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Abstract—In this paper, we point out that SRM (Spatial-
domain Rich Model), the most successful steganalysis framework
of digital images possesses a similar architecture to CNN (con-
volutional neural network). The reasonable expectation is that
the steganalysis performance of a well-trained CNN should be
comparable to or even better than that of the hand-coded SRM.
However, a CNN without pre-training always get stuck at local
plateaus or even diverge which result in rather poor solutions.
In order to circumvent this obstacle, we use convolutional auto-
encoder in the pre-training procedure. A stack of convolutional
auto-encoders forms a CNN. The experimental results show
that initializing a CNN with the mixture of the filters from a
trained stack of convolutional auto-encoders and feature pooling
layers, although still can not compete with SRM, yields superior
performance compared to traditional CNN for the detection of
HUGO generated stego images in BOSSBase image database.

I. INTRODUCTION

Image steganalysis is the art of detecting data hidden in

cover images by means of steganography. In order to improve

security, modern content-adaptive steganography constrains

embedding changes to edge and texture regions where the

statistics are hard to model in practice. Advanced content-

adaptive steganographic methods, such as HUGO [1], pose

great challenge to steganalyzers. SPAM [2], the once most

successful feature-based blind steganalytic method, shows

poor performance when attacking HUGO [1]. As far as we

know, the current state-of-the-art feature-based blind stegana-

lyzers which can reliably detect stego images generated by

content-adaptive steganographic methods are SRM and its

descendants [3], [4], [5].

SRM, the Spatial-domain Rich Model, adopts a 34,671-

dimensional hardwired image feature descriptor and uses the

ensemble classifier, a random forest consisting of multiple

FLD (Fisher Linear Discriminants) based minor learners as

described in [6] to learn a binary steganalyzer. However,

theoretical analysis reveals that ensembles of simple base

learners being more powerful than a single base learner is
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mainly because of the extra level they add to the learning

architecture [7], which raises a question to researchers: will

the introduction of more deeper learning layers be beneficial to

feature-based blind steganalysis? In fact, deep learning archi-

tectures, including DBN (Deep Belief Network), SAE (Stacked

Auto-Encoders), CNN (Convolutional Neural Networks) and

their variants have been applied with great success in various

scientific areas [7]. But to the best knowledge of the authors

of this paper, there has still been no reports on applications

of deep learning architectures in steganalysis. In this paper,

we point out that SRM possesses a similar architecture to

CNN [8], one of the major deep learning architectures. A nine-

layer, three-stage CNN based blind steganalyzer is constructed

which accepts raw image pixels as its input and outputs the

binary classification results which can be used to distinguish

stego images from cover images. CAE (Convolutional Auto-

Encoder) are used in a layer-wise unsupervised pre-training

procedure. CNN is initialized from the resulting SCAE (Stack

of CAEs) [9] with identical topology. The experimental re-

sults show that the trained CNN (SCAE) based steganalyzer,

although still can not compete with SRM, yields superior

performance compared to traditional CNN for the detection of

HUGO generated stego images in BOSSBase image database.

The paper is organized as follows. Section II gives a

brief overview of SRM. Section III shows the constructional

similarity between SRM and CNN firstly, and then reveals the

structure of the specific CNN steganalyzer and the details of

the unsupervised pre-training procedure using SCAE. Section

IV presents experimental results. Finally, concluding remarks

are given in Section V.

II. OVERVIEW OF SRM

The core idea of SRM is to capture diverse types of

dependencies among neighboring pixels, which guarantees

the superior adaptability of the resulting model [3]. The

dependencies are modeled as noise residuals. Let Xij be the

pixel located at (i, j) of the target image X, Nij be a local

neighborhood of pixel Xij , θ(Nij) be a predictor of Xij

defined on Nij , the noise residuals, R = (Rij) ∈ R
n1×n2 ,

are computed using the following form:

Rij = θ(Nij)−Xij (1)
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All of the pixel predictors are implemented as locally-

supported linear filters and can be expressed as the convo-

lutions of X and a kernel matrix. A total of 39 kernels are

used in SRM. For example, the two kernels
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predict the value of the central pixel from its local 3× 3 and

5×5 neighborhoods, respectively. Other kernels involve pixels

arranged only in a horizontal/vertical direction which derived

from constant, linear and quadratic models of local image

patches, or use special parts of K3 and K5 to provide better

estimations at spatial discontinuities. Two or more residuals

can be merged to form a “minmax” type residual by taking

the minimum (or maximum) of the filters’ outputs.

Different quantized and truncated versions of each residual

are calculated:

Rij ← truncT

(

round

(

Rij

q

))

(4)

where T is a truncation threshold and q is a quantization step.

Having obtained the quantized residuals, the SRM submodels

will be constructed from their horizontal and vertical 4th order

co-occurrences. The 4th order horizontal co-occurrence matrix

of residual (Rij) is defined as the normalized number of the

groups of four neighboring residual samples with values equal

to d1, d2, d3, d4:

C
(h)
d1,d2,d3,d4

=
1

Z

∣

∣{(Rij , Ri,j+1, Ri,j+2, Ri,j+3)|

Ri,j+k−1 = dk, k = 1, . . . , 4}
∣

∣ (5)

The corresponding vertical co-occurrence matrix is defined

analogically. Some post procedures are followed by leveraging

symmetries of natural images. When all the resulting submod-

els are put together, their combined dimensionality is 34, 671.

III. SCAE FOR STEGANALYSIS

SRM can be regarded as a single-stage feature extraction

system. Its first layer is a filter bank hardwired with diverse

types of edge detectors. The quantization and truncation in

(4) is the second layer which bring in nonlinearities. The third

layer is to obtain the 4th order horizontal and vertical co-

occurrence matrices (See (5)) of the resulting residuals, which

is indeed a pooling operation that combines nearby values in

residual space through histogramming operator. The ensemble

classifier which trained in purely supervised mode is the last

and the top layer.

By virtue of the structure, SRM exhibits similarity to

CNN. In one stage of CNN, the first layer is also an array

of band-pass filters, which followed by point-wise sigmoid

nonlinearities. The second layer is the average/max pooling

and subsampling layer. This layer is used in CNN to reduce

the dimensionality, and plays the same role as quantization

and truncation in SRM. A complete CNN are composed of

several such stages, which assemble in order and followed by

a classifier. Several sequences of CNN stages acts similarly to

the pooling operation provided by co-occurrences in SRM. The

classifier employed by CNN can be a simple linear classifier,

a fully connected neural network, or even ensemble classifier,

like the one SRM adopted. The primary difference between

SRM and CNN is that the first layer of SRM is hardwired with

diverse types of edge detectors, while in CNN the filter banks

are initialized with random values and is trained in supervised

mode.

The authors of SRM attribute the success of the model

to the special structure of the filters and their diversity. One

reasonable expectation is that a CNN with similar structure

to SRM can learn its own filter kernels from samples and

gain the same capacity. Furthermore, former researches in this

field reveal that the feature extraction systems with two or

more stages are systematically and significantly better than

their single-stage counterparts [10]. However, it is quite time

intensive to train deep learner to yield state-of-the-art results.

Hence we did an overall consideration of the complexity of the

problem and the ability of the hardwares we equipped with and

put forward a nine-layer, three-stage CNN, which is illustrated

in Fig.1. The first stage of the proposed CNN takes 512×512
target image as input. It consists of a convolutional layer

with forty 5 × 5 kernels and a max-pooling layer with 4 × 4
downsampling. The forty kernels used in the convolutional

layer resembles the filter bank in SRM. The output of the first

stage is forty 128× 128 features map, which acts as the input

of the consequently second stage. The second stage equipped

with a convolutional layer with ten 5× 5 kernels and a max-

pooling layer with 4× 4 downsampling. Its output is a set of

total four hundred 32× 32 features maps. The third stage has

the same structure as the second one, which takes the output of

the second stage as its input and generates four thousand 8×8
feature maps. A fully connected neural network is adopted by

the proposed CNN based steganalyzer as binary classifier. The

output values of the four thousand 8 × 8 features maps from

the third stage are concatenated together in a zigzag order to

form the 25, 600 dimensional input of the neural network. The

neural network contains one hidden layer with 3, 000 hidden

neurons and an output layer with two neurons, in which one

stands for “stego” classification result and another stands for

“cover”.

However, many researches [7] reported that when starting

from random initialization, the training procedure of deep

multi-layer neural networks including CNN tend to stuck at

local plateaus or even diverge which result in rather poor

solutions. This phenomenon is also verified by our exten-

sive experiments. In order to circumvent this obstacle, firstly

we multiply the kernels of the first convolutional layer by

K5 (Eq. (3)) after initializing them with evenly distributed

random values, with the intention of endowing the initial
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Fig. 1. The proposed nine-layer, three-stage CNN (SCAE) based blind steganalyzer.

state of the convolution kernels in the first stage with edge

detector-liked structure. The logic is that, since the success of

SRM owes to special structure of the filters, initializing the

corresponding convolution kernels of our model to a similar

structure may aid in the convergence of the model.

The second measure is the introduction of SCAE [9]

based unsupervised pre-training procedure. SCAE (Stacked

Convolutional Auto-Encoders) are, as the name suggests,

convolutional auto-encoders stacked on top of each other, and

trained in a layerwise greedy fashion. Its building brick, a

CAE (Convolutional Auto-Encoder) is a discriminative graph-

ical model that takes feature maps as input and attempts to

reconstruct them via minimizing an appropriate cost function

over the training samples. An illustration of the CAE used in

the unsupervised pre-training procedure is shown in Fig. 2.

One CAE is constructed for each stage of the proposed

CNN (SCAE) based blind steganalyzer. From Fig. 2 we can

see that the left side of the CAE is of identical topology and

initial parameters (especially the special initial state of the

kernels, as the last paragraphs mentioned) as the CNN stage

it corresponding to. The input feature maps are convolved

with the input kernels in the convolution layer and then pass

through the max-pooling layer. The intermediate feature maps,

the output of the left side of CAE then continue to pass through

the 4×4 upsampling layer, and the output convolutional layer

which contains the same number kernels as its counterpart,

the input convolutional layer of the left side. The output of

the right side are the estimations of the initial input feature

maps. The unsupervised pre-training procedure minimize the

cost function, in this paper the mean squared error between the

input feature maps and the output estimations of CAE. A back-

propagation algorithm is applied to tune the parameters of the

convolutional kernels. The CAEs of the corresponding three

stages can be stacked to form a SCAE. Each layer receives its

input from the output of the previous stage in the pre-training

procedure. The layers of each CAE which take output of the

previous stage and generate the intermediate feature maps (the

ones within the dotted-line circle in Fig. 2) are indeed the

corresponding CNN stage of the proposed steganalyzer. After

pre-training, they are extracted from each CAE of the trained

SCAE and reassemble stage by stage to build up the pro-

posed CNN (SCAE) based blind steganalyzer prior to a final

supervised training stage. It is believed that [7] unsupervised

layer-wise learning can help discovering a representation that

captures statistical regularities of each layer’s input and move

the model parameters in a favorable direction. The benefits of

unsupervised SCAE based pre-training are also investigated in

our experiments.
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Fig. 2. The CAE used in the pre-training procedure of the proposed
CNN (SCAE) based blind steganalyzer. The ring in the center with “C” mark
denotes the cost function to be minimized. The layers within the dotted-line
circle compose the CNN stage which we can extract from the trained CAE.

IV. EXPERIMENTAL RESULTS

The experiments are performed on the BOSSBase (version

1.01) image database which contains 10,000 512×512 grey-

scale cover images1. The image database are splitted into 5000

training and 5000 testing images. The corresponding HUGO

stego images are generated for a fixed payload of 0.4 bpp

with model correction [1]. In the unsupervised pre-training

procedure, only the 5000 training cover images are used

as the input feature maps of the CAE which corresponding

to the first CNN stage. While in the consequent supervised

training procedure, All the training cover images and the

corresponding stego images are used to fine-tune the proposed

CNN (SCAE) based blind steganalyzer. A modified version

of DeepLearnToolbox [11] is used in our experiments. The

performance of the proposed steganalyzer is evaluated using

the detection error on the testing image set:

PE , min
PFA

1

2
(PFA + PMD(PFA)) (6)

where PFA and PMD are the probabilities of false alarm and

missed detection. Table I reported the detection error for our

CNN (SCAE) based blind steganalyzer and its competitors.

“Proposed1” denotes the proposed steganalyzer with random

initialization; “Proposed2” denotes Proposed1 coupled with

the kernels of the first convolutional layer multiplied by K5;

“Proposed3” denotes Proposed2 plus SCAE pre-training. From

Tab. I we can see that it is close to random guessing when

using the proposed steganalyzer with random initialization,

which means that the CNN based steganalyzer may stuck

at local plateaus during the training procedure. Multiplying

the kernels of the first convolutional layer can promote the

performance of the proposed steganalyzer, which is still merely

comparable to what SPAM achieved. The introduction of

SCAE based pre-training procedure brings a qualitative leap.

1http://exile.felk.cvut.cz/boss

TABLE I
DETECTION ERROR FOR THE PROPOSED CNN (SCAE) BASED BLIND

STEGANALYZER AND ITS COMPETITORS.

Proposed
1

Proposed
2

Proposed
3

SPAM SRM

0.48 0.43 0.31 0.42 0.14

However, PE = 0.31, the best achievement of our steganalyzer

still can not take rank with what SRM had scored. The

experimental results are merely fair, which may be imputed

to two reasons: the inadequate scale of the CNN framework

employed and the prohibitively long training time of the

model. The final blind steganalyzer took approximately one

week to train in an Intel E5 server, which made parameter

adjustment and infrastructure optimization much difficult than

desired.

V. CONCLUDING REMARKS

In this paper we put forward a nine-layer, three-stage

CNN (SCAE) based blind steganalyzer. In theory the proposed

steganalyzer should exhibit similar or even better performance

compared with the well-known SRM. But the experimental

results were not encouraging. Even with the help of SCAE

pre-training, the proposed steganalyzer is, although better than

SPAM, still inferior to SRM. However, it is just the beginning

of our adventure in deep learning based steganalysis. We

believe that the existing obstacles in experiments will be

surmounted via the future introduction of GPU based deep-

learning infrastructure [12].
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