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Abstract—In this paper we report our approaches to accom-
plishing the very limited resource keyword search (KWS) task in
the NIST Open Keyword Search 2015 (OpenKWS15) Evaluation.
We devised the methods, first, to attain better acoustic modeling,
multilingual and semi-supervised acoustic model training as
well as the examplar-based acoustic model training; second, to
address the overwhelming out-of-vocabulary (OOV) KWS issue.
Finally, we proposed a neural network (NN) framework to fuse
diversified component systems, yielding improved combination
results. Experimental results demonstrated the effectiveness of
these approaches.

Index Terms: speech recognition, low-resource, keyword

search, multilingual training, semi-supervised training, system

fusion

I. INTRODUCTION

Spoken Term Detection (STD) [1] or Keyword search

(KWS) is a task of finding all occurrences of a keyword

in a speech corpus. A common approach for the KWS task

is to first use a speech recognizer to generate intermediate

representations, e.g. n-best transcriptions or lattices, for spoken

utterances; and then index them so that retrieval techniques can

operate on such representations [2]–[8].

Building a keyword search (KWS) [9] system for a given

language demands a lot of human-labeled data for training

the automatic speech recognition (ASR) system. However,

labeling the data is time-consuming and labor-intensive re-

sulting in high development cost. This is particularly true

for low-resource languages, uttered by a small number of

speakers. Therefore, obtaining a decent KWS performance

under very limited resource condition has been a challenge

to the community.

Based on the above scenario, National Institute of Standards

and Technology (NIST) has promoted low-resource language

KWS evaluations in the past years, and the recent evaluation

is the Open Keyword Search 2015 (OpenKWS15) 1. In this

evaluation, NIST has formulated a very limited language pack

(VLLP) condition, in which only about 3 hours of transcribed

speech can be used to build the ASR system. Such challenge

motivates researchers to examine various techniques such

as multilingual or semi-supervised training to improve the

performance of the acoustic modeling.

1http://www.nist.gov/itl/iad/mig/openkws15.cfm

Multilingual training, particularly for the deep neural net-

work (DNN) based multilingual training approach, has pre-

viously been proved to improve the ASR performance for

the low-resource languages. This is because the DNN can be

understood as a cascade of a feature extractor and a classifier.

That is, the lower hidden layers are mainly responsible for

feature extraction, while the soft-max layer is for classification.

If we train the hidden-layers by multilingual data to extract

some shared cross-language features, and keep the soft-max

layer language-dependent, we are thus able to benefit from

multilingual data to prepare the recognizer for a low-resource

target language.

Semi-supervised training is an alternative for acoustic

modeling in low-resource data scenario [10]–[12]. In semi-

supervised training, people try to use ASR results as the

reference to make use of unlabeled data. However, since the

seed model is always built on a very limited transcribed data,

the performance of such model remains much to be desired.

Note that in semi-supervised training, the machine transcribed

data are imperfect, hence data selection becomes critical.

In this paper, our aim is to build both the state-of-the-art

ASR and the KWS systems under the VLLP condition. To

build better ASR system, various techniques are employed.

First, we used 6 languages from previous evaluations, i.e.

OpenKWS13 [13] and OpenKWS14 [14], as rich-resource

languages to build the multilingual DNN systems using the

shared-hidden layer training method [15]. We demonstrated

their effectiveness in terms of both the multilingual bottle-

neck feature (MBNF) and the multilingual DNN-HMM hybrid

systems. Second, we took the multilingual training boosted

ASR systems as seed models to conduct semi-supervised

training, yielding further improved results. Finally, we also

proposed an examplar based acoustic modeling approach,

using the MBNF as front-end feature, and its efficiency under

the VLLP condition was demonstrated.

Since better ASR system does not necessarily lead to better

KWS performance, we aim to improve the KWS results

from two aspects: 1) we attempt to account for the out-of-

vocabulary (OOV) KWS problems through an unsupervised

subword modeling approach; 2) we study a system fusion

method using a neural network (NN) classifier to achieve an

improved fusion result.

This paper is organized as follows. In Section II, we briefly
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TABLE I
THE DISTRIBUTION OF THE SWAHILI ACOUSTIC DATA IN THE VLLP

CONDITION

Acoustic Data Speech data(hour)

Training 3.15
Tuning 3.16

Development 10.65
Unlabeled 87.79

TABLE II
THE DISTRIBUTION OF THE MULTILINGUAL TRAINING DATA

Full Language Pack (FLP) Speech data (hour) Lexicon Size (k)

Cantonese 141.3 20
Turkish 77.2 45
Pashto 78.4 23

Tagalog 84.5 33
Vietnamese 87.7 9.6

Tamil 69.3 69

describle the OpenKWS task. In Section III, we present our

approaches to improving the ASR performance under low-

resource condition. Section IV describes our strategies, i.e.

subword modeling and NN fusion, to improving the KWS re-

sults. Experimental results are presented in Section V. Finally,

Section VI concluses this paper.

II. NIST OPENKWS15 TASK

A. ASR data description

In the NIST OpenKWS15 evaluation for the VLLP task,

participants are given a surprise language that is unknown

until the evaluation date. The surprise language is Swahili this

year. The released data include four data sets, namely Training,

Tuning, Development, and Unlabeled data: 1) The acoustic

data are collected from various real noisy scenes and telephony

conditions. Three hour data is transcribed for training. Besides,

there are 3 hour of tuning data and 10 hour of development

data. 2) No lexicon is provided. 3) Text data for language

modeling is provided by the organizer. The data is collected

from various public available websites. Table I summarizes

the details of the acoustic data. We note that the tuning data

is only used for the ASR system tuning.

The text data contains 84M words altogether. It is used

to establish the lexicon of 350K words in size, and to build

trigram language models. Since Swahili is an agglutinative

language, new words and long words are common, leading

to high OOV rate for a given vocabulary. For instance, even

with the 350K vocabulary lexicon, the OOV rate on the dev

data is still 7.4%. Besides, the pronunciation of each word

is represented as a grapheme string [16]. This is because no

lexicon expertise knowledge is available.

To overcome the data limitation, we use the unlabeled data,

as described in Table I, during a semi-supervised training. In

addition, multilingual training is another intended approach to

making improvement. The detailed distribution of the multi-

lingual data, which is provided by NIST, is presented in Table

II.

TABLE III
THE SUMMARY OF THE KEYWORD LISTS

Statistics dev eval

#KW 2480 4464
KW OOV rate 12.02% 7.07%

#word per keyword 1.54 1.72

B. KWS data description

In addition to the data for training ASR systems, NIST

also provided two sets of keyword (KW) lists to evaluate the

performance of the KWS system. One is the development set,

and the other is the evaluation set. In table III, we summarize

the development (dev) and evaluation (eval) keyword lists

C. Term weighted value metric

To evaluate the KWS performance, NIST defines the term-

weighted value (TWV) which integrates the miss rate and

false alarm rate of each keyword into a single metric [1].

Specifically for a keyword qk we have:

TWV (qk, θ) = 1−
1

Mk

Mk
∑

k=1

((Pmiss(qk, θ) + βPfa(qk, θ))

(1)

where Pmiss(qk, θ) and Pfa(qk, θ) are the probability of miss

and the probability of false alarm of the query qk respectively

with respect to a detection threshold θ. The weight β is related

with the prior probability of a keyword, and the cost ratio

between the false alarm and the miss errors.

Actual term-weighted value (ATWV) is the average TWV

of all keywords at a chosen decision threshold. The Detection

Error Tradeoff (DET) curve is another evaluation metric for

KWS performance [1]. To give an overview of the system

performance, a DET curve visualized the overall performance

of a STD system by plotting the tradeoff between probability

of miss Pmiss versus probability of false alarm Pfa. In this

paper, both ATWV and DET curves are used for performance

evaluation and all results are reported on the development data.

III. APPROACHES TO IMPROVING THE ASR

PERFORMANCE UNDER LOW-RESOURCE CONDITION

In this section, we describe our three approaches to im-

proving the performance of the ASR systems under the

low-resource condition. They are multilingual training, semi-

supervised training and examplar-based acoustic modeling.

A. Multilingual training

In this work, we examine two recipes to exploit the mul-

tilingual training to make improvement on the low-resource

speech recognition as mentioned previously. One is to use

the multilingual DNN (MDNN) to do DNN-HMM acoustic

modeling directly. The multilingual DNN training framework

is the same with [15], [17]. It is illustrated in Figure 1.

Once we finish the MDNN training, we change the soft-

max layer, using the target language. Consequently, MDNN

based cross-lingual transfer is realized by tuning the MDNN

with limited data. Normally cross-entropy training can yield
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Fig. 1. Illustration of the Multilingual DNN training using shared-hidden layer

framework

Fig. 2. Illustration of the procedure of the semi-supervised data generation

improved results, but further improvement can be obtained by

the sequential training [18].

The other approach is to use the multilingual training data

to train a multilingual bottle-neck (MBN) DNN as a feature

extractor. The framework is similar to Figure 1, except that a

hierarchical bottle-neck structure [10], [11], [19] is used.

In all cases, we used 22 dimensional filter-bank features,

plus 3 dimensional pitch features [20]. For the MDNN train-

ing, the window size is 21 frames; for the MBN DNN training,

the window size is 11 frames. Both delta and double-delta

features are appended. Mean and variance normalization are

applied. For details of our multilingual training, readers can

refer to [15].

B. Semi-supervised training

As mentioned in Section I, two factors are critical to the

success of the semi-supervised training. One is to have a

good seed model, and the other is to have an effective data

selection method. In our work, the seed model was obtained

from the multilingual training. For the data selection, a word-

segment based data selection method was employed, using

the confidence score estimated with Minimum Bayes Risk

decoding method [9]. The diagram of the semi-supervised data

generation is illustrated in Figure 2

After the semi-supervised data generation is done, the semi-

supervised training is conducted. The main steps are: 1) retrain

the HMM-GMM system appropriately; 2) redo cross-lingual

training on the multilingual DNNs using the new tied-states

from step 1); 3) fine-tune the DNNs with the supervised data

only.

C. Examplar-based acoustic model

Recently, the kernel density model [21] - a special case of

the exemplar-based approach [22] was applied for acoustic

modeling for low-resource languages. Unlike the parametric

models, the kernel density model is a non-parametric technique

that uses the training samples directly without estimating

model parameters. This allows us to make full use of the

limited training data. To the best of our knowledge, this

approach has not been studied in KWS applications.

In this approach, instead of using a GMM to model the fea-

ture distribution of a triphone tied-state as in the conventional

HMM/GMM acoustic model, we use the kernel density model

similar to the one used in [21], [23]. Specifically, the likelihood

of feature vector ot for speech class i.e. HMM tied-state sj ,

is estimated as follows:

p(ot|sj) =
1

ZNj

Nj
∑

i=1

exp
(

−
||ot − eij ||

2

σ

)

(2)

where eij is the ith training exemplar of class sj , ||ot−eij ||
is the Euclidean distance between ot and eij , σ is a scale

variable, Nj is the number of exemplars in class sj , and Z is

a normalization term to make Eq. (2) be a valid distribution.

From Eq. (2), the likelihood function is mathematically sim-

ilar to a GMM with a shared scalar variance for all dimensions

and Gaussians. Effectively, Eq. (2) puts a Gaussian-shaped

function at each training exemplar and sums all these Gaus-

sians with a normalization factor to the likelihood function.

In Section V-A2 and Section V-B1, we will demonstrate its

advantages over the conventional GMM-HMM system for the

speech recognition and the KWS tasks respectively.

IV. APPROACHES TO IMPROVING THE KWS

PERFORMANCE

Given the improved ASR systems, our next objective is to

achieve the best KWS performance for each single system, and

to fuse those single systems appropriately. One of the major

challenges with the KWS system is how to deal with the OOV

problem, which is particularly pronounced for those agglutina-

tive languages. In this work, we employ the subword modeling

method to alleviate the effect of the problem. Furthermore,

instead of using the conventional system fusion method, we

propose a neural network based system fusion method. In what

follows, we demonstrate the contribution of these two methods

on improving the KWS performance.

A. Subword modeling

A wide range of subword units have been proposed for the

KWS task, including linguistical units such as phones [5], [24],

[25], syllables [26]–[28], as well as data driven units called

morpheme [29], [30], word-fragment [31], multigrams [7],

graphone [32] and particles [33]. It requires expert knowledge

to establish a set of linguistic units for a target language, which
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is not available in our case. As a result, we choose a data driven

subword units, i.e. morpheme, for our KWS systems.

We adopt the unsupervised method to train word seg-

mentation model using Morfessor [34]. Specifically, we first

collect the word-count list to train a segmentation model. Then

such model is used to decompose our word lexicon into a

morpheme lexicon. Since grapheme-based pronunciations are

used in all our experiments, it is straightforward to generate

the pronunciations for each morpheme. Accordingly, we also

used the model to decompose word-based text into morpheme-

based text to build morpheme language models. Note that

as morpheme and word systems share the same phone set,

acoustic model built from the word system is still applicable

to the subword systems.

B. Classifier-based approach for system fusion

It is common that we develop several KWS of different

architectures and combine them together to form a mixture-

of-expert. The way to combine multiple KWS system outputs

is called system fusion. The first step is to align the detections

returned by all KWS systems to find groups of overlapped

detections, denoted as hi where i = 1 ... n, then we merge

hi into a final detection h. Determining the score of the final

detection h is the key issue in view of the variety of different

systems and keywords.

One can use a arithmetic function, such as CombSum or

WCombMNZ as introduced in [35], to estimate the score of

h. However, such rule-based functions are ignorant of the

relationship between the input information and the combined

score. We propose to use a discriminative classifier, i.e. neural

network for the fusion task. In this approach, for each com-

bined detection h, scores of hi as well as other system and

keyword characteristics are taken into consideration to train

the binary classifier. The outputs label 0/1 for the classifier

correspond to the false alarm/correct status of the detection h.

This approach provides a uniform framework to incorporate

various features into the fusion. This work is similar to our

previous study [36] except the feature sets used for fusion.

Specifically, for each detection hi from the ith system, the

following features are extracted:

• Word posterior probability calculated from the ASR lat-

tice output

• The corresponding Keyword Specific Threshold (KST)

score and KST decision, estimated as in [37]

• The corresponding Sum-To-One (STO) score [35] and β-

STO [38]

• The PFA score, and PFA-KST score estimated as in [39]

• The rank of hi in the detections lists of the ith system

• The indicator value to indicate that hi is null or not

In the case that the ith system does not have hi, i.e. hi is

null, those features are set to default values (0 for all features

except the rank feature. For such a feature, since higher rank

denotes less confidence, the default value is 20000).

We also collect a list of global features that capture the

characteristic of the keyword and the detection h:

• Duration of the detection in seconds

TABLE IV
THE EFFECTIVENESS OF THE MULTILINGUAL AND SEMI-SUPERVISED

TRAINING, TAKING THE MONO-LINGUAL TRAINING AS BASELINE

System WER (%)

Monolingual DNN-HMM hybrid 67.9
Multilingual DNN-HMM hybrid 59.7

+ semi-supervised training 55.4
MBNF based DNN-HMM hybrid 56.5

+ semi-supervised training 54.6

TABLE V
THE EFFECTIVENESS OF THE EXAMPLAR BASED ACOUSTIC MODELING

System WER (%)

MBNF based DNN-HMM hybrid 56.5
MBNF based examplar system 54.9

• Number of words of the keyword

• Number of vowel and consonant letters of the keyword

• Speaking rate (i.e. duration/ number of letters)

• Location of the detection h in the utterence (at begining

or middle or at the end).

V. EXPERIMENTAL RESULTS

In this section, we report our experimental results in

OpenKWS15 evaluation. We first report our ASR system

performances with the various techniques as mentioned in sec-

tion III, then we report our KWS performances of individual

system as well as fusion methods.

A. Speech recognition performance

1) Multilingual and semi-supervised training: Table IV re-

veals the effectiveness of the multilingual and semi-supervised

training. The results suggest that: 1) The multilingual training

is very effective to improve the system performance under the

very low-resource (VLLP) condition; it makes 12.0% relative

WER reduction (WERR) over the monolingual baseline (from

67.9% down to 59.7%). 2) Semi-supervised training is still

important to make further improvement. In our two cases,

it realizes 7.2% and 3.4% relative WERRs respectively. 3)

MBNF based system is much better than the fbank feature

based DNN-HMM hybrid system for cross-lingual training,

but after semi-supervised training their gaps get close. This

indicates that semi-supervised training is more effective on

fbank feature based DNN-HMM system.

We note that all systems have used utterance based sequen-

tial training [18], using the VLLP supervised data. For the

MBNF based DNN system, the recipe is similar to [15], where

a 7 hidden layers DNN with 1024 neurons for each layer is

trained, using the MBNFs. For the semi-supervised training,

the best single system (row 3) is employed to transcribe the

unlabeled data.

2) Examplar based acoustic modeling: As shown in Table

V, the examplar based acoustic modeling method outperforms

the DNN-HMM hybrid method. With only supervised training,

the examplar based system has achieved a similar WER as the

semi-supervised trained DNN system, i.e. 54.6% (in Table IV).

Actually, a little bit trick is used for this kind of system. We
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used the logarithmic likelihood scores of the examplar system

as inputs to train another one hidden layer neural network.

Specifically, the neural network taking 1000 features as input

(whose dimension is equal to the number of states of the

examplar system), while its soft-max layer is borrowed from

the conventional GMM-HMM system.

B. Keyword search performance

1) KWS performance for single systems: Table VI presents

the setting and KWS performances of all individual systems,

developed using the techniques in Section III and IV, for

both dev and eval keywords lists. In this table, we denote:

1) Monolingual DNN-HMM hybrid as Mono-DNN; 2) Multi-

lingual DNN-HMM hybrid as MDNN; 3) MBNF based DNN-

HMM hybrid as MBNF; 4) semi-supervised training as STT.

Note that the KWS results, i.e. ATWV, are obtained after

applying the well-known KST normalization that is part of

the Kaldi recipe [40]. Also note that we did not include the

semi-supervised training for MBNF since it only offers little

improvement over the supervised MBNF system.

We observe from Table VI, IV, V that ATWV and WER

performance are highly correlated. Specifically, we can con-

clude that: 1) The both multilingual training recipes, i.e.

MDNN and MBNF, significantly outperform the monolingual

baseline. For example, with the same word-based decoding,

the MDNN (S3) and MBNF (S5) systems achieve 9.0%

(from 0.2917 to 0.3820) and 12.2% (from 0.2917 to 0.4136)

absolute improvement over the baseline Mono-DNN (S1) on

eval keyword list respectively. 2) MBNF based system (S5

and S6) outperform the corresponding DNN-HMM hybrid

system (S3 and S4) 3.2% and 3.3% absolute ATWV on

eval keyword list respectively. 3) Semi-supervised training is

effective for the KWS task. The semi-supervised systems S7

and S8 provide 3.9% and 2.9% absolute improvement over

the corresponding supervised training systems, i.e. S3 and S4,

on dev keyword list. 4) The examplar-based acoustic model

generally outperforms the DNN acoustic model for the same

setting. Specifically, the examplar-based systems (S9 and S10)

outperform the corresponding MBNF system (S5 and S6) from

0.7% to 1.4% absolute ATWV on the two keyword lists.

It can also be seen from Table VI that the subword-

based approach is effective, especially for dev keyword list.

With the same acoustic model training, the subword systems

consistently achieve better ATWV than the corresponding

word-based systems on the dev keyword list. For example, the

subword-based MDNN (S4) outperforms the corresponding

word-based system S3 by 1.6 % absolute ATWV. On the eval

keyword list, the subword approach is worse than the word-

based approach, but this can be explained by the fact that the

OOV rate in eval keyword list is lower than in dev keyword list

(as shown in Table III). In conclusion, the subword approach

is shown to be comparable and complementary with the word-

based approach.

2) The KWS performance of the classifier-based fusion: In

this section, we compare the results of the proposed classifier-

based, i.e. the neural network (NN), fusion with the baseline

TABLE VI
The settings and KWS performances of the baselines and proposed systems

System ID Training method Unit
ATWV

dev eval

S1 Mono-DNN Word 0.2517 0.2917

S2 Mono-DNN Subword 0.2831 0.2878

S3 MDNN Word 0.3333 0.3820

S4 MDNN Subword 0.3493 0.3555

S5 MBNF Word 0.3703 0.4136

S6 MBNF Subword 0.3845 0.3888

S7 MDNN + SST Word 0.3725 0.4090

S8 MDNN + SST Subword 0.3787 0.3920

S9 MBNF + examplar Word 0.3800 0.4205

S10 MBNF + examplar Subword 0.3950 0.4028

WCombMNZ introduced in [35]. Note that we apply the same

KST normalization to the results of the WCombMNZ or the

NN-based methods.

Since the NN is a supervised method and NIST only

provides the reference transcriptions of 10 hours development

(dev 10h) data, we decide to split the dev 10h into two sets:

the first set is about 7h which is used to train the DNN, and

the second set is about 3h to evaluate the fusion. The splitting

procedure follows some rules: the speakers in two sets are non-

overlapped and the speaker’s genders are balanced in both two

sets.

We use the searched results of one keyword to train the NN

classifier, and then test on other keyword list. For example, in

order to test the NN fusion on dev 3h for eval keyword list,

we use the searched results of KWS systems on dev 7h for dev

keyword as the training data. The NN has 2 hidden layers and

each layer has 200 nodes. Table VII shows the ATWV metric

of individual systems (see Table VI for more detail about the

setting of each system) as well as two fusion methods on

the dev 3h. Note that we did not include the two baseline

monolingual systems S1 and S2 into the fusion process since

they are much worse than other systems.

TABLE VII
ATWV metric of individual systems as well as two fusion methods

WCombMNZ and NN on dev 3h data set

System ID
ATWV

dev eval

S3 0.3228 0.3968

S4 0.3185 0.3672

S5 0.3477 0.4003

S6 0.3529 0.3767

S7 0.3507 0.4235

S8 0.3428 0.3772

S9 0.3741 0.4238

S10 0.3726 0.4049

WCombMNZ fusion 0.4399 0.4701

NN fusion 0.4804 0.4971

It can be seen that both fusion methods significantly out-

perform the best single system (S9). Specifically, two fusion

methods outperform the system S9 by 6.5% and 10.6% abso-

lute ATWV on the dev keyword list. This suggests that our
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WCombMNZ and NN on dev keyword list
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Fig. 4. The DET curves of the best single system and two fusion methods

WCombMNZ and NN on eval keyword list

subsystem components are complementary.

The second observation is that the NN fusion outperforms

significantly the baseline WCombMNZ fusion for both key-

word lists: the NN fusion provides 4.1% and 2.7% absolute

improvements over the WCombMNZ for dev and eval key-

word lists respectively. Figure 3 and 4 show the DET curves of

the two fusion methods as well as the best single system, i.e.

the system S9, on dev and eval keyword lists resepectively. It

can be seen that the NN fusion outperforms the WCombMNZ

fusion at the whole region for both keyword lists. This can be

explained by the fact that the NN helps to incorporate various

factors, into the fusion process, hence improves the quality of

the fusion scores.

VI. CONCLUSIONS

In this work, we investigated various strategies for the very

low-resource keyword search task. We first showed that the

multilingual and semi-supervised acoustic model training are

essential for the very limited resource condition in terms of

both the WER and the ATWV result improvement. We also

showed that the proposed examplar-based acoustic model-

ing framework generally outperforms the conventional DNN

acoustic modeling framework in the very limited acoustic data

condition. Furthermore, we demonstrated that the subword

ASR is effective to alleviate the effect of the excessive OOV

keyword search issue and its performance is comparable with

the word-based couterpart. Finally, the results revealed the pro-

posed classifier-based system fusion consistently outperforms

the traditional rule-based fusion approaches.
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