
Parallel Memory-Efficient Processing of BCI Data
Trevor Alexander∗, Anthony Kuh∗, Katsuhiko Hamada†, Hiromu Mori‡, Hiroyuki Shinoda†, Tomasz Rutkowski‡

∗Department of Electrical Engineering, University of Hawai\i at Mānoa, Honolulu, Hawai\i, USA
E-mail: trevor@bci-lab.info

†The University of Tokyo, Tokyo, Japan
‡Life Science Center of TARA, University of Tsukuba, and RIKEN Brain Science Institute, Japan

E-mail: tomek@bci-lab.info

Abstract—Following after magnetic resonance imaging (MRI)
and electrocortigraphy (ECoG), electroencephalography (EEG)-
based research is entering the world of big data[1]. A research-
quality brain-computer interface (BCI) data set can easily
number in the hundreds of millions of points, making method-
ology of processing and classification critical. A selection of
broadly applicable optimization methods implemented in R is
presented that enables users to take advantage of parallelization,
guaranteed call-by-reference to limit memory overhead, and
scalable performance with common BCI processing tasks. As
proof of concept, classification results for a P300 experiment and
performance statistics are presented.

I. INTRODUCTION

A host of different groups are at work on improving
the processing of large data sets for machine learning and
classification [2][3][4][5][6]. One such group identifies R as
“ideal” for expressing machine learning algorithms for high
performance computing, and is at work on a distributed
incremental processing framework [2]. However, no work has
been done (to our knowledge) to explicitly improve processing
of EEG data sets using high performance computing (HPC)
methods. As more (computationally) elaborate processing and
classification methods are introduced, the time and space
required for initial training and actual use become increasingly
critical. Despite this, consideration of these factors does not
have to be postponed when testing or evaluating a proposed
algorithm for feasibility or relative effectiveness.

In this paper, we discuss practices and approaches for
accelerating BCI data processing. We begin with a discussion
of a flexible layout for EEG data, and introduce a fast and
efficient data structure that supports this layout. Next, we
define an example workflow from filtering to classification,
and show competitive classification results on actual data.
For selected sections in the workflow, we describe two easily
applicable optimization methods for drastically reducing the
time and space required for processing, namely parallelization
and reduction of memory overhead through enforcement of
call-by-reference. We demonstrate their improvement through
benchmarking. We conclude by noting the significant perfor-
mance increases obtained and discuss future work in this vein.

II. ORGANIZING AND STRUCTURING DATA

A. Principles

EEG must be structured to serve different needs, depending
on the method of analysis being applied. This results in a

number of competing formats–for example, BCI2000 (DAT)
[7], Emotiv (EDF) [8], BioSemi (BDF) [9], and EEGLAB/-
MATLAB (MAT) [10] all use entirely different formats each
with different structure to store their data. This issue is
typically left out of most discussions in the fields of machine
learning and statistical analysis, but is responsible for a major
reduction in efficiency–as much 80% of time spent on data
analysis and modeling is spent modifying the formatting or
layout of the data, according to one estimate[11].

In an attempt to avoid meaningless proliferation of ad hoc
formats and de facto “standards”, we adhere as much as
possible to the following principles:

• Flexibility: the structure must accommodate multiple use
cases with minimal syntactic effort

• Efficiency: the structure must be quickly accessible and
compact in memory (or on disk)

• Transparency: the structure must be understandable and
natural to the researcher or programmer

B. Format

The table layout; i.e., the row-column ordered representation
of data, is now the most ubiquitous container format in
computing, statistical analysis, and data science. This repre-
sentation appears most notably in databases, whose implemen-
tations have become omnipresent. This trend holds for time-
series data, of which EEG is a member. Thus, the fundamental
data structure for EEG data should also be a table. Placing
EEG data in such a container allows the logic of existing
libraries and toolboxes in these areas to be immediately
applied.

At the same time, the structure must also support “matrix-
type” operations without recourse to conversion, otherwise
the effort is wasted. The query language of table structures
supports this very well, allowing for subsetting and grouping
in a transparent, understandable manner. In this way, we adhere
to the above principles in a standard form.

Specifically, we make extensive use of data.table [12],
a high-performance data structure available in R, for the vast
majority of tasks in the analysis workflow1. In the following

1R was chosen over Python or MATLAB for the following additional
reasons: parallelization is available through freely available packages with
modular support for a wide variety of backends (both local and distributed),
and for its strong academic machine learning community, which makes
available peer-reviewed packages for free (attributed) use.

978-616-361-823-8 © 2014 APSIPA APSIPA 2014

mailto:trevor@bci-lab.info
mailto:tomek@bci-lab.info


TABLE I
“LONG” FORM OF EPOCHED EEG DATA

Sample Trial Class Channel Voltage Time
1 1 0 1 -14.36 -100
1 1 0 2 -15.94 -100
1 1 0 3 -22.85 -100
1 1 0 4 -47.43 -100
1 1 0 5 -65.98 -100
...

...
...

...
...

...

TABLE II
“WIDE” CHANNEL FORM OF EPOCHED EEG DATA

Class Time Trial Ch1 Ch2 Ch3 . . .
0 -100 4 0 0.00 0.00 . . .
0 -100 47 0 0.53 0.00 . . .
0 -100 96 0 0.00 0.00 . . .
0 -100 174 0 0.00 0.00 . . .
0 -100 205 0 0.00 -0.11 . . .
...

...
...

...
...

...
...

section we give a detailed explanation of the layout and use.

C. Layouts

Conceptually, a table is most simply stated as a structure
that is “all columns.” When we say this, we mean that all
identifiers are columns–the sequence of rows is dependent on
the ordering of values in a given column. In order to make
the concept more clear, we provide an example of an epoched
EEG data set in the above format in Table I.

As you can see, all possible dimensions are unrolled into
column indices, such that a unique tuple of indices specifies
a unique Voltage, our value of interest. This is known
colloquially as a “long” table format [11], and is standard
for SQL and other database types.

While the “long” format is the most flexible layout, matrix
operations on multiple channels are common enough that a
“wide” channel format is useful. The “wide” format can be
quickly generated. An example is given in Table II.

With the above two layouts, we can accomplish every task
needed for basic EEG-BCI analysis and classification without
storing the data in any other form. This keeps both code
clean and memory usage tight, as we will see in the following
sections.

III. EXPLORATORY ANALYSIS

A. Experiment

For this analysis, we use P300 experiment data collected
from a novel tactile BCI experiment[13]. Notably, stimulus
was presented using contactless airborne ultrasound (airborne
ultrasonic tactile display, or AUTD). Data was sampled at
512Hz. The stimulus length and interstimulus interval were
both 400ms. Initial processing included a bandstop filter from
48-52Hz for power line interference, and a bandpass filter
from 0.1-60Hz. Thirteen male subjects participated in three
experiment sessions, which each contained a randomly ordered
set of 90 targets and 450 non-targets. The resulting time

series was epoched by channel into separate trials, over the
interval −100 to 900 milliseconds (pre- and post-stimulus,
with overlapping samples duplicated).

B. Process and Functions
1) Filtering: We further applied a Butterworth lowpass

filter with cutoff frequency of 10Hz (backwards and forwards
to avoid disturbing signal phase) to the epoched signals. The
magnitude response is given in Figure 1. For reference, plots
of the unfiltered and filtered average spectra follow in Figures
2 and 3.

Fig. 1. Low pass filter applied to each channel and trial.

Fig. 2. Unfiltered spectrum of averaged trials by class.

The resulting signal was also downsampled by a factor of
approximately 6 in order to reduce memory demands and
increase processing speed.



Fig. 3. Unfiltered spectrum of averaged trials by class.

2) Principal Component Analysis: Following filtering and
downsampling, EEG data was separated by subject and session
into two training sessions and one testing session. Addition-
ally, only the subset of data from 200-450ms was considered,
resulting in 16 channels of 22 samples each, for each trial.
Principal component analysis was performed on the training
set using SVD for efficiency [14].

Fig. 4. Principal component variances of training data (subject 13 pictured).

As shown in Figure 4, the vast majority of the variance
is explained by the first two principal components (we also
include the third component for illustrative purposes).

As we can see from Figure 5, the training set samples appear
to be well separated along the different principal component
axes.

Fig. 5. Karhunen-Loeve transformed training set ordered by sample and trial
(first 3 components).

IV. CLASSIFICATION

A. Process and Results

As each subject performed the same experiment for three
separate sessions, we used the first two sessions to train
each classifier, and held the third session back for testing.
Features were chosen from the Karhunen-Loeve transform
(derived from the first three principal component rotations of
the training set) of the 22 samples (in each of 16 channels) in
the time interval from 200− 450 ms. Since class proportions
were unequal (a 5:1 ratio), the training set was resampled
with replacement to ensure learners were trained on equal
proportions. Additionally, uniform priors were provided to
each learner (equal class weights in the case of SVM), and
the confusion matrix was inspected for error bias.

Two learners were tested: linear discriminant analysis with
shrinkage (SDA) [15], and a linear support vector machine
(L2-regularized with L1 loss) [16]. Each learner was trained
on the first two sessions with each subject, and tested on the
third session over 10 different runs.

Results are shown in Table III.

V. OPTIMIZATIONS

Our optimization efforts were focused in two areas: paral-
lelization and reduction of memory use.

Parallelization is aimed foremost at scalability. Paralleliza-
tion has been mostly ignored in the BCI literature, and the
most popular toolbox, EEGLAB, does not explicitly provide
for parallelization in its code [17]. Given the increase in EEG
data set size and future proliferation thereof (such as that
proposed by the Neural Engineering Data Consortium [1]),
scalability is critical, as indicated by Gustafson’s law [18].

Gustafson’s law (illustrated in Figure 6 states that given
the “scaled speedup” or ratio of the serial process runtime to



TABLE III
ACCURACY OF TESTED CLASSIFIERS BY SUBJECT

Subject SDA SVM
1 75.9%± 0.000% 82.9%± 0.553%
2 76.0%± 0.000% 81.6%± 1.51%
3 66.0%± 0.000% 80.9%± 1.26%
4 74.1%± 0.016% 82.2%± 0.324%
5 74.4%± 0.173% 81.5%± 1.48%
6 76.7%± 0.000% 82.4%± 0.841%
7 71.5%± 0.332% 81.4%± 1.83%
8 72.2%± 0.107% 82.2%± 0.665%
9 80.5%± 0.010% 81.9%± 2.06%

10 72.5%± 0.032% 82.1%± 1.36%
11 77.9%± 0.002% 82.3%± 0.538%
12 75.6%± 0.013% 82.2%± 1.28%
13 65.8%± 0.023% 81.0%± 1.33%

Average 73.78% 81.89%

Fig. 6. Illustration of expected speedup with increasing cores for different
values of α according to Gustafson’s law.

the parallel runtime S(P ), where P is an integer number of
processors, the following relation holds:

S(P ) = P − α(P − 1) (1)

Here, α represents the serial fraction of the process, that
is, the fraction that cannot be parallelized. In other words, the
law describes the scalability of a calculation–it answers the
question, “How much can we get by throwing more power at
this process?”

The other main dimension determining processing perfor-
mance is occupied memory. While memory is inexpensive
and analysis can be offloaded (at least in the research phase)
to cloud computing grids like Amazon’s EC2, this is no
justification for inefficiency. Considering that one of the goals
of BCI is a complete system that can be used by a patient
independent of a general-purpose computing platform, (i.e., an
embedded system), the issue merits consideration. Our main
technique was to ensure copying is minimized by guaranteeing
call-by-reference in all possible cases.

A. Parallelization

Parallelization in R consists of two components: a frontend
that dispatches and collects calculation tasks as jobs, and a
backend which manages the (R) processes that perform the
jobs. This allows for modularity–depending on the available
hardware, the same code can be used on a single multicore
machine or a cloud computing cluster.

In this workflow, we use the frontend foreach[19] to
parallelize iterative tasks, and doMC[20] to perform these tasks
on multiple cores of a single machine.

1) Filtering: Filtering of epoched EEG trials is an em-
barassingly parallel process [21]. By this we mean that the
function runs on separate sections of data independently,
making it a perfect candidate for parallelization.

Parallelization in this workflow is done explicitly through
the foreach package [19], which provides a simple frame-
work for dispatching iterative tasks to a parallel backend. In
this implementation we use doMC to distribute tasks to each
core. Other backends are available, including an interface to
MPI (message passing interface)-compatible clusters [22].

2) Hyperparameter optimization: Hyperparameter opti-
mization is another embarrassingly parallel task. While grid
search is the most inefficient of all methods, it is used here as
a simple illustration. We performed a grid search over the two
parameters λ (shrinkage intensity for the correlation matrix)
and λvar (shrinkage intensity for the variances) for shrinkage
LDA [15], using the same microbenchmark suite as in the
filtering task. Results for this grid search are given in Figure
7.

Listing 1. Benchmarked expression for SDA hyperparameters.
1 foreach(this.lambda=iter(subset$lambda),
2 .combine=cbind) %:%
3 foreach(this.lambda.var=iter(subset$lambda.var),
4 .combine=rbind) %dopar% {
5

6 sda.model <-
7 sda(lambda.freqs = 1,
8 lambda=this.lambda,
9 lambda.var=this.lambda.var,

10 Xtrain=as.matrix(training.pca[,1:3,
11 with=FALSE]),
12 L=training.pca[,as.factor(Class)])
13

14 sda.pred <-
15 predict(
16 sda.model,as.matrix(testing.pca[,1:3,
17 with=FALSE]))
18

19 acc <- sum(sda.pred$class !=
20 testing.pca[,Class])
21 /testing.pca[,length(Class)]
22

23 if (acc < 0.5) { acc <- 1 - acc}
24

25 acc
26 }

The benchmark results for SDA with increasing parallelism
are shown in Figure 8. The same benchmark was performed



Fig. 7. SDA accuracy over a subset of two hyperparameters for a single subject (1).

Fig. 8. Box and whisker plot of SDA hyperparameter grid search runtime with
increasing parallelism.

using the linear SVM classifier (for brevity, we omit similar
code here), shown in Figure 9.

B. Memory optimization

Both R and MATLAB, by default, pass objects to functions
in a “lazy” manner–they do not copy objects in memory
unless accessed within the current scope [14][23]. While
this is an effective general approach, it relies wholly on the
programmer to implement functions so that the changes are
isolated to the smallest possible subset of whatever variable is
passed. A better approach is to guarantee function passing by
reference. This can be directly achieved with minimal effort
using data.table. For example:

Fig. 9. Box and whisker plot of linear SVM hyperparameter grid search
runtime with increasing parallelism.

Listing 2. Windowed average using call-by-reference.
1 avg.with.group <-
2 input.table[,roll_mean(get(val.col),
3 n = window.width),
4 by=c(id.cols)]

The above code computes a windowed average of one
column in the table[24][25], grouped by any subset of other
columns (such as Channel or Trial), using no more memory
at any point in time than that required to store the number
of elements in the window. It is also extremely concise and
relatively readable.



TABLE IV
BENCHMARK SYSTEM SPECIFICATIONS

CPU Intel Xeon E3-1225 V2 @ 3.20GHz (4 cores)
Memory 32GiB DIMM DDR3 Synchronous @ 1333MHz
OS Debian Linux (kernel version 3.12-1-amd64)
R version 3.1.0

TABLE V
FILTERING RUNTIMES WITH INCREASING PARALLELISM

Type min median max
serial 59.82971 60.0070 60.53914
parallel, 2 cores 56.01123 57.2282 57.77827
parallel, 3 cores 44.92327 45.61265 46.04711
parallel, 4 cores 39.16282 41.14741 41.58670

The salient feature here is that data.table allocates only
as much memory as is strictly needed to execute the function
given within the brackets, on the columns named there and
within the by grouping. MATLAB users may think of this
as a further “boost” to the concept of vectorized code–
with data.table, users do not have to explicitly form the
subsetting or mapping vectors mentally for each function they
wish to speed up–they simply name the grouping they wish to
operate on and any ordering of rows by setting a key (which
further speeds up large operations). Thus, memory usage is
strictly reduced and syntax is simplified.

VI. BENCHMARKS

All benchmarking and processing was performed on a
Lenovo ThinkServer TS130. Detailed specifications are given
in Table IV.

A. Time

1) Filtering: Parallel and serial processing was compared
by filtering 100 million data points from a real epoched EEG
data set with a 10Hz Butterworth filter. This process was
repeated 20 times with 1 core, 2 cores, and 3 cores and
microbenchmarked[26]:

Listing 3. Benchmarked filtering expressions.
1 filter.seri <-
2 expression(erp[1:100000000,
3 filtfilt(low.pass,
4 by=c("Trial","Channel")])
5

6 filter.para <-
7 expression(erp[1:100000000,
8 foreach(
9 this.trial=iter(erp[,unique(Trial)]),

10 .combine=c) %dopar% {
11

12 filtfilt(low.pass,erp[J(this.trial),
13 Voltage])}])

From the results shown in Figure 10, we may roughly
estimate the non-parallelizable fraction α (the portion that is
responsible for the nonlinear decrease in time) of the filtering
process using Gustafson’s law[18].

Fig. 10. Box and whisker plot of filter runtime with increasing parallelism.

TABLE VI
ESTIMATED PARALLELIZABLE FRACTION OF FILTER PROCESS

S(P ) P α parallel fraction
1.049 2 0.951 4.9%
1.316 3 0.842 15.8%
1.458 4 0.847 15.3%

Thus we can expect that about 15% of the filtering process
is parallelizable on the testing machine (and its corresponding
overhead). Under this estimate, the same 100 million data
points can therefore be filtered in roughly 10 seconds on a
relatively small 32-core cluster.

2) Classifier hyperparameter search: Similar trends appear
when comparing learner performance over ranges of hyperpa-
rameters. For each learner, we measured the learner accuracy
over the chosen hyperparameter subsets. For shrinkage SDA,
we searched over subsets of shrinkage intensity for the corre-
lation matrix lambda and shrinkage intensity for the variances
lambda.var. For linear SVM, we searched over subsets of the
cost.

TABLE VII
SDA RUNTIMES WITH INCREASING PARALLELISM

Type min median max
serial 210.72354 212.20380 212.40739
parallel, 2 cores 100.76444 111.45896 111.86055
parallel, 3 cores 81.09276 83.45086 85.63844
parallel, 4 cores 66.55676 67.30343 68.41378

TABLE VIII
LINEAR SVM RUNTIMES WITH INCREASING PARALLELISM

Type min median max
serial 5182.834 5288.831 5315.910
parallel, 2 cores 2939.684 2965.018 2989.479
parallel, 3 cores 2146.640 2172.414 2193.440
parallel, 4 cores 1776.822 1790.169 1799.507



TABLE IX
ESTIMATED PARALLELIZABLE FRACTION OF SDA HYPERPARAMETER

SEARCH

S(P ) P α parallel fraction
1.904 2 0.096 90.4%
2.543 3 0.229 77.1%
3.153 4 0.282 71.8%

TABLE X
ESTIMATED PARALLELIZABLE FRACTION OF LINEAR SVM

HYPERPARAMETER SEARCH

S(P ) P α parallel fraction
1.784 2 0.216 78.4%
2.435 3 0.283 71.7%
2.954 4 0.349 65.1%

Runtimes are shown in Tables VII, VIII. As seen in Tables
IX and X, the parallelizable fraction is quite high, at least
65%. This is expected, since the parameter search process is
entirely iterative.

B. Memory

Our primary statistic for measuring performance is the peak
ratio of bytes of memory used in calculation (as measured by
the amount of memory released afterward), to the size in bytes
of the original input data.

Three processes were profiled for memory use: grand trial
mean of all recorded signals, a windowed time average (in-
cluded for the sake of completeness) over each trial, channel,
and subject, and low pass filtering of all trials and channels.
For efficiency’s sake, the initial input data was constructed
from only the first 100 trials from each subject, for a total
size of 442.3 megabytes (SI). Results are collected in Table
XI, and the calls benchmarked follow below.

1) Call types: To provide a call-by-value comparison with
data.table while preserving concise grouping calls, the
function ddply was used [27] . Its syntax is similar and
provides a good comparison, as it executes essentially the same
procedure as the data.table calls. Each of the below code
listings contains a data.table implementation and ddply
implementation of the same task, used with the memory
profiler.

Listing 4. Memory benchmark (grand mean).
1 mean.by.ref <-
2 test.table[,mean(Voltage),
3 by=c("Sample","Channel","Class")]
4

5 mean.by.val <-
6 ddply(test.table, .(Sample,Channel,Class),
7 summarize, meanv=mean(Voltage))

TABLE XI
MEMORY RELEASED BY FUNCTION (OVERHEAD)

Task call-by-reference call-by-value
EEG mean by trial 0 Mb (0%) 2393.2 Mb (541%)
EEG windowed time average 0 Mb (0%) 2993.8 Mb (677%)
EEG low pass filter 948.44 Mb (214%) 2027.18 Mb (458%)

Listing 5. Memory benchmark (10-width windowed time average).
1 window.avg.by.ref <-
2 test.table[,roll_mean(Voltage, n = 10),
3 by=c("Subject","Trial","Channel")]
4

5 window.avg.by.val <-
6 ddply(test.table, .(Subject, Trial, Channel),
7 summarize,
8 wavg = roll_mean(Voltage, n=10))

Listing 6. Memory benchmark (low pass filter).
1 end.f <- 20
2 start.f <- 10
3 low.pass <-
4 butter(buttord(Wp = start.f/sample.rate*2,
5 Ws = end.f/sample.rate*2,
6 Rp = 0.5, Rs = 40))
7

8 filt.by.ref <-
9 test.table.filt[,Voltage:=filtfilt(low.pass,

10 Voltage),
11 by=c("Trial","Channel")]
12

13 filt.by.val <-
14 ddply(test.table.filt, .(Trial, Channel),
15 mutate,
16 Voltage=filtfilt(filt=low.pass,
17 x=Voltage))

While frontends like foreach attempt to allow child pro-
cesses to share as much memory allocated by the parent as is
prudent, there is unavoidable overhead. In other words, blindly
parallelizing every calculation is not a panacea. Inefficient
memory use, even with well-written code, can be as high
as seven times the occupied memory, as shown in table XI.
When memory is at a premium, one workable strategy is to
try to optimize as needed by structuring the data so that the
calculation runs quickly even in a serial manner.

C. Real Time/Memory Effects

Processing speed is highly dependent on available hardware,
but we can provide a mapping that relates the above time
and memory savings to an actual experiment. Assume that a
BCI processing chain consists of the following (memory/time
independent) steps, for which the required time and memory
are both unity:

1) Load data (w)
2) Filter data (x)
3) Preprocess/transform data (y)
4) Tune and verify classifier (z)
We can then describe the required time and memory math-

ematically by

tw + tx + ty + tz = 1 (2)

max (mw +mx +my +mz) = M (3)

where tw is the required proportionate time for task w, mw

is the required memory for task w, and M is the total memory
required. (They are hardware-specific.)



1) Time: As found above, the non-parallelizable fraction of
the filtering task x is .880, while the non-parallelizable fraction
of the classification task z for a linear SVM is 0.283. In prac-
tice, we found that the time required to compute the Karhunen-
Loeve transform was comparatively negligible. Additionally,
the time to load the data comes from a single fixed step, and
can also be neglected in many cases. Thus, assuming no limit
on available computing grid size (a reasonable assumption
today), the time required to process the experiment given in
this paper is:

tparallel = 0.88tx + 0.283tz (4)

If, say, the filtering step takes 10 percent of the total pro-
cessing time, while hyperparameter tuning takes 90 percent,
tparallel = 34.3%. In other words, if processing took 60 minutes
on a laboratory’s computing hardware with a non-parallelized
program, this processing could be cut down to 24 minutes. The
experiment introduced in this paper contains data processed
independently from 13 subjects. In other words, if the data
were available in advance, a BCI could be tuned for a subject
in 24

13 = 1.85 minutes.
2) Memory: The case for memory is slightly different. Ei-

ther there is enough memory available for processing, or there
is not (virtual memory may be allocated from the hard drive,
but this severely affects the processing time, and is only a fixed
increase in space, which only kicks the ball down the road). In
other words, it is the maximum of the memory requirements
from each independent step that determines whether or not the
process can complete.

In practice, we found that memory is only an issue through
the transformation step–once the data is transformed and
reduced in dimension, the problem is typically tractable. This
means that the initial data size in memory and the overhead
required for filtering are the measures of interest here. We
assume that there is enough memory to load the data to begin
with.

As noted in Table XI, the overhead required for a simple
filtering process was 948.44 Mb, or 214% overhead, when
call-by-reference was enforced through programming methods
shown previously. On the other hand, call-by-value processing
required an overhead of 2027.18 Mb, or 458% overhead,
roughly 2.14 times as much. While circumstances vary widely
with experiment and hardware available, it seems prudent to
avoid having to double available memory, an upgrade that may
necessitate further hardware upgrades to accomplish 2.

VII. CONCLUSIONS AND FUTURE WORK

We have introduced a number of libraries and optimization
methods in R taking advantage of high performance com-
puting methods that can be used to accelerate processing
and reduce memory usage of BCI algorithms. Through these
improvements, significant speedups and reductions in memory
use were shown through benchmarking. The workflow was

2i.e., a motherboard and CPU upgrade.

validated using actual experimental data, and competitive
results were obtained.

In a multi-core, cloud computing world, researchers should
make the most of parallelization and optimization. High-
performance computing methods do not just improve existing
code–they also broaden the scope of what can be developed
and tested. In order to make these and other improvements
accessible to BCI researchers in a variety of disciplines, we
are currently developing a full-featured EEG processing library
in R with a graphical user interface. We are also building an
R interface for streaming online data from BCI2000.

ACKNOWLEDGMENT

We thank the many library developers and R gurus on
StackOverflow for their patient advice on numerous occasions,
without which this paper would not be possible.

REFERENCES

[1] I. Obeid and J. Picone, “Bringing big data to neural
interaces,” in Proceedings of the Fifth International
Brain - Computer Interface Meeting, 2013.

[2] S. Venkataraman, I. Roy, A. AuYoung, and R. S.
Schreiber, “Using R for iterative and incremental pro-
cessing,” 2012.

[3] O. Terzo, P. Ruiu, E. Bucci, and F. Xhafa, “Data as
a service (DaaS) for sharing and processing of large
data collections in the cloud,” in Complex, Intelligent,
and Software Intensive Systems (CISIS), 2013 Seventh
International Conference on, Jul. 2013, pp. 475–480.
DOI: 10.1109/CISIS.2013.87.

[4] M. Paracha, S. Mohammad, P. Macfarlane, and J. Jenk-
ins, “Real-time custom processing and delivery of large
ecg data sets,” in Computers in Cardiology, 2003, Sep.
2003, pp. 411–412. DOI: 10.1109/CIC.2003.1291179.

[5] H. Lin, S. Yang, and S. Midkiff, “RABID – a general
distributed R processing framework targeting large data-
set problems,” in Big Data (BigData Congress), 2013
IEEE International Congress on, Jun. 2013, pp. 423–
424. DOI: 10.1109/BigData.Congress.2013.67.

[6] T. Jejkal, V. Hartmann, R. Stotzka, J. Otte, A. Garcia,
J. Van Wezel, and A. Streit, “LAMBDA – the LSDF
execution framework for data intensive applications,”
in Parallel, Distributed and Network-Based Processing
(PDP), 2012 20th Euromicro International Conference
on, Feb. 2012, pp. 213–220. DOI: 10.1109/PDP.2012.69.

[7] G. Schalk and J. Mellinger, Technical reference:
BCI2000 file format. [Online]. Available: http://www.
bci2000 . org / wiki / index . php / Technical Reference :
BCI2000 File Format.

[8] B. Kemp and J. Olivan, “European data format ’plus’
(EDF+), an EDF alike standard format for the exchange
of physiological data,” Clin Neurophysiol, vol. 114, no.
9, pp. 1755–1761, Sep. 2003.

[9] T. van Beelen, Bdf+ format description, Oct. 2012.
[Online]. Available: http://www.teuniz.net/edfbrowser/
bdfplus%20format%20description.html.

http://dx.doi.org/10.1109/CISIS.2013.87
http://dx.doi.org/10.1109/CIC.2003.1291179
http://dx.doi.org/10.1109/BigData.Congress.2013.67
http://dx.doi.org/10.1109/PDP.2012.69
http://www.bci2000.org/wiki/index.php/Technical_Reference:BCI2000_File_Format
http://www.bci2000.org/wiki/index.php/Technical_Reference:BCI2000_File_Format
http://www.bci2000.org/wiki/index.php/Technical_Reference:BCI2000_File_Format
http://www.teuniz.net/edfbrowser/bdfplus%20format%20description.html
http://www.teuniz.net/edfbrowser/bdfplus%20format%20description.html


[10] MATLAB(r) MAT-file format, MathWorks, Inc., Mar.
2014. [Online]. Available: http://www.mathworks.com/
help/pdf doc/matlab/matfile format.pdf.

[11] H. Wickham, “Tidy data,” The Journal of Statistical
Software, Submitted 2014.

[12] M. Dowle, T. Short, S. Lianoglou, A. S. with contri-
butions from R. Saporta, and E. Antonyan, data.table:
extension of data.frame, R package version 1.9.2, 2014.
[Online]. Available: http : / / CRAN . R - project . org /
package=data.table.

[13] K. Hamada, H. Mori, H. Shinoda, and T. M. Rutkowski,
“Airborne ultrasonic tactile display brain-computer in-
terface paradigm,” in Proceedings of the 6th Interna-
tional Brain-Computer Interface Conference, accepted;
in press, Graz, Austria, Apr. 2014. arXiv: 1404.4184
[q-bio.NC].

[14] R Core Team, R: a language and environment for
statistical computing, R Foundation for Statistical Com-
puting, Vienna, Austria, 2013. [Online]. Available: http:
//www.R-project.org/.

[15] M. Ahdesmaki, V. Zuber, S. Gibb, and K. Strimmer,
sda: shrinkage discriminant analysis and cat score vari-
able selection, R package version 1.3.3, 2014. [Online].
Available: http://CRAN.R-project.org/package=sda.

[16] T. Helleputte, LiblineaR: linear predictive models based
on the liblinear C/C++ library, R package version 1.80-
7, 2013.

[17] A. Delorme, EEGLAB and supercomputing appli-
cations using free alternatives to MATLAB, Aug.
2009. [Online]. Available: http : / / sccn . ucsd .
edu/wiki/EEGLAB and supercomputing applications
using free alternatives to Matlab.

[18] J. L. Gustafson, “Reevaluating amdahl’s law,” Commu-
nications of the ACM, vol. 31, pp. 532–533, 1988.

[19] Revolution Analytics and S. Weston, Foreach: foreach
looping construct for r, R package version 1.4.1, 2013.

[Online]. Available: http : / / CRAN . R - project . org /
package=foreach.

[20] R. Analytics, doMC: foreach parallel adaptor for the
multicore package, R package version 1.3.3, 2014. [On-
line]. Available: http://CRAN.R-project.org/package=
doMC.

[21] M. Heath, Hypercube multiprocessors, 1986 : pro-
ceedings of the First Conference on Hypercube Mul-
tiprocessors, Knoxville, Tennessee, August 24-27, 1985.
Philadelphia: SIAM, 1986, ISBN: 0898712092.

[22] D. Eddelbuettel, CRAN task view: high performance
computing in R, May 2014. [Online]. Available:
http : / / cran . r - project . org / web / views /
HighPerformanceComputing.html.

[23] Does MATLAB pass parameters using ”call by value”
or ”call by reference”? MathWorks, Inc., Oct. 2012.
[Online]. Available: http : / / www . mathworks . com /
matlabcentral / answers / 96960 - does - matlab - pass -
parameters-using-call-by-value-or-call-by-reference.

[24] K. Ushey, RcppRoll: fast rolling functions through Rcpp
and RcppArmadillo, R package version 0.1.0, 2013.
[Online]. Available: http : / / CRAN . R - project . org /
package=RcppRoll.

[25] D. Eddelbuettel, Seamless R and C++ Integration with
Rcpp. New York: Springer, 2013, ISBN 978-1-4614-
6867-7.

[26] O. Mersmann, Microbenchmark: sub microsecond ac-
curate timing functions. R package version 1.3-0, 2013.
[Online]. Available: http : / / CRAN . R - project . org /
package=microbenchmark.

[27] H. Wickham, “The split-apply-combine strategy for data
analysis,” Journal of Statistical Software, vol. 40, no.
1, pp. 1–29, 2011. [Online]. Available: http : / / www.
jstatsoft.org/v40/i01/.

http://www.mathworks.com/help/pdf_doc/matlab/matfile_format.pdf
http://www.mathworks.com/help/pdf_doc/matlab/matfile_format.pdf
http://CRAN.R-project.org/package=data.table
http://CRAN.R-project.org/package=data.table
http://arxiv.org/abs/1404.4184
http://arxiv.org/abs/1404.4184
http://www.R-project.org/
http://www.R-project.org/
http://CRAN.R-project.org/package=sda
http://sccn.ucsd.edu/wiki/EEGLAB_and_supercomputing_applications_using_free_alternatives_to_Matlab
http://sccn.ucsd.edu/wiki/EEGLAB_and_supercomputing_applications_using_free_alternatives_to_Matlab
http://sccn.ucsd.edu/wiki/EEGLAB_and_supercomputing_applications_using_free_alternatives_to_Matlab
http://CRAN.R-project.org/package=foreach
http://CRAN.R-project.org/package=foreach
http://CRAN.R-project.org/package=doMC
http://CRAN.R-project.org/package=doMC
http://cran.r-project.org/web/views/HighPerformanceComputing.html
http://cran.r-project.org/web/views/HighPerformanceComputing.html
http://www.mathworks.com/matlabcentral/answers/96960-does-matlab-pass-parameters-using-call-by-value-or-call-by-reference
http://www.mathworks.com/matlabcentral/answers/96960-does-matlab-pass-parameters-using-call-by-value-or-call-by-reference
http://www.mathworks.com/matlabcentral/answers/96960-does-matlab-pass-parameters-using-call-by-value-or-call-by-reference
http://CRAN.R-project.org/package=RcppRoll
http://CRAN.R-project.org/package=RcppRoll
http://CRAN.R-project.org/package=microbenchmark
http://CRAN.R-project.org/package=microbenchmark
http://www.jstatsoft.org/v40/i01/
http://www.jstatsoft.org/v40/i01/



