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Abstract—We propose a fast magnetic resonance imaging
(MRI) technique based on the method proposed by the present
authors. The method exploited the combination of full and
compressed sensing. Full sensing is taken at a set period (F-slice)
while high compression rate sensing is applied to the rest of the
slices (C- slice). If we set the F-slice every four slices, three C-
slices are continuously located between two F-slices. We noticed
a tendency, however, that the quality of the reconstructed image
for the center C-slice is the lowest among the three C-slices. To
solve this problem, we adjust the setup of the proposed method
with regards to two aspects. First, we adjust compression rate. We
reduce the sensing rate for the F-slices while increase the sensing
rate for the C-slices. Second, we adjust the F-slice interval. When
we set the F-slice at every two slices, the C-slice is always located
between the F-slices and the distance of the F-slice and C-slice
gets smaller. Thus, we can exploit more correct information to
reconstruct C-slices. Simulation results show the effectiveness of
the proposed method.

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) is now regarded as one
of the indispensable medical modalities. The most significant
issue of MRI is its long imaging time, which makes MRI’s
application areas very restrictive. To reduce the time, great
efforts have been dedicated so far [1], [2]. Recently, the so-
called compressed sensing is established and shown to be
effective for a fast MRI. Compressed sensing is a technique
that enables us to recover sparse or sparsely represented
signals from linear measurements less than a signal dimension.
Recovery is done by minimization of the number of nonzero
entries or ℓ1-norm under the observation constraint [3], [4],
[5]. The framework of this theory perfectly matches and was
successfully applied to MRI [6], [7]. Sparsity found in wavelet
tree structure is also exploited in MR image reconstruction [8],
[9]. These methods exploit sparsity only within each slice.

An MRI normally captures tens or hundred of slices with a
distance of a few millimeters. Then, the neighboring slices are
similar to each other. Such similarity was exploited in image
reconstruction. Dictionary learning is one of such method
[10]. It is, however, computationally expensive. To reduce
the cost, the use of a graphics processing unit (GPU) was
also proposed [11]. The present authors have exploited this
similarity in a different way. Because of the similarity, it
is possible to guess a slice from its neighbors. Further, the
difference of the estimated image from the true image is small
and sparse. Hence, we can reconstruct the difference precisely
using the standard compressed sensing MRI technique. The
present authors have implemented this idea by a combination

of full and compressed sensing [12]. Full sensing is taken at
a set period (F-slice), while compressed sensing with high
compression rate is done for slices (C-slice) between the F-
slices. Then, we can perfectly reconstruct F-slices, which are
used to roughly estimate C-slice images. The estimate is called
a reference image. The difference of the target image from the
reference can be precisely estimated because it is small and
sparse. This method performed better than not only the slice-
by-slice method [6], [7], but also a method that exploits slice
similarity. We noticed, however, through multiple simulations,
a tendency of this method. For example, if we set the F-slice
every four slices, then there are three C-slices continuously
located between two F-slices. Two side C-slices are contiguous
to the F-slices while the center C-slices are apart from them.
As a results, the two side C-slices are reconstructed with a
high quality while the quality of the reconstructed image for
the center C-slice is not so high compared to those for the side
C-slices. To solve this problem, we adjusted the setup of the
proposed method with regards to two aspects. First, we adjust
compression rate. We reduce the sensing rate for the F-slices
while increase that for the C-slices. Second, we adjust the F-
slice interval. When we set the F-slice at every two slices,
C-slice is always located between the F-slices and distance of
the F-slice and C-slice gets small. Thus, we can exploit more
correct information to reconstruct C-slices.

The rest of the present paper is organized as follows. Section
2 formulates the problem of compressed sensing MRI and
quickly reviews conventional approach. Section 3 summarizes
the method proposed in [12] and show the tendency using
simulation results. In Sections 4 and 5, we show that the
performance of the proposed method can be further improved
by adjusting the setup. Section 4 adjusts the compression rate
for each slice while Section 5 controls the F-slice interval.
Simulation results show the effectivness of these adjustments.
Section 6 concludes the paper.

II. COMPRESSED SENSING MRI

To obtain slice images in a non-invasive manner, MRI
applies appropriate magnetic fields to a human body and
resonance signals are observed by sensors. The observed signal
y ∈ RM is the two dimensional discrete Fourier transform
of the slice image x ∈ RN , as y = Fx + e, where F is
the observation matrix, which is the two dimensional Fourier
transform in the present case. The vector e is the observed
noise. If enough observation, such as M ≥ N , is available
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Fig. 1. Combination of full and compressed sensing. Full sensing is applied for
the meshed slice (F-slice), while compressed sensing with high compression
ratio is conducted for the rest of slices (C-slice).

and noise can be ignored, then the inverse discrete Fourier
transform F−1 provides the slice image x. The observation
time for y is proportional to the number of measurements
M . Hence, the less number of measurements we acquire, the
shorter the observation time becomes. If we simply apply
the inverse discrete Fourier transform to the reduced number
of measurements, however, then artifacts like false edges or
blur arise in the reconstructed image. Technology to solve
this problem is compressed sensing [3], which guarantees
that, when a target image is sparse or sparsely represented,
it is perfectly reconstructed from measurements less than the
image dimension. Compressed sensing exploits randomness
in observation. In the present case, the Fourier coefficients
are randomly selected. Let A be the random partial discrete
Fourier transform. Then, the observation process is formulated
as,

y = Ax+ e, (1)

From the random measurements, images are reconstructed by
ℓ1-norm minimization:

x(1) = argmin
x∈RN

∥Ψx∥1 s.t. ∥Ax− y∥2 ≤ ε, (2)

where ε bounds the amount of noise in the data. The sparsi-
fying transform Ψ can be discrete wavelet transform, curvelet
[13], or contourlet [14]. MR images further satisfy a prior
knowledge that total-variation is small. Then, reconstruction
images are obtained by solving the following problem:

x(2) = argmin
x∈RN

∥Ψx∥1 + αTV (x) s.t. ∥Ax− y∥2 ≤ ε, (3)

where α controls the balance between the Ψ-sparsity and the
total variation. Similarly, a solution to the problem

x(3) = argmin
x∈RN

∥Ax− y∥22 + λ1∥Ψx∥1 + λ2TV (x) (4)

is also used for the MRI reconstruction. Here, λ1 and λ2 are
regularization parameters.

III. EXPLOITING NEIGHBORING SLICE SIMILARITY

A multislice MRI captures tens or hundred of slices with
distance of a few millimeters. Then, neighboring slices are
similar to each other. Thus, it is possible to guess a slice from
its neighbors. Further, difference of the estimated image from

the true image is small and sparse. Hence, we can reconstruct
the difference precisely using the standard compressed sensing
MRI technique [7]. The present authors have implemented this
idea by a combination of full and compressed sensing [12].
Full sensing is taken at a set period (F-slice) while compressed
sensing with high compression rate is applied to the rest of the
slices (C-slice). Figure 1 explains a case where full sensing
is taken every four slices, indicated by the meshed ones. We
can perfectly reconstruct the F-slice images because of the full
sensing. Then, these images are used to roughly estimate the
neighboring C-slices. Since the estimate is already of good
quality, its difference from the original image is small and
sparse. Note that this sparsity is in the space domain, not in
sparsified domain. Therefore, there is a possibility that, if we
apply an appropriate sparsifying transform to this difference
image, sparsity can be further promoted.

This idea mentioned above is formulated as follows. A ref-
erence image generated using neighboring F-slices is denoted
by xref . Then, the target slice x is expressed as a sum of the
reference and difference, as x = xref + d. Substituting this
to (1) amounts to

yd = Ad+ e, (5)

where yd = y − Axref , containing only given information.
Since d is supposed to be sparse enough, it can be precisely
reconstructed by the conventional techniques. Here, we adopt
the problem (4), as

d̂ = argmin
d∈RN

∥Ad− yd∥22 + λ1∥Ψd∥1 + λ2TV (d). (6)

Now the problem is converted to the problem of estimating the
difference d given its observation model (5). The final results
is then obtained by the sum of d̂ and xref , as x̂ = xref + d̂.

We show simulation results by the method in [12]. The
data used in this simulation were acquired at Ritsumeikan
University in 2014 with two male healthy patients, say A
and B, of twenty years old using GE 1.5T MRI scanner. This
data set contains 256 x 256 images in the Dicom format. The
pixel resolution is 0.5 mm and the slice distance is 1 mm.
The brain and right arm parts were scanned for the patients
A and B, and 154 and 54 images were obtained, respectively.
Among them, five continuous image sequences were extracted
and used in the following simulations. Programs are run using
Matlab R2013b on iMac with 2.4GHz Intel Core i5 processor
and 8 GB memory.

Figure 2 shows the results obtained by the method. Images
1 and 5 are the F-slices and the rest are C-slices with
compression rate 1/9. F-slices are perfectly reconstructed.
Three C-slices are reconstructed with a high quality. We found
that, however, the center C-slices are reconstructed with the
lowest quality among the C-slices. The main reason of this is
because the center C-slice is the furthest from the neighboring
F-slices and hence the quality of its reference image degrades.
Solving this problem can further improve the performance of
the proposed method. Hence, in this paper, we adjust the setup
of the proposed method in the sense of two aspects.
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Fig. 2. Target image and results obtained by the method in [12]

One is the compression rate, the other is the interval of the
F-slices. The former is discussed in Section IV while the latter
will be discussed in Section V.

IV. MODIFYING COMPRESSION RATE

In this section, we improve the performance of the proposed
method by adjusting the compression rate for the F- and
C-slices. We reduce the sensing rate for the F-slices while
increase that for the C-slices with maintaining the total sensing
rate the same. Since the F-slice is no longer fully sampled, we
call the modified F- and C-slices I- and D-slices, respectively.
The I-slice stands for an Independent slice and it will be
reconstructed independently from other slices as well as the
F-slices. The D-slice stands for a Dependent slice, which is
reconstructed using the neighboring two I-slices.

The I-slices are taken every four slices. Three slices between
them are the D-slices. We adopted the compression rate 1/2
for the I-slices. This means that the compression rate for the
D-slice becomes 5/18 to keep the average compression rate
1/3.

Figures 3 (a) and (c) show simulation results. Even though
I-slices are not fully sampled, the compression rate is not so
severe. Hence, we can reconstruct the slice with high quality
using the standard compressed sensing MRI technique [6].
Indeed, images 1 and 5 (I-slices) are reconstructed with high
PSNRs more than 40dB. The rest are D-slices. The reference
images for D-slices were generated by the linear interpolation
of the reconstructed images for images 1 and 5. PSNRs of the
three D-slices are more than 1dB higher than those in Figure
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Fig. 3. Results obtained by proposed method and Pang et al. [15]

2. The averages of PSNRs for the brain and arm images 1
～ 5 are 42.50dB and 49.12dB, respectively. Figures 3 (b)
and (d) show the results by the method of Pang et al [15]. It
reconstructs images 1 and 4 independently, which we shall call
I-slices. It also reconstructs images 2, 3, and 5 by referring
the adjacent I-slices, which we shall call D-slice. We used
the compression rate 1/2 for the I-slices and 1/4 for the D-
slice. The average of PSNRs for brain and arm image 1 ～ 5
are 40.57dB and 44.99dB, respectively. That is, our approach
results in higher reconstruction quality than the conventional
method. The boxed area is zoomed in Figure 4, in which (a),

(b), and (c) show the target image, result obtained by the
proposed method, and that obtained by the method of Pang
et al. [15], respectively. The image in (c) is rougher than that
in (b). The boundary in the image center in (b) is clearer than
that in (c).

V. MODIFYING I-SLICE INTERVAL

By reducing the sensing amount for the I-slices and aquiring
more measurements for the D-slices, the quality of the recon-
structed images were improved, as is shown in the previous
section. Unfortunately, we still see the tendency that the center
slice is of the lowest quality among the D-slices. Hence, in
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Fig. 5. Results obtained with I-slice every two slices I-slice interval

this section, we reduce the I-slice interval to avoid the center
D-slice problem. That is, we set the I-slice at every two slices.
Each D-slice lies between I-slices adjacently. Since distance
of the I-slices and D-slice is reduced, we can produce a high
quality reference image.

Figure 5 shows simulation results. We adopted the compres-
sion rate 1/2 for the I-slices. This means that the compression
rate for the D-slice becomes 1/6 to keep the average compres-
sion rate 1/3. The average of PSNRs for the brain images 1～
5 is 43.03dB and that for the arm images 1 ～ 5 is 50.63dB.
Hence, the average of PSNRs is better than that in the previous
section even though the PSNR for the arm image 2 got worse.

VI. CONCLUSION

In the method proposed by the authors in [12], there was
a tendency that the center C-slice shows the lowest quality.
To solve this problem, we adjusted the setup of the proposed
method with regards to two aspects. One is the compression

rate. We reduced the sensing rate for the F-slice and increased
that for the C-slice. In this context, we referred the F- and
C-slices as the I- and D-slices. The other is the interval of the
I-slices. We obtained the I-slice every two slices. Since the
quality of the reference image is higher than that before the
reduction of the I-slice interval, the quality of the reconstructed
images became higher and more uniform. One direction to
further improve the performance of the proposed method is
to produce better reference images. To this end, to exploit
anatomical information is one of our future tasks.
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