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Abstract—The high demand for genuine honey leads to fraud
practices in the market which have disadvantaged top graded
genuine honey production. The conventional chemical analysis
procedures are usually used to ensure the quality and authen-
ticity of honey. Yet, some drawbacks, such as time-consuming,
laborious, invasive and required complex sample preparation,
in the chemical approaches make the optical spectrum based
honey analysis an advantageous alternative method. This paper
reports a comprehensive survey of peer-reviewed articles in
honey analysis using spectroscopy techniques. The technologies,
features, and preprocessing and prediction methods from the
observed articles have been discussed to give an overview about
optical spectrum approaches for honey analysis. This paper
quickly introduces reseachers to modern honey analysis research.

I. INTRODUCTION

Optical spectrum based food analysis is a modern ap-

proach which provides contact-less, non-invasive, fast, and

fully automatic methods with minimum sample preparation.

Those characteristics give answers to the drawbacks of conven-

tional chemical methods which are time-consuming, laborious

and required complex sample preparations. Optical spectrum,

which can be captured by spectrometers, is basically optical in-

formation showing the energy distribution in a particular range

of wavelengths [1]. Different spectral responses from differ-

ent materials introduce material fingerprints for prediction

purposes. Chemistry analysis methods called chemometrics
usually is used to do the prediction based on multivariate statis-

tics, mathematical modeling and machine learning [2]. The

utilization of chemometrics methods in spectral data makes

superiority of optical spectrum based approaches compared

with conventional methods.

Honey, which is an important commodity in market, has

become a research focus in optical spectrum based analysis.

The high demand of honey makes it a big business in food

industry. Fig. 1 show upward trend of production and price of

honey over years in New Zealand [3]. Indeed, this situation

leads challenges for the honey industry to deliver good quality

honey products.

This paper presents a comprehensive survey in honey

analysis using the spectroscopy techniques and chemometric

through an observation of peer-reviewed scientific journals.

There was 61 papers in total recorded from 1998 to 2015

(Appendix A). The discussion about technology, features and

methods in the honey analysis gives insight to researchers

Fig. 1: Honey production from 1961 to 2011 and producer

prices from 1991 to 2003 in New Zealand.

about state of the art methodologies in optical spectrum based

honey analysis.

II. RESEARCH AIMS IN OPTICAL SPECTRUM BASED

HONEY ANALYSIS

In general, optical spectrum based honey analysis can be

classified into two major groups, which are constituents pre-

diction and types classification. Research aims were recorded

from each research articles to investigate the trend. In case of

more than one objective in an article, all objectives mentioned

in the article would be recorded.

More than half studies were focused to differentiate many

types of honey. Types of honey could be based on its

botanical origin [4–20], geographical origins [15, 16, 21–

27], authenticity (adulterated honey or not) [4, 7, 28–40] and

brand identification [11]. The botanical origin and authenticity

determination were the two most popular research focuses. A

part from types classification, there were also studies which

focused on visualization of the data, such as [5, 41–44].

Almost 40% of the studies investigated constituents pre-

diction, such as Methylyoxal and antibacterial activity [45];

Melissopalynological characteristics and mineral composition

[46], Glucose [43, 47–56], Fructose [47–56], Melezitose [47],

Turanose [47, 52], Maltose [47–49, 51, 52, 55], Sucrose

[48, 49, 51–53, 55–57] electrical conductivity [5, 52, 58],

Pollen vectors [5], rice syrup adulterant [59], sugar syrups

adulterant [60], jaggery syrup adulterant [61], Corn syrup

adulterant [25, 53], High Fructose Corn Syrup (HFCS) adul-

terant [25, 32], invert sugar adulterant [25, 38], inverted beet

syrup (IB) adulterant [32, 40], antioxidant compounds [62],

Tetracycline (drug residues) [63], water content [58], pH

[52, 58], HMF [55, 58], Ash [58], Colour [58], Trehalose
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[52], Isomaltose [52], Erlose [52], Moiseture [52, 54–56],

free acidity [52, 55], Proline [52], Invertase [52], Polarimetric

Parameters [57], cane invert adulterant [40], and Lactone [55].

It can be seen clearly that Fructose and Glucose, which are two

major components of honey [64], were the two most popular

research focuses in the constituent prediction.

III. SPECTROSCOPY FOR HONEY ANALYSIS

Spectroscopy which literally means Ghost Watcher from

Latin and Greek words, gives foundation to the spectroscopic

method and refers to a study related with interaction between

matter and energy [65]. The responses from this interaction

are used to determine a fingerprint of a particular object.

The spectroscopy techniques used in honey analysis are listed

below:

• Ultraviolet (UV), Visible-Near Infrared (VIS-NIR) and

Infrared (IR) spectroscopy

UV, VIS and IR spectroscopies work with a same princi-

ple measuring the energy differentiation when molecules

transit from one vibrational or rotational energy state to

another state as interaction between matter and energy

[65]. A difference among them is in wavelength regions.

The UV spectroscopy works in the UV region which

can be divided into far UV (10-200nm), and near UV

region (200-350nm). The VIS-NIR spectroscopy works

on the visible region (350-800nm) and near infrared

region (800-2500nm). The IR spectroscopy works on the

infrared region which can be divided into three subre-

gions; Near-Infrared (NIR) covered 12, 800−4000cm−1,

mid-infrared (MIR) covered 4000 − 200cm−1 and far-

infrared covered 200 − 10cm−1 [65, 66]. Now days,

Fourier transform (FT) spectrometer is more often used

in Infrared (IR) spectroscopy (FT-IR, FT-NIR or FT-

MIR) than the previous dispersive type spectrometer. The

FT spectrometer has better signal-to-noise ratio, larger

energy throughput, multiplex advantage, and wavelength

precision than the dispersive spectrometer [65, 67]. Atten-

uated total reflectance (ATR) based on internal reflectance

measurement is a sampling technique which is considered

to have faster and simpler sample preparation than others

and also can handle many form of objects including

liquids, semi-solids, polymers, powders, and solids [67].

It is reasonable if a lot of researchers used the ATR-FT

Spectrometer for honey analysis.

• Raman spectroscopy

Raman spectroscopy is a vibrational spectroscopy and

working in a similar wavelength range as the IR spec-

troscopy. Raman and infrared spectroscopy complement

each other. Raman spectroscopy uses symmetric vibration

and infrared spectroscopy uses asymmetric vibrations

[68]. Raman spectroscopy can uses Fourier transform

spectrometer also, which is called FT-Raman, which has

the similar advantages with FT-IR [65].

• Fluorescence spectroscopy

Fluorescence spectroscopy is quiet different with the two

previous spectroscopy methods in terms of principles

and also wavelength ranges. Fluorescence spectroscopy

is related with phenomena of photon emission during

transition of electrons from excited states to ground

states which happens in the ultraviolet-blue-green region

[69]. The fluorescence spectral data is recorded in two-

dimensional data according to the excitation and emission

spectra [70]. The front-face technique is intended to

examine original objects without prior sample preparation

through measuring exiting and emitted light from the

same cuvette face [71].

The survey of the spectroscopy methods is shown in Fig. 2.

Fourier Transform Infrared Spectroscopy dominated with more

than 34% articles and the Near Infrared spectroscopy was in

the second place with more than 26% articles.

Fig. 2: The spectroscopic methods of the 61 studies listed in

Appendix A.

The comparison among all spectroscopic techniques has

not been done for honey analysis. However, Ruoff, Kaspar,

et al. in 2006 wrote three different articles investigated NIR

[17], MIR [16] and Fluorescence spectroscopy [15] to classify

botanical origins of honey using relatively same samples and

methodologies. It can be concluded from direct comparison of

those three paper that the fluorescence spectroscopy was the

best among the others.

IV. PREPROCESSING METHODS

Almost all researchers used preprocessing or pretreatment

techniques prior learning processes. A preprocessing step is

needed because multi or hyperspectral data generally contains

noise. The common data pretreatment methods for optical

spectrum data are baseline correction, scattering correction,

smoothing and normalization.

Standard Normal Variate (SNV) and De-trending (DT)

are the most common baseline correction methods. SNV

tries to eliminate different slopes among samples with same

constituents which may occur because of different particle

size [72]. DT standardizes the spectra responses from offset

and curvilinearity through an elimination using a general

trend which can be calculated with a particular curve-fitting

model [73]. DT can correct the baseline spectra and keeps

the original pattern of particle size characteristic [72]. Other

baseline correction methods are offset method using linear

baseline subtraction and adaptive iteratively reweighted Pe-

nalized Least Square (airPLS) which a complex baseline will
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be approximated using an iterative procedure and smoothness

of the baseline will be determined using a penalty item [74].

airPLS is different from the other methods because it preserves

small peaks.

Multiplicative Scatter Correction (MSC) is the only scat-

tering correction method mentioned in the observed articles.

MSC deals with phenomenon of light scattering which can

lead to wrong spectral responses because of absorbance shift

[75]. MSC uses intercept and slope properties of a linear

regression between a spectrum and an average of an ideal

spectrum form calibration set to correct an original spectrum

[76].

Smoothing can efficiently remove random noise in the form

of small fluctuations because of unknown low frequencies.

Savitzky-Golay (S-G) smoothing fits original data points in a

particular curve [77]. Another way to get a smoother spectral

data is by lowering resolution which the total number of bands

will be reduced by averaging several adjacent bands [43].

Several normalization techniques were mentioned in the

observed articles to enhance original hyperspectral signals.

Area normalization basically calculates a relative area under

a spectra curve to correct spectral data where a path-length

is unknown [78]. The different distances for light to travel

through the object (path-length) will lead to different spectral

responses according to Beer’s law [79]. Autoscaling or unit

variance scaling normalizes major and minor peaks in spectral

data. Spectral data will be divided by a standard deviation

from a training set after a mean-centering process [78]. Vector

normalization is a normalization procedure based on an unit

vector where the mean-centered original spectra is divided by

a square of sum of each band in mean-centered original spectra

squared [80]. Maximum normalization converts each spectral

data in a range of 0 to 1 by dividing the spectral data by the

maximum absolute value of the wavelength responses [81].

Almost half of the observed papers did performance com-

parison among preprocessing methods. However a firm conclu-

sion could not be drawn because different papers used different

set of preprocessing methods and concluded different best

performance methods. It leads that the performance of pre-

processing methods are vary for different samples, instruments

and settings. It is highly recommended that each research work

explores the best pretreatment methods based on their own

configurations.

V. FEATURE SELECTION

Usually, spectral data needs to be transformed into different

features to get better predictive power because the original

spectral normally contains noise or overlapping information.

The common feature extraction strategies in the observed

articles are derivative spectral data, reduced spectral data and

selective spectral data.

The derivative of the original spectral data produces more

sensitive spectral to minor features [82]. The original spectra

could be transformed to the first and second derivative spectral.

Savitzky-Golay (S-G) algorithm is not only very common for

smoothing but also the most common method to approximate

derivative spectral data.

A transformation of spectral data into more compact fea-

tures is also very common because spectral data is a high

dimensional data which most of the recorded values are not

informative or high correlated to each other. The feature

reduction techniques are very important to visualize the data

and also make more robust predictors. Feature reduction tech-

niques used in the observed studies were Principal Component

Analysis (PCA), Partial Least Square (PLS), PARAllel FACtor

analysis (PARAFAC) modeling, and Wavelet coefficient. PCA

has been used by around 80% of the observed articles utilizing

feature reduction techniques. PCA uses the variance as a

measurement for data separation. Actually, higher variance

does not guarantee better discrimination power as depicted

in Figure 3.
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Fig. 3: The projection into PC 2 (36% of variance) has much

better separation than projection into PC 1 (64% of variance).

Another strategy to prepare features is to select the most

related bands to the targeted classes. Spectral selection tech-

niques apparently were not quite popular to be explored. It

may be because there was a firm research about relation

between chemical constituents and related bands. For example,

Glucose is observed at 1145, 1105, 1077, 1047, 1017 and

992 cm−1 [66]. Only four articles utilized feature selection

techniques which are Fisher Ratios [22], PCA [7, 13] and

Marten’s Uncertainty Test [24].

More than 85% of the observed papers did not explore and

compare the performances of features. A few papers which

compared features also concluded the different best features

and some of them had an opposite result. Features exploration

is very important in classification problems which a good

feature will perform very well even with a very basic classifier.

VI. PREDICTORS BASED ON HIDDEN FEATURES

As can be seen from CC (Classification) and R (Regression)

section in Appendix A, predictors based on hidden features
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were commonly used to build prediction models in honey anal-

ysis. These predictors use transformed independent variables

instead of original independent variables, to determine discrete

or continues targeted outputs. Projection of original spectral

data from one to another space might be necessary to reduce

noisy and to omit unnecessary information.

The predictors used in the observed studies were Soft-

Independent Modeling by Class Analogy (SIMCA) which is

based on Principal Components, Linear Discriminant Analysis

(LDA), Partial Least Square (PLS), Canonical Variate Analysis

(CVA), Artificial Neural Network (ANN) and Support Vector

Machine (SVM). The comparison of the methods according

to the number of usages is shown in Figure 4. Indeed, PLS

based predictor has been the most widely successful method

for both regression and classification problems.

Fig. 4: The predictors from the 61 recorded publications.

A same story with exploration of preprocessing method;

there were almost 40% of papers which compared some

predictors. Although most of them concluded that the PLS

method was better than others, the performance of classifier

is highly determined by the characteristics of data which is

affected by samples, instruments and settings. The exploration

of classifier methods for a specific configuration is highly

recommended.

VII. PERFORMANCE EVALUATION

A proper choice of performance evaluation indicators will

firmly convince readers and also be easier to be compared

with other performances. In case of classification problems,

one possible way to report a result is using overall correct

classification accompanied by Cohen’s kappa. Cohen’s kappa

(κ) is a coefficient of agreement between two predictors where

1 is the prefect agreement and below 0 is zero agreement [83].

Others possible measurements are sensitivity and specificity

which measure the portion of positive and negative iden-

tified results in two classes (binary) classification problem.

Sensitivity and specificity can be extended for a multi-class

classification problem as discussed in [84].

In the case of regression problems, common performance

evaluation indicators are correlation coefficient (r) or correla-

tion of determination (r2). r can be explained as an association

between a ground-truth and a predictor’s output which is

from -1 (strong negative correlation) to +1 (strong positive

correlation); 0 means no correlation. r2 can be interpreted

as strength of a linear association or proportion of variable’s

variance that can be correctly predicted.

VIII. CONCLUSIONS

In this paper a survey of technologies, features and methods

for honey analysis based on optical spectrum have been

depicted. The aim of honey analysis can be classified into two

groups. These are: types determination (majority in botanical

origin and authenticity determination) and constituents pre-

diction (majority in Fructose and Glucose prediction). Spec-

troscopy with chemometric has shown promising results for

honey analysis with many advantages over the conventional

methods. FT-IR Spectroscopy has been dominantly used as a

spectral capturing technology. Baseline and scattering correc-

tion have become common pretreatment strategies to ensure

correctness of spectral responses. PCA, as a dimensionality

reduction technique, has been dominating to reduce an orig-

inal spectral for data visualization and increasing predictors’

performances. Performance of prediction methods could not be

directly compared among different studies because it depends

on experimental set ups which are normally different. How-

ever, PLS based predictors have been recorded as successful

predictors in the majority of studies. Finally, the choice of

performance evaluation indicators is very important for the

development of honey analysis research.
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[5] Lidija Svečnjak, Dragan Bubalo, Goran Baranović, and
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