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Abstract—When performing complex analyzes on multivariate
processes, it is often convenient to utilize various types of
visualizations in order to untangle and interpret spatiotemporal
dependencies between mixed information streams, and to per-
form input variable selection. This is particularly advantageous
when a level of noise is high, the target of interest information
stream changes its spatial location with time, and also for spa-
tiotemporal processes where several streams contain meaningful
information, such as in the case of multichannel recordings
of electroencephalogram (EEG) based brain activity monitoring
which is of a core interest in neurosciences.

To provide insight into the dynamics of brainwave steady–
state electrical responses, a sonification of EEG is proposed,
whereby the information about the spatiotemporal steady–state
response dynamics is modeled using a spatial sound reproducing
ambisonics approach.

Owing to its data–driven and fully adaptive mode of operation,
synchro–squeezing transform (SST) is employed as a time–
frequency decomposer, and the brain responses to steady–state
visual evoked responses (SSVEP) stimuli are sonified. Such
perceptual feedback has enormous potential in multichannel
brainwave recording analyzes.

I. INTRODUCTION

This paper proposes to achieve a brain electrical activity
sonification, by converting the brainwave source localization
features of multichannel EEG into sound images, which are
easy to interpret due to their spatial differences. To achieve
this, the recorded from the scalp and the relevant information
signals should be “decoded” from the multichannel EEG.
Spatial sonification of noisy multivariate brainwave signals
is of a core interest in neurosciences and neurotechnology
applications [1], [2], [3] where visual analysis of the com-
plex experimental recordings is not possible anymore. The
brainwave sonification is also very practical in brain-computer
interface (BCI) user feedback design [4], [5]. The motivation
of the presented study is to test the contemporary non–linear
and non–stationary signal separation with the spatial images
creation technique in application to multivariate brainwave
sonification.

Signal processing challenges in the processing of the brain-
wave electrical responses are caused mostly due to the non–
invasive nature of EEG. The problems include the detection,
estimation and interpretation of the notoriously noisy EEG
recordings [6], [7], [8]. The set of enhanced EEG features
should provide sufficient information for a comfortable signal

analysis by human beings; this set should also be large enough
to allow for generalization and cross–user differences in cases
of larger dataset or brain–computer interface applications [3].
An additional challenge comes from the fact that due to the na-
ture of the information processing mechanism within the brain,
the set of features that describes cognitive processes is highly
non–stationary and non–linear. The efficient signal visualiza-
tion engine should be designed so as be real time adaptive
in order to accommodate the temporally non–stationary and
spatially time varying number of “active information streams”
buried in multichannel EEG recordings.

We propose to employ auditory feedback, and thus provide
“visualization” of the brain states in the form of a spatial sound
images, that is, to perform “sonification” of brain electrical ac-
tivity. Perhaps the first commercial application of sonification
has been in Geiger counters, and sonification has since been
considered as an alternative to many standard visualisation
techniques. An earlier approach to sonify brain states was
our previously introduced single channel EMDsonic [1] and
it’s multivariate extension [2]. The two above approaches had
very high computational costs due to iterative nature of the
empirical mode decomposition (EMD) method.

In this paper we make use of the characteristics of hu-
man auditory perception, such as the temporal and phase
resolutions, to provide simultaneous multichannel sonification
of the analyzed EEG. We then analyze the potential of this
audio visualization in the representation and understanding
of spatial distribution of the steady state visual evoked po-
tentials (SSVEP). The feature extraction from brain electrical
responses is performed based on synchrosqueezing transform
(SST) [9] and three–dimensional brain sources reconstruction
methods (based on brain source modeling, coregistration,
forward computation, and inverse reconstruction) implemented
in SPM12 brain imaging package [21]. This can create a new
alternative to the classical visual data representation techniques
when browsing for example the huge amounts of data in search
for certain spatiotemporal patterns.

We have conducted the experiments based on visual stimuli.
The brainwave recording subjects were asked to focus their
attention on simple flashing stimuli, whose frequency is known
to cause a physiologically stable EEG responses [6], [10]. This
makes SSVEP well suited for neurotechnology applications
such as brain–computer/machine interfaces. Next the other
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group of listeners evaluated spatial sonification results by
localizing the sound images representing the previously brain
identified sources in offline analysis approach.

The paper is organized as follows. The synchrosqueezing
transform (SST) is first introduced as a time–frequency analy-
sis technique suitable for the multichannel EEG recordings.
The SSVEP response related features are identified which
allow to create multiple spatially localized sound images
created with three–dimensional brain sources reconstruction
method [21] and next played by 23 loudspeakers spatial
sphere–shaped audio reproduction using ambisonics [12], [13]
environment. Finally, the proposed sonification approach is
illustrated within the SSVEP experimental setting.

II. METHODS

A. Synchrosqueezing Transform–based EEG Preprocessing
and Three–dimensional Brain Sources Modeling

EMD is a technique that aims to decompose a given
univariate [14] or multivariate [15] signals into its building
block functions. Those functions are the superposition of a
limited number of components. The EMD–based techniques
have been already successfully applied to artifacts removal
from EEG [16], [17], [18], [19], [20]. Unfortunately the EMD
algorithm, due to its iterative decomposition nature, is hard
to apply in online brainwave analysis applications. A good
solution for this problem is the synchrosqueezing transform
(SST) method [9], [20]. The SST technique is a combination
of wavelet analysis and reallocation methods.

Before explaining details of the proposed implementation of
SST to SSVEP responses preprocessing and the sonification,
let us review briefly the wavelet and SST techniques. Given
the originally recorded EEG signal s(t), its classical wavelet
transform Ws(a, t) is obtained as

Ws(a, t) =
1√
a

∫ ∞
−∞

s(u)ψ

(
u− t
a

)
du, (1)

where a sets the scale and ψ(u) is the picked wavelet function
(Morlet wavelet has been chosen in the implementation dis-
cussed in this paper). The wavelet transform does not cause
any loosing of any information, so the original signal can be
reconstructed as

s(u) = D−1ψ

∫ ∞
−∞

dt

∫ ∞
−∞

ψ

(
u− t
a

)
Ws(a, t)

da

a2
, (2)

with the constant Dψ determined as

Dψ =

∫ ∞
0

|Ψ(ξ)|dξ
ξ
, (3)

with Ψ(ξ) representing the Fourier transform of the chosen
wavelet function. Usually the both time and frequency (scale)
have the discrete values. Time

tk = kδt = k/fs, (4)

where fs is the sampling frequency of the originally recorded
EEG signal. The scale values are usually chosen to be equi–
log–spaced (dyadic convention, etc.). The wavelet transform

frequency localization at f0 = 1 is often not precise enough
to distinguish the frequencies of different oscillatory compo-
nents so common in the non–stationary and non–linear EEG
recordings. It is possible to increase f0, but that would cause
loss in time resolution, causing that some of the oscillations in
the frequency of a given harmonic to be regarded as a set of
independent harmonics, what is usually a case in the Fourier
transform. The recently proposed SST method [9] permits for
providing a time–frequency representation with much more
precise frequency and time resolutions at the same time. The
above mentioned concept is based first on an identification
of the frequencies f(a, t) for which the phase of the wavelet
coefficient grows for each scale and time:

f(a, t) =
1

2π

δ

δt
arg (Ws(a, t)) , (5)

where arg(·) stands for the phase of the complex coefficient
and the multiplier 1/2π is necessary to convert from circular to
the normal frequency. Once the f(a, t) have been determined
from the analyzed signal, the frequencies fi could be chosen
to form the bins as [f−i , f

+
i ] and the SST can be calculated as

Ts(fi, t) = C−1ψ

∑
j:f−

i <f(aj ,t)≤f
+
i

Ws(aj , t)a
−3/2
j ∆aj , (6)

where ∆aj are the distances between the adjacent scales. The
constant Cψ having meaning of amplitude is defined as

Cψ =
1

2

∫ ∞
0

Ψ(ξ)
dξ

ξ
(7)

with Ψ(ξ) being here again Fourier transform of the chosen
Morlet wavelet transform in the implementation discussed in
this paper. The single channel EEG responses after transforma-
tion to the SST frequency domain as in equation (6) are band-
pass filtered only in the frequency range of SSVEP stimulation,
which allows us to focus only the target oscillations caused
by the steady–state stimulus. The original EEG signal could
be reconstructed from SST to its time domain form simply [9]
as

s(t) = real

(∑
i

Ts(fi, t)

)

=

∣∣∣∣∣∑
i

Ts(fi, t)

∣∣∣∣∣ cos

(
arg
∑
i

Ts(fi, t)

)
. (8)

The very fast implementation of the SST transform and
its inverse as in equations (6) and (8) allows for the very
precise bandpass filtering of the non–stationary and non–linear
EEG. Next the filtered SSVEP responses were transformed
into a template brain model using the three–dimensional brain
sources reconstruction method as implemented in SPM12 [21].
Only the two highest power spatial brain source partial and
limbic locations, as depicted with red color circles in Figure 2,
were sonified in the presented project with ambisonics sound
spatialization method as described in the next section.



Fig. 1. The three–dimensional acoustic field created with 23 loudspeakers
used in this paper with the ambisonics method. The upper circular panel
depicts horizontal distribution of the loudspeakers, while the bottom panel
vertical plane projection. The figure was created from Ambisonics Externals
for MAX/MSP [13] user interface.

B. Ambisonics

Ambisonics is a full–sphere surround sound reproduction
method for rendering three–dimensional acoustic fields [12].
For the encoding step, the synthesized sound and the space
information require a specific loudspeaker set–up (23 loud-
speakers system in this paper as depicted in Figure 1).

The method adopts to use an arbitrary setting of several
independent channels in order to achieve a desired degree
of accuracy. The accuracy is given by the so–called order

of the ambisonic. Moreover, the ambisonics panning [12]
(positioning of a monophonic sources within a stereophonic
image) functions affect all the loudspeakers in the system.
The sum of all the loudspeaker gains equals to one.

Locations of 23 loudspeakers used in the presented study
are depicted in Figure 1. A full sphere setup was used with
eight loudspeakers positioned horizontally at the user’s ear
level. The additional 15 loudspeakers were distributed over
and below the head of the user as shown on lower sphere
graph in Figure 1.

In the ambisonics method in order to generate a sound signal
for a certain loudspeaker at position

Ps = (xs, ys, zs) (9)

of a sound image reproduced at another position

P = (x, y, z) (10)

we multiply it by a transfer function f(θ, p) where θ denotes
an angle between the sound image source (P ) and the loud-
speaker (Ps). In case of the sphere–shaped loudspeaker setup
with a normalized radius of an unity and the sound image
of distance r from the center we can calculate the transfer
function as [12],

f(θ, p) =

(
xxs + yys + zzs + r

2r

)p
, (11)

where p denotes the ambisonic’s order.
The EEG signals were recorded previously in RIKEN

Brain Science Institute, Wako-shi, Japan, under their ethical
committee agreement and only processed offline in the current
study. The modeled brain sources three–dimensional location
coordinates (x, y, z) obtained in the previous section were
entered into ambisonics equation (11) recreating the spherical
sound field (modeling brain space in acoustic modality) as
depicted in Figure 1.

The sonification listening experiments were conducted with
healthy users, who voluntarily agreed to take a part. All
the listening experimental sessions were conducted in the
Life Science Center of TARA, University of Tsukuba, Japan.
The experiments were conducted in accordance with The
World Medical Association Declaration of Helsinki - Ethical
Principles for Medical Research Involving Human Subjects.
The experimental procedures were approved and designed
in agreement with the ethical committee guidelines of the
Faculty of Engineering, Information and Systems at Univer-
sity of Tsukuba, Tsukuba, Japan (experimental permission
no. 2013R7). The offline SSVEP recordings were sonified in
order to visualize in auditory modality the brain processing
locations of the steady–state responses. The listeners evaluat-
ing the sonified and spatialized sound sources were able to
identify the modeled brain source locations (see Figure 2) in
the ambisonics recreated sound field.

III. CONCLUSIONS

We presented the fully spatial sound SSVEP brainwave
response sonification method utilizing the novel SST based



Fig. 2. The brain source reconstructed activity locations as obtained with
three–dimensional brain sources reconstruction method [21]. Only the two
“red circle” depicted sources in parietal and limbic brain areas (as shown
in each of the presented model brain cross–sections) where sonified for the
experimental simplicity in the presented approach.

EEG signals adaptive filtering, the three–dimensional brain
sources reconstruction technique and the final spatial auditory
spatialization with ambisonics approach.

The obtained very encouraging results are a step forward
in the novel multivariate signal analysis and visualization
methods’ development.
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