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Abstract—Drowsy driving accidents can be prevented if it can
be predicted in advance. The present work aims to develop a new
method for predicting a drowsy driving accident based on the fact
that the autonomic nervous function affects heart rate variability
(HRV), which is the fluctuation of the RR interval (RRI) obtained
from an electrocardiogram (ECG). The proposed method uses
HRV features derived through HRV analysis as input variables
of multivariate statistical process control (MSPC), which is a
well-known anomaly detection method in process control. Driving
simulator experiments demonstrated that driver drowsiness was
successfully predicted seven out of eight cases before drowsy
driving accidents occur.

I. INTRODUCTION

According to the traffic accident statistics reported by
Japanese National Police Agency, 17.6% of driving accidents
in 2013 were caused by drowsy driving including falling asleep
at the wheel. To prevent such accidents, an advanced driver-
assistance system that can detect driver drowsiness or predict
drowsy driving accidents and provides a warning would be
effective.

Many drowsiness detection techniques have been proposed.
One method is to use sheet pressure or pulse wave sensors
for driver condition monitoring [1]. However, such sensors
cannot always work due to changes in driving positions.
Another method is to detect the vestibulo-ocular reflex (VOR)
deterioration, which is a sign of drowsiness [2]. Nevertheless,
VOR monitoring is difficult in dark environments because it
is based on image analysis.

Heart rate variability (HRV), which is the RR interval (RRI)
fluctuation of an electrocardiogram (ECG), is a well-known
phenomenon reflecting the autonomic nervous function; thus
driver drowsiness may be detected through analyzing HRV.
Actually, many driver drowsiness detection methods based on
HRV analysis have been proposed. For example, Yanagidaira
et al. proposed a method based on heart rate and HRV
frequency analysis [3]. However, its detection rate was 55%,
and there is room for further improvement. The objective of the
present work is to develop a new method for predicting drowsy
driving accidents based on HRV analysis. The proposed
method consists of two parts: HRV feature extraction from
RRI data of a driver, and drowsy driving accident prediction
by applying an anomaly detection framework to the extracted
HRV features. Multivariate statistical process control (MSPC),
which is a well-known anomaly detection method in process

control, is used for prediction. Driving simulator experiments
were performed to verify the proposed method.

II. HEART RATE VARIABILITY ANALYSIS

HRV reflects autonomic nervous activity, therefore HRV
analysis has been used for stress or drowsiness detection
as well as cardiovascular disease monitoring [4], [5], [6].
This section explains the HRV features used for drowsiness
detection.

A. RR Interval

A typical ECG trace (standard lead II) of a cardiac cycle
consists of some peaks as shown in Fig 1, and the highest
peak is called the R wave. The RR interval (RRI) [ms] is
defined as the interval between an R wave and the next R
wave. A part of raw RRI data collected from a healthy person
is shown in Fig. 2 (a). Since the raw RRI data are not sampled
at equal intervals, the data are interpolated by using spline and
resampled at equal intervals for analysis. Figure 2 (b) shows
the resampled RRI data whose sampling interval is one second.

B. Time Domain Features

The following time domain features are calculated from raw
RRI data [5].

• meanNN: Mean of RRI.
• SDNN: Standard deviation of RRI.
• RMSSD: The root mean square of difference of adjacent

RRI.
• Total power: Variance of RRI.
• NN50: The number of pairs of adjacent RRI whose

difference is more than 50 milliseconds.
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Fig. 1. An example of a typical ECG trace
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(a) Raw RRI data
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(b) Resampled RRI data
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Fig. 2. An example of HRV analysis: (a) raw RRI data, (b) resampled RRI
data and (c) the PSD and its LF/HF

C. Frequency Domain Features

The following frequency domain features are obtained
through a power spectrum density (PSD) of the resampled RRI
data, and the PSD can be calculated by using an autoregressive
(AR) model [5].

• LF: The power in low frequency range (0.04Hz - 0.15Hz)
in a PSD. LF reflects sympathetic nervous system activity
and parasympathetic nervous system activity.

• HF: The power in high frequency range (0.15Hz - 0.4Hz)
in a PSD. HF reflects parasympathetic nervous system
activity.

• LF/HF: Ratio of LF to HF. LF/HF expresses the balance
between the sympathetic and the parasympathetic nervous
system activity.

Figure 2 (c) shows the PSD and its LF/HF of the resampled
RRI data shown in Fig. 2 (b). According to HRV analysis
guideline, RRI data should be measured for at least three
minutes to conduct precise frequency analysis [5].

III. DROWSY DRIVING ACCIDENT PREDICITON

In this section, the description will be made on MSPC
and the procedure of HRV-based drowsy driving accident
prediction.

A. Multivariate Statistical Process Control (MSPC)

MSPC is an useful technique for monitoring multivariate
processes and has been widely used in many processes [7], [8].
MSPC can detect faults that cannot be detected by monitoring
each variable independently, because it models the correlation
among variables with principal component analysis (PCA)
and defines the normal operating condition (NOC) with two
monitored indexes, i.e., the T 2 and Q statistics [9].

It is assumed that a data matrix is given by X ∈ ℜN×M

whose ith row is the ith sample xi ∈ ℜM .

The singular value decomposition of X is described as

X = UΣV T

=
[
UR U0

] [ ΣR 0
0 Σ0

] [
VR V0

]
(1)

where U is the left singular matrix, Σ is the matrix whose
diagonal elements are singular values and V is the right
singular matrix. In PCA, the loading matrix VR ∈ ℜM×R

is derived as the right singular matrix of X and the column
space of VR is the subspace spanned by principal components.
Here, R (≤M) denotes the number of principal components
retained in the PCA model. All variables are mean-centered
and appropriately scaled. The score matrix TR ∈ ℜN×R,
which is a projection of X onto the subspace spanned by
principal components, is given by

TR = XVR. (2)

X can be reconstructed or estimated from TR with linear
transformation VR.

X̂ = TRV
T
R = XVRV

T
R (3)

The information lost by the dimensional compression, that is,
errors, is written as

E = X − X̂ = X(I − VRV
T
R ). (4)

Using the errors, the Q statistic is defined as

Q =

M∑
m=1

(xm − x̂m)2

= xT (I − VRV
T
R )x (5)

where x is a newly measured sample. The Q statistic is the
squared distance between the sample and the subspace spanned
by principal components. In other words, the Q statistic is a
measure of dissimilarity between the sample and the modeling
data from the viewpoint of the correlation among variables.

In addition, to monitor anomaly on the subspace spanned
by principal components, Hotelling’s T 2 statistic is used.

T 2 =
R∑

r=1

t2r
σ2
tr

= xT
i VRΣ

−2
R V T

R xi (6)

where σtr denotes the standard deviation of the rth score tr.
The T 2 statistic expresses the Mahalanobis distance from the
origin in the subspace spanned by principal components. When
the T 2 statistic is small, the sample is close to the mean of
the modeling data. An anomaly is detected when either the
T 2 or Q statistic exceeds the corresponding control limit. An
advantage of MSPC is that a drowsiness detection model can
be constructed by using only normal (awakening) data.



B. Drowsy Driving Accident Prediction Procedure

In the proposed method, drowsy driving is predicted by the
following procedure through integrating MSPC and HRV anal-
ysis. In addition, this procedure is performed per participant.

1) Measure RRI from a driver.
2) Extract HRV features from the measured RRI.
3) Normalize the extracted HRV features with the mean

and the variance.
4) Calculate the T 2 and Q statistics from the normalized

HRV features by using Eqs. (5) and (6).
5) Judge that a drowsy driving accident will occur in the

near feature when either statistic is outside its control
limit.

6) Return to step 1).
In the proposed method, the number of principal compo-

nents and the control limits are tuning parameters.

IV. EXPERIMENT

RRI data and drowsiness level data were collected through
experiments using a driving simulator. In this work, a drowsy
driving accident prediction model was constructed for each
driver to cope with the driver individuality.

A. Data Acquisition

The RRI data and the face image data of experimental
participants (drivers) were collected while driving of a virtual
vehicle on the simulator. Experimental participants drove on
a night loop course for two hours so that they got drowsy.
During experiments, the RRI data were measured by using
an RRI telemetry device [10] and sent to a PC by wireless.
In addition, the face image data were captured by an USB
webcam. The total number of experimental participants was
27. The experimental participants consist of seventeen males
in twenties, eight females in twenties, one female in thirties,
and one female in forties. The Research Ethics Committee of
Shizuoka University approved this experiment and individual
participant consent was obtained.

The drowsiness level was derived from the captured
face image by using an expressional drowsiness estimation
method [11]. First, face images of the experimental par-
ticipants were clipped every twenty seconds from the face
image data. Following an awaking level criterion shown in
Fig. 3, three trained referees evaluated the drowsiness level
independently from the face images sorted in a random order.
Next, the twenty-second evaluation values were given by
averaging evaluations of each referee. Then, by averaging the
consecutive three twenty-second evaluation values, the final
one-minute evaluation values were obtained.

Finally, the RRI data measured from experimental partici-
pants were labeled as the awakening RRI data or the drowsy
RRI data according to the evaluated drowsiness level. In this
work, the awakening condition was defined that the drowsiness
level is less than 2.0.

Two types of datasets, labeled as an accident RRI dataset
or an awakening RRI dataset were constructed. In this exper-
iment, the number of accident RRI dataset was eight because

awareness of sleepiness, resistance to sleepiness 

lo
w

e
ri

n
g

 o
f 

a
w

a
ke

 le
v

e
l

2 subject seems to be a little sleepy, 
but he/she is not aware of it

3 subject seems to be very sleepy, but he/she  does 
not trying to resist sleepiness 

4 subject is about to almost sleep
(he/she sometimes falls asleep) 

1 subject  does not seem to be sleepy at all 

Fig. 3. An awaking level criterion [11]

eight participants had caused drowsy driving accidents. The
RRI data of 20 minutes, from 15 minutes before to five minutes
after an accident, were clipped as an accident RRI dataset. On
the other hand, awakening RRI datasets, which were not used
for modeling, consisted of RRI data of 20 minutes recorded
in the awakening.

B. HRV Features

A rectangular sliding window was applied to RRI datasets,
and eight HRV features described in Sec. II were calculated
within each window. The window size was three min. An AR
model was used to calculate frequency domain features, and its
order was ten. The HRV features extracted from an awakening
RRI dataset and an accident RRI dataset of Participant No.
7 are shown in Figs. 4 and 5. Red vertical lines in Fig. 5
indicate the time the accident occured. These figures show
that some HRV features such as SDNN, Total Power, NN50,
LF and LF/HF in the accident case, are approximately larger
than the awakening case; thus the drowsiness is related to the
autonomic nervous function. However, it is difficult to detect
drowsiness by monitoring respective HRV features because
some features, such as LF and LF/HF in the awakening case
are partially larger than the accident case. Hence multiple HRV
features should be monitored together.

C. Model Construction

The HRV features extracted from the awakening RRI data
of each experimental participant were used for the model con-
struction, and their length was 250 beats (about three minutes).
Only one principal component was adopted in MSPC and the
control limits of the T 2 and Q statistics were determined so
that they represented 80% confidence limits. In other words,
the control limits were set so that 80% of samples representing
the awakening condition were below the control limits and the
other 20% were outside. They were determined by trial and
error.

D. Model Verification

The prosed HRV-based drowsy driving prediction method
was verified through its application to experimental datasets.
The purpose of this verification is to test whether or not
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Fig. 4. HRV features (awakening dataset, Participant No. 7)
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Fig. 5. HRV features (accident dataset, Participant No. 7)

driver drowsiness can be detected prior to an accident by the
proposed method.

Although all eight datasets were tested, only one result of
Participant No. 7 is shown in Figs. 6 and 7. Figure 6 shows
the drowsiness detection result of the awakening data and Fig.
7 shows the result of the accident data. In these figures, the
horizontal dashed lines express the control limits of the T 2

and Q statistics.
The T 2 statistic of the accident dataset exceeded its control

limit continuously before the accident, while that of the
awakening dataset rarely exceeded. However, the Q statistic of
the awakening dataset also partially exceeded its control limit.
This indicates that the Q statistic reacted to HRV features
changes caused by other than drowsiness. Other datasets
showed similar tendency except Participant No. 6. In this case,
the T 2 statistic was large even in the awakening condition.
According to the evaluated drowsiness level of Participant
No. 6, he/she had been drowsy from the beginning of the
experiment, and it was difficult to discriminate the awakening
condition and the drowsy condition. The proposed method
predicted seven out of eight accident cases before the accident.

These results indicate that the proposed method can predict
drowsy driving accidents in advance.

V. CONCLUSIONS

A new method for predicting drowsy driving accident was
proposed by integrating HRV analysis and MSPC. The pos-

Time [s]

100

400 800 1200
0

40

0

Q
T
2

0 400 800 1200

0

Fig. 6. Drowsiness detection results (awakening dataset, Participant No. 7)
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Fig. 7. Drowsiness detection results (accident dataset, Participant No. 7)

sibility of realizing an HRV-based drowsy driving accident
prediction system was demonstrated through the driving sim-
ulator experiments. In the future work, the proposed method
will be realized as a smartphone application.
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