginal likelihood and the lower bound F is
represented by the Kullback-Leibler (KL) divergence between
Q(x, z,Λ) and the true posterior distribution P (x, z,Λ |O)
as:

F(Q) = lnP (O)−KL[Q(x, z,Λ) ||P (x, z,Λ |O)]. (19)

Maximizing F with respect to Q(x, z,Λ) therefore provides
a good approximation of posterior distribution P (x, z,Λ |O)
in terms of minimizing KL divergence. The solution can be
obtained by using a functional approximation based on the
variational method.

To obtain the approximate posterior distribution (VB poste-
rior distribution) Q(x,z,Λ), hidden variables are assumed to
be conditionally independent of one another, i.e.,

Q(x, z,Λ) = Q(x)Q(z(1))Q(z(2))Q(Λ), (20)

where
∫
Q(x)dx = 1,

∑
z(m) Q(z(m)) = 1, and∫

Q(Λ)dΛ = 1. Under this assumption, the optimal VB
posterior distributions that maximize objective function F are
given by the variational method as:

Q(x) ∝ P (x) exp

[∑
z(1)

∑
z(2)

∫
Q(z(1))Q(z(2))Q(Λ)

× lnP (O |x,z(1), z(2),Λ)dΛ

]
, (21)



Q(z(m)) ∝ exp

[∑
z(m̃)

∫∫
Q(x)Q(z(m̃))Q(Λ)

× lnP (O |x, z(1), z(2),Λ)P (z(m) |Λ)dxdΛ

]
, (22)

Q(Λ) ∝ P (Λ) exp

[∑
z(1)

∑
z(2)

∫
Q(x)Q(z(1))Q(z(2))

× lnP (O |x, z(1),z(2),Λ)P (z(1) |Λ)P (z(2) |Λ)dx

]
, (23)

where m̃ represents the m̃-th dimension, which is an alterna-
tive to the m-th dimension. Since VB posterior distributions,
Q(x), Q(z(m)), and Q(Λ) are dependent on each other, these
updates need to be iterated as the expectation-maximization
(EM) algorithm. The updates of the VB posterior distributions
increase the value of objective function F at each iteration
until convergence.

2) Prior distribution: The Bayesian criterion has the advan-
tage that it can utilize prior distributions representing useful
prior information on model parameters. Although arbitrary
distributions can be used as prior distributions, conjugate prior
distributions are widely used. A conjugate prior distribution is
a distribution in which the resulting posterior distribution be-
longs to the same distribution family as the prior distribution.
The conjugate prior distribution of an HMEM is defined as:

P (Λ) =
2∏

m=1

[
D(π(m) |ϕ(m))

K(m)∏
i=1

D(a
(m)
i |α(m)

i )

]

×
∏
k

D∏
d=1

N (w̃k,d |hk,d,U
−1
k σ2

k,d)G((σ2
k,d)

−1 |ηk, νk,d), (24)

where D is the dimension of observation Ot, D(·) and
N (·)G(·) are respectively a Dirichlet distribution and a Gauss-
Gamma distribution, and w̃k,d and σ2

k,d are defined as:

W k = [wk,1,wk,2, . . . ,wk,D]⊤, (25)
µk = [µk,1, µk,2, . . . , µk,D]⊤, (26)

w̃k,d = [w⊤
k,d µk,d ]

⊤, (27)

Σk = diag(σ2
k,1, σ

2
k,2, . . . , σ

2
k,D), (28)

where W k is assumed to be independent of each dimension.
These distributions can be represented by a set of hyper-
parameters {ϕ(m),α

(m)
i ,hk,d,Uk, ηk, νk,d}, where hk,d and

Uk are defined as:

hk,d =
[
ω⊤

k,d γk,d
]⊤

, (29)

U−1
k =

[
Υk uk

u⊤
k υk

]
. (30)

The posterior distributions can also be represented by the same
set of parameters {ϕ̄(m)

, ᾱ
(m)
i , h̄k,d, Ūk, η̄k, ν̄k,d} because a

conjugate prior distribution is used. Figures 7 and 8 show the
graphical model representations of HMEMs for the ML and
VB methods, respectively.
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Fig. 7. Graphical model representation for HMEMs using the ML method.
The dashed circles represent model parameters, and the rectangle represents
the plate over the state k.
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Fig. 8. Graphical model representation for HMEMs using the VB method.
The dashed rectangles represent hyper-parameters.

3) Re-estimation formulae: In the HMEMs, the expecta-
tions with respect to Q(z) is defined as:⟨

z
(m)
i,t

⟩
=

∑
z(m)

Q(z(m))z
(m)

i,t(m) , (31)⟨
z
(m)

i,t(m)−1
z
(m)

j,t(m)

⟩
=

∑
z(m)

Q(z(m))z
(m)

i,t(m)−1
z
(m)

j,t(m) , (32)

⟨zk,t⟩ =
∑
z(1)

∑
z(2)

Q(z(1))Q(z(2))z
(1)

i,t(1)
z
(2)

j,t(2)
, (33)

z
(m)

i,t(m) =

{
0 (z

(m)

t(m) ̸= i)

1 (z
(m)

t(m) = i)
, (34)

Nk =
∑
t

⟨zk,t⟩ . (35)

The VB posterior distribution in Eq. (21), i.e., Q(x), can be
written as a Gaussian distribution:

Q(x) = N (x | µ̄x, Σ̄x), (36)

where µ̄x and Σ̄x are the mean and covariance matrix,
respectively. The re-estimation formulae of the VB posterior



distribution Q(x) are derived as:

µ̄x = Σ̄x

{∑
k

[
D∑

d=1

{
ω̄k,dη̄kν̄

−1
k,d

∑
t

⟨zk,t⟩Ot,d

}

−Nk

D∑
d=1

(ω̄k,dη̄kν̄
−1
k,dγ̄k,d + ūk)

]}
, (37)

Σ̄x =

[
I +

∑
k

{
Nk

D∑
d=1

(ω̄k,dη̄kν̄
−1
k,dω̄

⊤
k,d + Ῡk)

}]−1

,

(38)

where Ot,d is Ot = {Ot,d |d = 1, 2, . . . , D}. The VB
posterior distribution Q(z(m)) in Eq. (22) has a Markovian
structure as the likelihood function of an HMM. Therefore,
Eqs. (31) and (32) can be computed efficiently by the Forward-
Backward algorithm. The updates of the expectations with
respect to VB posterior distribution Q(z(m)) are derived as:

⟨
log π

(m)
i

⟩
= Ψ(ϕ̄

(m)
i )−Ψ

K(m)∑
l=1

ϕ̄
(m)
l

 , (39)

⟨
log a

(m)
ij

⟩
= Ψ(ᾱ

(m)
ij )−Ψ

K(m)∑
l=1

ᾱ
(m)
il

 , (40)

⟨lnN (Ot |W kx+ µk,Σk)⟩

=
D∑

d=1

[
lnN (Ot,d | h̄

⊤
k,d ⟨x̃⟩ , η̄−1

k,dν̄k,d)

−1

2
ln η̄k,d +

1

2
Ψ(η̄k,d)−

1

2
Tr

{
h̄
⊤
k,d

⟨
x̃x̃⊤

⟩
h̄k,d

−h̄
⊤
k,d ⟨x̃⟩ ⟨x̃⟩

⊤
h̄k,d + Ū

−1
k

⟨
x̃x̃⊤

⟩}]
, (41)

where Ψ(·) is a digamma function, and ⟨x̃⟩ and
⟨
x̃x̃⊤

⟩
are

expectations with respect to Q(x), calculated from Eqs. (37)
and (38) as follows:

⟨x̃⟩ =
[
µ̄⊤

x 1
]⊤

, (42)⟨
x̃x̃⊤

⟩
=

[
Σ̄x + µ̄xµ̄

⊤
x µ̄x

µ̄⊤
x 1

]
. (43)

The VB posterior distribution in Eq. (23), i.e., Q(Λ), can
be written by a Dirichlet distribution and a Gauss-Gamma
distribution. The re-estimation formulae of the VB posterior
distribution Q(Λ) are derived as:

ϕ̄
(m)
i = ϕ

(m)
i +

⟨
z
(m)
i,1

⟩
, (44)

ᾱ
(m)
ij = α

(m)
ij +

T (m)∑
t(m)=2

⟨
z
(m)

i,t(m)−1
z
(m)

j,t(m)

⟩
, (45)

Fig. 9. Examples of faces in the XM2VTS database.

h̄k,d = Ū
−1
k

{
Ukhk,d +

∑
t

⟨zk,t⟩Ot,d ⟨x̃⟩

}
, (46)

Ūk = Uk +Nk

⟨
x̃x̃⊤

⟩
, (47)

η̄k = ηk +
1

2
Nk, (48)

ν̄k,d = νk,d +
1

2

∑
t

⟨zk,t⟩Ot,dOt,d

+
1

2
h⊤
k,dUkhk,d −

1

2
h̄
⊤
k,dŪkh̄k,d. (49)

As for the proposed method, HMEMs with the same number
of states as the number of pixels of the input images are
equivalent to the conventional FA using the VB method [11],
and HMEMs with zero factor become the standard SL-HMMs
using the VB method [13].

C. Identification using variational Bayesian method

Predictive distribution P (X |O) is computed by using
Eq. (16) in the testing stage of the VB method. Since Q(Λ)
is an approximation of true posterior distribution P (Λ |O),
Q(Λ) can be substituted for P (Λ |O) in Eq. (16). Although
Eq. (16) includes a complicated expectation calculation, the
same approximation as in training can be used. In image
recognition using HMEMs, the HMEMs are separately trained
for each class, i.e., subject, and the likelihood of testing data,
which is calculated by the predictive distribution of HMEMs,
is compared. The class that obtains the highest likelihood is
then chosen as the identification result.

IV. EXPERIMENTS

Face recognition experiments on the XM2VTS
database [14] were conducted to evaluate the effectiveness
of the proposed method. We prepared eight images of 100
subjects; six images were used for training, and two images
were used for testing. Face images composed of 64 × 64
grayscale pixels were extracted from the original images.
Figure 9 shows some examples of face image in the XM2VTS
database. HMEMs with 32 × 32 states were used in the
experiments. Two noise variance structures of the HMEMs
were compared: PPCA structure (HMEM-PPCA) and FA
structure (HMEM-FA).

Since prior distributions of model parameters affect the
estimation of posterior distributions in the Bayesian criterion,
determining prior distributions is a serious problem from the
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Fig. 10. Recognition rates obtained in face recognition experiments.

viewpoint of estimating appropriate models. In the exper-
iments, a uniform distribution and a universal background
model (UBM) [15] that was constructed using all training
samples of all subjects were used. In addition, a tuning
parameter was used to control the degree of influence of the
prior distribution.

In the experiments, the recognition rates were compared
among the following four methods: SL-HMMs using ML
(“SL-ML”) and VB (“SL-VB”), and HMEMs using ML
(“HMEM-ML”) and VB (HMEM-VB, the proposed method).
As the prior distribution for the HMEM-VB, three kinds
of prior distributions were prepared: a uniform distribution
(“HMEM-VB-flat”), a UBM representing statistics of SL-
HMMs (“HMEM-VB-SLUBM”), and a UBM representing
statistics of HMEMs (“HMEM-VB-UBM”). The tuning pa-
rameter was chosen to obtain the best recognition rate under
the condition that the number of factors was one.

Figure 10(a) and 10(b) show the recognition rates of
HMEM-PPCA and HMEM-FA, respectively. The VB method
achieved higher recognition performance than the ML method
in the case of both variance structures. The highest recognition
rates of the VB method was 83.0% when using “HMEM-VB-
UBM” with the FA structure (one factor) and while 73.5% was
obtained by the ML method when using “HMEM-ML” with
the PPCA structure (two factors). Additionally, in the case
of the VB method, the HMEMs outperformed the SL-HMMs
method. These results suggest that the proposed method can
be effectively applied to image recognition. Comparing PPCA
and FA structures, in the case of the ML method, HMEM-
PPCA showed better recognition performance than HMEM-
FA. Contrary when using the VB method, HMEM-FA was
better than HMEM-PPCA. The highest recognition rates of
HMEM-FA and HMEM-PPCA with VB method were 83.0%
(“HMEM-VB-UBM” with one factor) and 77.0% (“HMEM-
VB-flat” with three factors), respectively. This is because in the
estimation of HMEM-FA, the ML criterion suffered from the

Model Mean Eigen-image Variance

UBM

HMEM-
VB-UBM

HMEM-ML

Fig. 11. The values of the mean, eigen-image, and variance were represented
by gray-levels (the number of factors is one in the case of HMEM-FA).

over-fitting problem due to insufficient training data due to the
more complex structure of HMEM-FA than HMEM-PPCA.
In contrast, the VB method mitigated the over-fitting problem
because it uses of prior distributions and marginalization of
model parameters. These results show that the estimation accu-
racy of the noise variance affected the recognition performance
and the proposed method can estimate the noise variance
reliably.

Three prior distributions (flat, SLUBM, and UBM) for
HMEMs using the VB method were compared in the ex-
periments. Although in the case of PPCA, “HMEM-VB-flat”
obtained high recognition rates. In the case of FA, “HMEM-
VB-SLUBM” obtained high recognition rates. This result
indicates that the UBM obtained from SL-HMMs is effective
for determining the prior distribution for HMEM-FA. This is
because the variance structures of HMEMs were assumed to
be diagonal and have the same structure as SL-HMMs. In
addition, there was no significant difference between “HMEM-
VB-UBM” and “HMEM-VB-flat” when the number of factors
was more than one. A possible reason for this result is that
the tuning parameter was chosen under the condition that the
number of factors is one. This result suggests that it is difficult
to set the prior distribution of the loading matrix reasonably.
However, high recognition performance can be expected if the
loading matrix of the prior distribution can be set adequately.

Figure 11 shows the visualized mean, eigen-image and
variance when the number of factors in HMEM-FA is one. It
can be seen from Figure 11 that the UBM roughly represents
a facial shape. Moreover, “HMEM-VB-UBM” and “HMEM-
ML” represent the facial shape of the subject. Since “HMEM-
VB-UBM” shows a clearer outline of the face than “HMEM-
ML”, “HMEM-VB-UBM” can estimate the accurate model.

V. CONCLUSION

An image recognition method based on hidden Markov
eigen-image models (HMEMs) using the variational Bayesian



method was proposed. In face recognition experiments,
HMEMs based on the Bayesian criterion demonstrated higher
recognition performance than the ML criterion. These results
suggest that the Bayesian criterion is useful for applica-
tions of image recognition based on HMEMs. Investigation
of appropriate parameter sharing structures of HMEMs and
experiments on various image recognition tasks will be future
work.
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