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Abstract—In recent years, 3D shape objects have spread on the
Internet. Using a 2D photo as a query for 3D shape retrieval is
usually much easier than preparing a 3D shape object or drawing
a 2D sketch. We propose a new method for photo-based 3D shape
retrieval using a so-called “Intrinsic Image.” Intrinsic Image
enables us to separate a given 2D photo into “Reflectance” and
“Shading” images. We have observed that during the separation,
texture information is primarily captured by “Reflectance,” while
shape information is left within “Shading.” After the separation,
we employ Histogram of Oriented Gradients (HOG) to extract
the feature vector from “Shading” images, and apply principal
component analysis (PCA) to obtain robustness against rotation,
which has been the biggest problem of HOG. We conducted
experiments with a commonly available 3D shape benchmark,
compared our proposed method with the previous methods, and
demonstrated that our method outperformed them in terms of
1st-Tier, 2nd-Tier, and P@1.

I. INTRODUCTION

Thanks to the popularity of 3D printers and 3D scan-
ning devices such as Kinect, 3D shape objects have increas-
ingly appeared on the Internet, and have been applied in
many fields including computer-aided design and manufac-
turing (CAD/CAM), computer-aided architecture, computer-
aided medical operation, and entertainment. Re-using existing
3D shape objects allows us to reduce the cost of creating
them from scratch. Hence, efficient management and retrieval
methods have been in great demand.

On the other hand, the multi-modality of the query input
for retrieving 3D shape objects has become more and more
important and diversified. In the past, preparing a 3D shape
object as a query was the only means to search similar objects.
By now, a variety of different ways for queries have been
introduced, including 2D sketches and 3D point clouds [1].
In particular, sketch-based 3D shape retrieval methods have
become popular because of the wide availability of a vast
amount of sketch data through SHREC (Shape Retrieval)
[1, 2]. By the same token, 2D photo-based query has another
potential of adding multi-modality to 3D shape retrieval. An
overview of content-based 3D shape retrieval is shown in
Fig. 1.

In this paper, we focus on a 3D shape retrieval method
from a photo by taking advantage of “Intrinsic Image” de-
composition to extract 3D shape features. Preparing a photo
is as easy as preparing a sketch because we can take pictures
using the smartphones or the tablets equipping the camera. A
photo has more information than a sketch because it has colors,

Feature
Extraction

Dissimilarity
Computation Ranking

Feature Vector

3D shape object

Dissimilarity

Feature
Extraction

Feature Vector

Feature Vector

3D Shape Objects
(Target)

3D shape object

Search Query
3D Shape Objects

(Results)

3D Shape Objects 
and

Feature Vectors

Fig. 1. Overview of content-based 3D shape retrieval

textures, and optical shading information. Although devices
capturing 3D information such as the Kinect are available,
they are usually an expensive way to obtain 3D information if
one attempts to capture data from large objects. This is why
we focus on a photo as the query of 3D shape retrieval. For
simplicity, we assume a photo has a clear background and a
clear-looking object shape with colors and textures.

The difficulty of using a photo as the query for 3D shape
retrieval lies in the fact that most objects have colors and
textures, as well as different surface optical reflections under
different lighting conditions. Recently, so-called “Intrinsic
Images” [3, 4] are drawing attention, which is a technique
to split a photo image into “Reflectance” and “Shading”
components. Ideal “Reflectance” contains colors and textures
with no shading information. In contrast, ideal “Shading”
is supposed to have shape information estimated by gray-
scaled values. Although 3D shape models do not always have
apparent colors or textures, a photo naturally comes with them.

Our main idea in this paper is to extract “Shading” in-
formation by means of an “Intrinsic Image” from a given
2D photo, and to match “Shading” with computer-generated
depth buffer images, hoping to achieve higher accuracy to
search 3D shapes, similar to the object in a photo. We
hypothesize that “Shading” has less texture information than
the original image, and is easier to match with non-textured
3D shape objects. For the feature vector, we adopt the method
proposed by Aono et al. [5], which employs HOG (Histogram
of Oriented Gradients) [6] as features to match depth-buffer
images. Their method suffers from rotational invariance of
HOG, and attempted to alleviate the artifacts by adding 2D
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Fig. 2. Overview of our proposed system for 3D shape retrieval from a photo. Intrinsic Image decomposition is the main
characteristic of the system.

rotated images in advance. In contrast, before extracting HOG
features, we apply PCA to the input photo to solve the problem
of estimating the orientation of the object. We conducted the
experiment to demonstrate the effectiveness of an “Intrinsic
Image,” using the Princeton Shape Benchmark (PSB) [7].

II. RELATED WORK

To our knowledge, Ansary et al. [8] were the first to propose
a photo-based 3D shape retrieval method which employed
Zernike moment features from the silhouette image generated
from 320 views, applied adaptive view clustering, and per-
formed probaility-based dissimilarity computation. Aono et al.
[5] proposed another method for 3D shape retrieval from a
2D photo, based on depth-buffer images for extracting HOG
features and silhouette images for extracting Zernike moment
features. By utilizing depth-buffer images, their method could
capture depth information in a 2D image and achieved higher
search accuracy than Ansary et al. Daras et al. [9] proposed a
3D shape retrieval method which accepted 3D shape objects,
sketch images, and a photo as the search query. Tatsuma et
al. [10] proposed a benchmark data for photo-based 3D shape
retrieval, consisting of 1875 gray-scale photos, one hundred
3D shape objects with 5 different labels, and 100 non-labeled
3D shape objects.

III. INTRINSIC IMAGE BASED 3D SHAPE RETRIEVAL
FROM A 2D PHOTO

We propose a new method for 3D shape retrieval from a
2D photo, taking advantage of Intrinsic Image decomposition.
Intrinsic Image decomposition aims to produce “Reflectance”
and “Shading” which are the “intrinsic” properties of an
image [3, 4]. An ideal “Reflectance” has color and texture
information, but no optical shading information, while ideal

“Shading” has optical shading information with no colors and
textures. Our idea here is to focus on the “Shading” informa-
tion, discarding “Reflectance,” and attempting to extract shape
information from the optical shading information. It should be
noted that previous methods [5, 8] did not consider removing
colors and textures from a photo, often suffering from the
artifacts of colors and textures when matching the 2D image
features with the features extracted from rendered images of
a 3D shape object. The overall flow of our proposed method
is illustrated in Fig. 2. The first step for the conversion from
a 3D shape object to a 2D projected image is performed by
depth buffer rendering. In the following, we describe the other
steps in Fig. 2.

A. Intrinsic Image Decomposition

Initially, the 2D photo image as an input query is assumed
to have not only optical shading, but color and texture in-
formation. The Intrinsic Image technique [4] makes it pos-
sible to isolate this information, and decompose into two
separate images, “Reflectance” and “Shading.” Let R denote
“Reflectance” and S denote “Shading.” The Intrinsic Image
technique attempts to find the optimal R∗ and S∗, satisfying
the following equation:

R∗,S∗ = argmin
R,S

p(R,S|I)

where p is the probability distribution function and I is the 2D
photo image, which satisfies Ii = Ri · Si for pixel i. To find
the optimal R∗ and S∗, the probability distribution function
p proposed by Krähenbühl [11, 12], with a fully connected
conditional random field, has been employed. The example of
a given 2D photo and the “Shading” is shown in Fig. 3.
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Fig. 3. Example of a 2D photo (left) and the “Shading”(right)

B. Image Rotation using PCA

After decomposing a given 2D photo into “Reflectance”
and “Shading,” we wish to generate HOG features from the
“Shading” component. However, since HOG is not robust
against rotation, previous approaches have suffered from the
rotation invariance. For instance, Aono et al. [5] intentionally
generated multiple rotated images to cope with this problem.
We estimate the direction of the image orientation by means
of PCA [13] instead of generating rotated images to achieve
robustness against rotation. It should be noted that PCA is for
estimating the image orientation without a priori learning, not
for reducing dimensionality.

C. Smoothing Image by Gaussian Filter

We also consider removing unintentionally incurred noise
in “Shading” during Intrinsic Image decomposition. To reduce
such noise, we apply smoothing with a Gaussian filter of size
17× 17 before extracting The HOG features.

D. HOG Extraction

After smoothing the image, we extract HOG features. A
HOG feature vector is computed by the following steps:

1) Compute gradient magnitude m and orientation θ
2) Compute an orientation histogram cell by cell
3) Normalize the histogram block by block
4) Concatenate all blocks of histograms into one feature

vector

Gradient magnitude m and orientation θ are defined by fol-
lowing formula:

m(x, y) =
√
fx(x, y)2 + fy(x, y)2

θ(x, y) = tan−1 fy(x, y)

fx(x, y)

where

fx(x, y) = L(x+ 1, y)− L(x− 1, y)

fy(x, y) = L(x, y + 1)− L(x, y − 1)

and L(x, y) denotes the value at the pixel (x, y). The HOG
feature vector tends to be very high dimensional. For instance,
given a 256×256 image, assuming one cell consists of 16×16
pixels, one block has 3×3 cells, the number of the orientations
of gradients is 9, and the total dimension of this HOG feature
vector is 15876(= 32×142×9). In our proposed method, we
adopt 32 × 32 pixels for one cell, 2 × 2 cells for one block,
and 9 bins for the orientation of gradients, resulting in 1764
dimensions in total.

E. 2D-3D Matching

After computing the feature vectors from each 3D shape
object and the input photo, we compute their dissimilarity.
Suppose fI is a feature vector of an input photo I and
fMi (where i = 1, · · · , n) are feature vectors of a 3D shape
object M, where n is the number of viewpoint for rendering.
We define dissimilarity D between I and M as follows:

D(M, I) = min
i=1,··· ,n

d(fI , fMi )

where d is the dissimilarity measure. We choose Manhattan
distance for computing d after trial and error.

IV. EXPERIMENTS AND RESULTS

To demonstrate the effectiveness of our proposed method,
we conducted experiments. We employed the Princeton Shape
Benchmark (PSB) [7] for the 3D shape benchmark data, which
includes 907 models with 92 labels. We selected 20 classes
out of 92 in our experiments. For the input photo data, we col-
lected from the Internet ten images for each class at random.
For simplicity, a noisy background was eliminated manually
when necessary. We evaluated the search performance of our
proposed method using the evaluation measures including 1st-
Tier, 2nd-Tier, P@1, Recall, and Precision. We compared our
proposed method (using “Shading” with Gaussian Smoothing)
with Zernike moment features [8], Fourier spectral features [9],
and composite features of HOG and Zernike moment without
PCA orientation estimation [5]. We set the dimension of the
Zernike moment feature vector to 49 and the Fourier spectral
feature to 1024 by applying a low-pass filter.

To generate the 2D representation of a 3D shape object,
we perform multi-view rendering from 92 views, and pro-
duced a collection of depth-buffer images. Table I summa-
rizes the comparison of 1st-Tier, 2nd-Tier, and P@1 with
PCA. The corresponding Recall-Precision graphs are shown
in Fig. 4. In Table I and Fig. 4, “ZM” denotes the Zernike
moment feature, “FSF” denotes the Fourier spectral feature,
and “HOG(N)+ZM” denotes the composite feature of HOG
and Zernike moment without PCA orientation estimation nor
smoothing by Gaussian filter.

TABLE I
COMPARISON IN 1ST-TIER, 2ND TIER, AND P@1

Method 1st-Tier 2nd-Tier P@1
Proposed 0.3155 0.4177 0.6400
ZM 0.1951 0.2758 0.3750
FSF 0.1969 0.2888 0.4000
HOG(N)+ZM 0.2359 0.3385 0.4500

From Table I and Fig. 4, we demonstrated that our method
(HOG feature with PCA orientation estimation, Gaussian
Smoothing, and “Shading” by Intrinsic Image decomposition)
outperformed other methods.

V. CONCLUSION

In this paper, we proposed a method for 3D shape re-
trieval method from a photo as a query, focusing on the
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Fig. 4. Comparison in Recall-Precision graph

Intrinsic Image technique to decompose the photo image into
“Reflectance” and “Shading.” After extracting HOG feature
from “Shading” image, we applied PCA to achieve rotation
invariance. From the experiments with PSB, we demonstrated
that our method outperformed previous methods for retrieving
3D shapes from a photo.

In the future, we will investigate further the feature extrac-
tion methods to obtain more search accuracy as well as the
fully automatic background elimination methods.
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