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Abstract—This paper presents a two-pass framework of mis-
pronunciation detection and diagnosis (MD&D) – detection
followed by diagnosis, without the need of explicit error pattern
modeling, so that the main efforts can be devoted to improving
acoustic modeling by discriminative training (or by applying
alternative models like neural nets). The framework instantiates
a set of anti-phones and a filler model in addition to the
original phone model set, and crafts a general and compact
phone error detection network. The detection network guarantees
full coverage of all possible error patterns while maximally
exploits the constraint offered by the text prompt. Specifically, it
includes anti-phones to detect substitutions, filler model to detect
insertions, and skips to detect deletions, so there is no prior as-
sumptions on the possible form of error patterns. The subsequent
diagnosis step expands the detected insertions and substitutions
into phone networks, after which another recognition pass reveals
the true identities of the detected errors. The crux of the trick is
to bring down the modeling and recognition granularity down in
the detection pass. Discriminative training (DT) of the detection
and diagnosis models by minimizing the two expected full-
sequence phone-level errors in the respective passes brings down
the overall phone-level MD&D error by a relative of 40%. In
particular, visualization of models in the framework shows that
discriminative training effectively separates the canonical phones
and their anti-phones.

I. INTRODUCTION

Automatic speech recognition (ASR) technologies hold
much promise for an online computer-aided pronunciation
training (CAPT) platform that can supplement teachers in-
structions with round-the-clock accessibility and individual-
ized feedback. As one of the most useful features of CAPT
platforms, mispronunciation detection refers to locating a
phone that is incorrectly articulated, and involves a binary
decision. Mispronunciation diagnosis proceeds further with the
identification of the actual phonetic production.

Predominant approaches to MD&D extensively exploit the
existing ASR framework in an off-the-shelf manner, e.g.
adopting the forced-alignment, adapting the input features,
expanding the pronunciation dictionary, or post-processing the
ASR scores. Most of the works on phone scoring [1] and mis-
pronunciation detection [2] using ASR do not proceed to mis-
pronunciation diagnosis [3] which is pedagogically necessary
for generating feedback [4] to second-language learners. Those

with mispronunciation diagnosis rely heavily on explicit error
pattern modeling by prior linguistic knowledge (e.g. [5]) or in
a data-driven fashion (e.g. [6]). Error pattern modeling allows
to generate a rich set of possible phonetic error patterns for a
given text prompt. Under the de-facto ASR framework, forced-
alignment with the the pronunciation dictionary populated by
such error patterns helps reveal the true phonetic identities
where mispronunciations are present. The major consideration
behind such paradigm of mispronunciation diagnosis is to
avoid shifting the problem towards the more intractable free-
phone recognition, by properly constraining the search space
in ASR. However, explicit error pattern modeling is not
satisfactory when no prior knowledge is available for a given
L1-L2 language pair or when it is too costly to perform error
pattern derivation with [7] or without [8] labeled non-native
speech. The other risks include failing to include potential
error patterns in the dictionary or overfitting to idiosyncratic
error patterns.

We present an out-of-the-box thinking towards mispronunci-
ation detection and diagnosis on read speech without explicit
error pattern modeling. Imposing no priors on the possible
forms of error patterns means to cover them all, which amounts
to exponentially many variants in the search space. Without
compromising the performance of a far-from-perfect acoustic
model in the intractable search space, the trick is to reduce the
search space by pairing each canonical phone (in the context
of a given text prompt) with an anti-phone which covers the
complementary acoustic space. Recognition in this augmented
network or ‘sausage’ detects phonetic substitutions. Similarly,
insertions and deletions can also be detected by introducing
a filler model and carefully designing the network topology.
Once the insertions and substitutions are detected, a follow-
up step performs free-phone recognition on the segments of
detected insertions and substitutions to identify the actual
phones. Correspondingly, we refine the two sets of HMM-
based acoustic models by discriminative training to minimize
the expected phone errors, which is consistent with the eval-
uation metrics in the detection and diagnosis framework.

The rest of the paper is organized as follows: Section 2
introduces the phonetically-labeled corpus used for acoustic
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model training and evaluation, as well as the unlabeled big
data for analysis; Section 3 explains the two-pass frame-
work; Section 4 introduces the experimental setup, establishes
the baseline acoustic models, compares the discriminatively-
trained acoustic models with those of the baseline and illus-
trates the performance improvement, all on the labeled corpus;
and Section 5 concludes the paper.

II. CORPRA

The Chinese University - Chinese Learners of English (CU-
CHLOE) Cantonese subset consists of 15 hours of prompted
speech recordings from 50 male and 50 female speakers. Pho-
netic transcription is provided and cross-checked by trained
linguists using the CMU ARPABET plus the schwa [ax].
The corpus is divided into training and test sets by speakers.
The 7.3-hour training data contains recordings from 25 male
speakers and 24 female speakers. Correspondingly, the 7.8-
hour test data contains recordings from the other 25 males
speakers and 26 female speakers.

III. THE TWO-PASS FRAMEWORK

A phone substitution is the acoustic deviation from the
canonical production, so it falls in the complementary acoustic
space of the canonical phone. Therefore, to detect phone sub-
stitutions, we model the anti-phones, apart from the canonical
phones. The concept is simple: in addition to fitting the labeled
data belonging to a phone, we directly construct a model
to fit data that do not belong to the phone. The recognition
network is augmented by pairing each canonical phone with
its anti-phone. In this way, each phone is subject to a binary
classification. In the case of phone deletions, one needs to
allow a phone to be skipped. Phone insertions can happen at
every location of a canonical pronunciation, and there can be
multiple instances of insertions at a single location. To capture
insertions, we introduce a universal phone model (UPM) or
filler model which covers all the non-silence phones. The
UPM is padded between each successive phones as an optional
phone loop. The detection network for the example word
“THE” is shown in Fig. 1.
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Fig. 1. Detection network for the word “THE” [th ax]. ‘eps’ stands for a
non-emitting skip, and UPM is short for universal phone model which is also
known as filler model. The anti-phones share a ‘ ’ prefix. ‘sp’ stands for the
word-end short pause.

A recognition pass in the detection network leads to
transcriptions like: [ th ax UPM]. Aligning the canonical
transcription with the recognized transcription indicates the
detection of the following errors: [th] is substituted, and there
is a phone inserted at the end of the word.

One possible pitfall of such design of detection network,
anti-phones and UPM is that the anti-phones may compete
with the UPM as there is overlap between the the acoustic

space spanned by the anti-phones and that by the UPM. So
the two models may compete to gain control over a segment
of frames which is accessible to both of them. The issue shall
be discussed experimentally later.

Once anti-phones and UPMs are found in the transcrip-
tion, mispronunciation diagnosis targets revealing the phone
identities of the detected phone errors. The diagnosis network
is constructed as follows: for each detected substitution of
a canonical phone, it is expanded by all the other possible
canonical phones, and for each detected UPM, it is expanded
by all the possible canonical phones. Suppose the transcription
from the detection is [ th ax], the expanded network for
diagnosis is shown in Fig. 2.
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Fig. 2. A diagnosis network for the word “THE” once a substituted [th] is
detected. Note that [th] does not appear in the arcs.

Compared to the standard free-phone recognition, complex-
ity of recognition in the diagnosis network is greatly reduced.
Even if in the worst case when all the phones are considered
mispronounced and there are multiple phone insertions, the
complexity is still manageable as the maximum length of the
resulting transcription is a number known in advance. Unlike
in standard free phone recognition, pruning is not necessary
any longer and the search can be exact.

IV. EXPERIMENTS

A. Baseline

We extract standard 13-dim MFCC features with delta and
delta-delta. Cepstral mean normalization is performed on a per
utterance basis. There are two sets of HMMs for detection and
diagnosis respectively. The detection HMMs for the canonical
phones and the diagnosis HMMs are built following a standard
‘mix-up’ recipe with maximally 32 mixtures per state. For each
canonical phone, an anti-phone HMM is built from all the non-
silence phone segments that do not belong to the canonical
phone. Similarly, the UPM is estimated using all the non-
silence phone segments.

Performance evaluation in the detection pass requires a tran-
scription which includes anti-phones and UPMs if substitution-
/insertion-type of phone mispronunciations are present. To
convert the manual transcription, we align the manual tran-
scription with the canonical transcription and replace inser-
tions by UPMs and substitutions by their corresponding anti-
phones.

TABLE I
The rates of insertions, deletions and substitutions, as well as the PER of

the baseline detection HMMs.

ins. (%) del. (%) sub. (%) PER (%)
22.41 7.21 16.42 46.03
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The results including the rates of insertions, deletions and
substitutions (normalized via dividing the individual counts
by the total number of non-silence phones), as well as the
PER, all for the baseline detection HMMs on the test set are
shown in Table I. There is an excessive number of insertions
of which 92% are UPMs. This is because the acoustic space
characterized by the UPM and the anti-phones overlap due to
the way they are built. We solve this problem by adding log-
likelihood penalty to UPMs during decoding to penalize them.
The results on the test set are shown in Table II. Attaching
greater and greater penalties to UPMs can significantly reduce
the chance of insertions while at the same time keeps deletions
below a proper level. A good balancing point is around 30.

TABLE II
The rates of insertions, deletions and substitutions, as well as the PER of

the baseline detection HMMs.

penalty 0.3 3 30 300
ins. (%) 21.49 14.11 2.56 1.81
del. (%) 7.24 7.83 8.49 8.63
sub. (%) 16.31 15.43 15.05 15.35
PER (%) 45.04 37.38 26.10 25.79

Based on the transcription out of the detection pass with
the log-likelihood penalty of UPM being 30, we expand them
into diagnosis networks per utterance and perform recognition
using the diagnosis HMMs. The resulting PER is 27.65%. An
oracle experiment is also conducted based on the transcription
of ‘perfect’ detection, which gives a PER of 6.94%. There
is a huge gap between the PER of the two experiments on
diagnosis, which also reflects the poor performance of the
baseline detection HMMs.

B. Discriminative Training of the HMMs for Detection

We generate detection lattices on the training set using the
baseline detection HMMs and the detection network with the
penalty attached to UPM being 30. To control the sizes of
the lattices, a 16-best token passing algorithm is employed
with beam pruning. The HMMs are MPE-trained (minimum
phone error [9]) for 8 iterations with a likelihood smoothing
factor of 0.03. The recognition experiments are done using
a UPM penalty of 30, which gives a PER of 14.93% –
relative reduction by 42.8%. We visualize the first two cepstral
coefficients of the central state of the canonical model of [t]
and that of its anti-model before and after DT in Fig. 3 and
4. The two plots are the respective GMMs’ contour lines.

The anti-model of [t] has been tuned to automatically
capture the modes surrounding the canonical [t] that does not
quite belong to the canonical [t]. Another such canonical/anti-
phone pair on the schwa [ax] is shown in Fig. 5 and 6. For
the pair on [ax], apart from capturing some extraneous modes,
the canonical phone and the anti-phone are separated as much
as they can to reduce the overlap between them.

It is also interesting to note that after discriminative training,
the penalty to UPM in recognition is not effective any longer,
as shown in Table III. To investigate, we visualize the first two
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Fig. 3. The canonical/anti-models of [t], before DT.
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Fig. 4. The canonical/anti-models of [t], after DT.

cepstral coefficients of the central state of the models, before
and after DT, in Fig. 7 and Fig. 8.

TABLE III
PER of MPE-trained detection HMMs with different UPM penalty.

penalty 0.3 3 30
PER (%) 14.91 14.92 14.93

As conjectured, there is a huge overlap between the acoustic
space covered by the UPM and that by the anti-phone of [s]
before DT. DT effectively separates the two spaces covered
by the respective models, which renders the penalty to UPM
unnecessary. The other plausible view is that, since we attach
such penalty when generating lattices, this is conceptually
similar to applying a margin term to the UPM, as done in
“Boosted MMI” [10]. Hence, the UPM is penalized during
discriminative training.

C. Discriminative Training of the HMMs for Diagnosis

We generate diagnosis lattices on the training set using the
baseline diagnosis HMMs and the diagnosis network which is
based on ‘perfect’ detection of errors. To control the sizes of
the lattices, a 32-best token passing algorithm is employed, and
no beam pruning is applied. The HMMs are MPE-trained with
a smoothing factors of 0.03. The oracle experiment based on
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Fig. 5. The canonical/anti-models of [ax], before DT.
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Fig. 6. The canonical/anti-models of [ax], after DT.

the transcription of ‘perfect’ detection is re-rerun, which yields
a PER of 5.22% – 24.8% relative reduction compared to the
6.94% baseline. To test the discriminatively-trained detection
and diagnosis HMMs jointly in the two-pass framework, we
take the detection transcription by the discriminatively-trained
detection HMMs and expand the resulting detection transcrip-
tion into diagnosis networks. The best diagnosis HMMs gives
a PER of 16.48%. Compared to the 27.65% baseline, DT of
the diagnosis HMMs provides a relative reduction of 40.4%.

V. CONCLUSIONS

To achieve mispronunciation diagnosis, previous works tend
to put efforts on error pattern modeling. However, error pattern
modeling faces its own trade-off between under-generation and
over-generation, depending on the sharpness of the acoustic
model. In this paper, we demonstrate a two-pass mispronun-
ciation detection and diagnosis framework without the need
of error pattern modeling so that the main efforts can be
devoted to improving the acoustic models. The framework
provides full coverage of all possible pronunciation error
patterns, while maximally utilizes the constraint offered by
the text prompt to achieve high performance mispronunciation
detection and diagnosis. The crux of the trick is to bring down
the modeling/recognition granularity down in two passes –
starting from a coarse model to a finer one, if the original
goal turns out to be too ambitious.
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Fig. 7. The UPM and the anti-model of [s], before DT.
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Fig. 8. The UPM and the anti-model of [s], after DT.
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