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Abstract—We investigated speech recognition methods for
mixed speech and music that only remove music based on non-
negative matrix factorization (NMF). In this paper, we introduced
the Euclidean distance of logarithm spectrumDLOG as a distance
measure for source separation, which may correspond to the
distance measure for speech recognition, and compared it with
such traditional distance measures as the Kullback-Leibler diver-
gence and the Itakura-Saito divergence. We improved the speech
recognition performance by pooling the estimated speech, the
mixed sound, and clean speech to train the acoustic model. For
isolated word recognition with NMF using DLOG, we obtained
an improvement from the baseline. Using the Itakura-Saito
divergence and the “clean multi-condition and noise-adaptive
training model”, we reduced the word error rate of 54.7% relative
from the case of the “multi-condition training model” on average,
from 57.6% to 80.8% word recognition rate.

I. INTRODUCTION

Speech recognition performance is significantly degraded in

noisy environments. In the presence of noise, we must reduce

its influence to improve the performance. The spectral subtrac-

tion and Wiener filter based methods are general techniques

for noise removal. Although both are valid for stationary noise,

they are ineffective for non-stationary noise. In this paper,

we investigate speech recognition in background music that

is comprised of non-stationary signals.

Several music removal methods have been proposed. Inde-

pendent component analysis (ICA) based methods [1] have

been widely used for sound source separation when multi-

channel inputs are available from multiple microphones. Non-

negative matrix factorization (NMF) based methods [2] have

also been used to separate speech and music from a single

microphone. For example, Mesaros et al. divided music into

vocal and instrumental sounds for the recognition of sing [3],

and Raj et al. divided mixed sound into music and speech for

robust automatic recognition of mixed sound [4].

We investigated music removal for input speech with

background music from a single microphone using vector

quantization [5] and NMF, and applied these methods to

the speech recognition of mixed sounds. We improved the

speech recognition performance by music removal through

two methods [6]. However, since music removal based on

NMF requires much computation, it is not practical for real

time applications. Therefore, we proposed a fast calculation

technique of music removal based on NMF [7]. In previous

work [8], for further improvement, we introduced the Itakura-

Saito divergence (instead of the Kullback-Leibler divergence)

to compare the cost function, the dynamics, and the sparseness

constraints of the weight matrix [9] [10].

In this paper, we introduce the Euclidean distance of loga-

rithm spectrum as a distance measure to match the measures

of speech recognition and source separation. We also intro-

duced six types of acoustic model training data combinations

because the model is robust from training with various data

(e.g. different SNRs etc.) and compared them with previous

methods [8].

II. MUSIC REMOVAL BY NMF

A. Nonnegative matrix factorization

NMF decomposes n×m matrix Y into n×r matrix W and

r×m matrix H:

Y ≈WH, (1)

where all the elements of matrices W and H are estimated by

minimizing a cost function under the nonnegativity constraint.

In this paper, Y is the amplitude spectrogram of the observed

signal, Yij is an element of the Y , and WH is the amplitude

spectrogram of the estimated signal, (WH)ij is an element

of the WH . n is the frequency bin, m is the frame size, and

r is the codebook size. We compared the following four cost

functions.

(a) Kullback-Leibler divergence

Kullback-Leibler divergence, which is usually used as a cost

function, is defined as

DKL =
∑

i,j

(

Yij log
Yij

(WH)ij
− Yij + (WH)ij

)

. (2)

Using the following updating rules, H is updated until DKL

converges [2]:

Hkj ← Hkj

∑

i WikYij/(WH)ij
∑

i Wik

, (3)

Omitted the update rule W because not update in this paper.

(b) Euclidian distance

We also use the Euclidian distance to compare the cost

functions and define it as

DEU =
∑

i,j

(Yij − (WH)ij)
2
. (4)
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Using the following updating rules, H is updated until DEU

converges [2]:

Hkj ← Hkj

∑

i YijWik
∑

i Wik(WH)ij
. (5)

(c) Itakura-Saito divergence

The cost function based on the Itakura-Saito divergence is

suitable for speech recognition [8]. It is defined as

DIS =
∑

i,j

(

Yij

(WH)ij
− log

Yij

(WH)ij
− 1

)

. (6)

Using the following updating rules, H is updated until DIS

converges [11]:

Hkj ← Hkj

√

√

√

√

∑

i

Yij

(WH)ij
Wik

(WH)ij
∑

i
Wik

(WH)ij

. (7)

(d) Euclidean distance of the logarithm spectrum

MFCC is typically used as a feature for speech recognition be-

cause the cepstral distance is effective for speech recognition.

The cepstrum’s Euclidean distance equals to the logarithm

spectrum’s Euclidean distance. On the other hand, since the

amplitude spectrum is typically used for NMF, we considered

the evaluation gap between speech recognition and sound

source separation. In this paper, we introduce the Euclidean

distance of the logarithm spectrum as a distance measure for

source separation that is suitable for speech recognition. The

cost function is defined as

DLOG =
∑

ij

(

log
Yij

(WH)ij

)2

. (8)

Using the following updating rules, W and H are updated

until DLOG converges:

Hkj ← Hkj

√

√

√

√

∑

i

Yij

(WH)ij
Wik

(WH)ij
∑

i p(ξi,j)
Wik

Yij

, (9)

Wik ←Wik

√

√

√

√

∑

j

Yij

(WH)ij

Hkj

(WH)ij
∑

j p(ξi,j)
Hkj

Yij

, (10)

p(ξi,j) =
2 log ξi,j

ξi,j
+

1

ξ2i,j
, ξi,j =

∑

k WikHkj

Yij

.

These rules were derived by referring to [13].

B. Sound source separation by NMF

We separate speech and music in the same way as [8]

referring to [12]. Fig. 1 shows an overview of our NMF

method.

Our procedure can be summarized by the following steps:

1) Obtain the basis matrices for speech and music by VQ

and combine them to form W .
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Fig. 1. Overview of music removal by NMF test

2) Create matrix Y from the amplitude spectrogram of the

input sound.
3) Obtain weight matrix H by the iterative updating rule

in Eq.(3), (5), (7) and (9) (W is fixed).
4) Construct a filter from W and H which is obtained by

NMF.
5) Separate speech and music by multiplying the filter to

the amplitude spectrogram of the input signal.

III. COMPARISON OF COST FUNCTIONS

Figures 2 compares of the cost functions. The cost of DIS

exceeds that of DEU and DKL when (WH)ij is larger than

Yij . DEU the same even if estimated signal (WH)ij is smaller
or larger than Yij . In contrast, DKL and DIS and DLOG

impose a more excessive cost if (WH)ij is less than Yij . In

addition, DIS and DLOG give the same cost (either large or

small) of the amplitude because they only depend on the ratio

of Yij to (WH)ij . DLOG costs harder than DIS . We discuss

the effect of each cost function for speech recognition.
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Fig. 2. Comparison of cost functions (Yij = 0.3)

IV. TRAINING ACOUSTIC MODELS

By adding mixed sound and/or estimated speech to clean

speech to train an acoustic model, the remained music not

removed by NMF or the distortion caused by NMF is com-

pensated. We trained acoustic models of speech recognition

with the following training data sets in six ways; (a) Trained

by clean speech : clean model (b) Trained by mixed sound

: multi-condition training model (c) Trained by clean speech

+ mixed sound : clean and multi-condition training model

(d) Training by estimated speech : noise adaptive training

Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

978-988-14768-0-7©2015 APSIPA 28 APSIPA ASC 2015



Fig. 3. Clean model

Fig. 4. Multi-condition training model

Fig. 5. Noise adaptive training model

Fig. 6. Clean, multi-condition and noise-adaptive training model

model[14] (e) Training by clean speech + estimated speech

: clean and noise adaptive training model (f) Training by

clean speech + mixed sound + estimated speech : clean, multi-

condition and noise adaptive training model. Figs. 3, 4, 5, and

6 show the conceptual diagrams of the acoustic model training.

Models (c) and (e) are conventionally used [8], (f) is our new

proposed model, and (a) and (b) are the baseline models.

V. EXPERIMENTS

A. Experimental setup

We experimentally conducted recognition evaluation using

200 isolated words from 20 speakers in the Tohoku University
and Matsushita word speech database [15]. We used 15 speak-
ers for the training and 5 speakers for the test. We used “Piano

trio in G minor Op.8” (piano, violin, cello) as music data

and divided it into training (6min, 30sec) and test parts(3min,

20sec). We also experimented with two jazz pieces: “I’ll close

my eyes” for training (4min, 43sec) and “Bye Bye Blackbird”

for a test(4min, 11sec)) (piano, bass, drums). The audio data

were sampled at 12 kHz in mono-mode. Speech analysis in the
NMF methods was done with a 512 point Hanning window

and a 256 point frame shift. Matrix W , which is the base

vectors, was composed by both the speech and music code

vectors of size 512 constructed using the VQ technique.

We constructed acoustic models for speech recognition as

entire word based HMMs, with 14 states and 8 (clean model)

or 16 (multi-condition and/or noise-adaptive training model)

mixtures of Gaussians (diagonal covariance matrix). As fea-

tures, we used 12 dimensions of MFCCs, their deltas, double-

deltas, delta power, and double-delta power (38 dimensions)

obtained with a 25ms window size and 10ms frame shift.

Music was added to the 1000 (200 words × 5 speakers) words

in the test and training data at 20, 10, 0, and −5 dB SNRs.

We conducted recognition experiments using the four cost

functions and the six acoustic models and compared them.

B. Speech recognition result

Table I shows the speech recognition rate by six acoustic

models and the four cost functions.

1) Comparison of acoustic models: The recognition results

of clean, multi-condition and/or noise-adaptive training mod-

els (c), (e), and (f) outperformed clean model (a) for all of the

distance measures. Similar results were obtained in the vector

quantization method [6] and the FastNMF method [7].

The best performance was obtained by NMF based on DIS

integrated with the clean, multi-condition and noise-adaptive

training model(f). Significant improvement was obtained from

the no processing (mixed sound(c)) (80.8% vs. 57.6% on

average for the piano trio piece). Furthermore, improvement

was obtained by the model (f) from the no processing (mixed

sound(c)) at 20dB (97.4% vs 96.6%), although no improve-

ment was obtained of model (e), which is conventionally

used [8]. Therefore, these results show the effect of adding

mixed sound to the estimated speech to train the acoustic

model.

For NMF based on DKL, the recognition result of the

model (c) without estimated speech outperformed the model

(f). Perhaps this result was caused by the leftover music and

sound distortion. It is different from the distance measure

shown in the next subsection.

A similar tendency was also observed for the jazz back-

ground music.

2) Comparison of cost functions: The NMF based on

DLOG improved the recognition rate by the clean model (a)

for all the SNRs in comparison with no processing (mixed

sound(a)) (45.9% vs 28.8% on average for the piano trio

piece). It also outperformed DKL for high SNRs and in the

all cases using the training style (f).

However, DLOG did not outperform DIS for all cases.

WH’s estimation might be less than Yij because DLOG

imposes a cost faster than DIS when Yij < (WH)ij and is

nearly equal when WH is around Yij , and this might not be

good for speech recognition. Therefore, the best cost function

is both a large cost when Yij > (WH)ij and a small cost

when Yij < (WH)ij . Furthermore, NMF using DLOG can not

estimate signals well because the base vectors are composed

using the VQ technique based on linear spectral. We must

verify the behavior when the base vectors are composed by

NMF. As expected, DEU showed the worst performance.

A similar tendency was also observed for the jazz back-

ground music.

C. Objective evaluation

As an evaluation metric for NMF itself, we used the Source

to Distortion Ratio (SDR) in the spectral domain and Cepstral

Distortion (CD) as follows:

SDR = 10 log10

∑

n,f S
2
n,f

∑

n,f (Sn,f − Ŝn,f )2
(11)
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TABLE I
RECOGNITION RATE - PIANO TRIO - [%]

Training SNRMethod/input
style −5dB 0dB 10dB 20dB ave

(a) 4.0 11.7 53.6 88.0 39.3

(c) 24.2 50.0 88.6 95.7 64.6

NMF DEU (d) 15.0 33.9 73.0 83.9 51.5

(e) 14.0 36.2 76.2 90.3 54.2

(f) 23.5 49.0 85.0 94.3 63.0

(a) 7.1 20.5 64.4 89.2 45.3

(c) 30.4 59.4 91.5 96.3 69.4

NMF DKL (d) 17.0 38.8 72.9 82.2 52.7

(e) 19.1 42.9 80.0 91.7 58.4

(f) 34.5 58.6 88.5 94.9 69.1

(a) 8.2 20.7 73.0 92.6 48.6

(c) 30.2 53.4 90.7 95.7 67.5

NMF DIS (d) 28.4 59.7 87.0 92.4 66.9

(e) 32.8 65.7 92.5 96.4 71.9

(f) 51.4 78.4 95.8 97.4 80.8

(a) 6.9 18.4 66.4 91.7 45.9

(c) 26.3 48.3 85.9 95.5 64.0

NMF DLOG (d) 27.4 55.1 83.4 89.6 63.9

(e) 28.2 57.3 88.6 94.8 67.2

(f) 42.2 67.6 92.0 96.1 74.5

(a) 1.1 2.9 31.4 79.8 28.8

Mixed sound (b) 11.8 30.4 83.4 92.6 54.6

(c) 13.1 33.8 86.9 96.6 57.6

Clean speech (a) 98.8

CD =
1

N

∑

n

√

(

Cx
n,l − Cy

n,l

)2

(12)

where Sn,f is the target signal spectrum, Ŝn,f is the estimated

signal spectrum, Cx
n,l is MFCC of the target signal, Cy

n,l is

MFCC of the estimated signal, n = {1, · · · , N} is the time

frame index, f = {1, · · · , F} is the frequency bin, and l =
{1, · · · , L} is the filter index.

Tables II and III show the SDR and the CD for speech after

music removal, respectively. The SDR of the NMF based on

the DIS or DLOG cost function was worse than the DKL cost

function. Thus, even though SDR is often used as a measure of

speech enhancement, it does not seem to correspond directly

with speech recognition accuracy. On the other hand, the

CD of the NMF based on the DIS cost function was best

performance, followed by DLOG.

TABLE II
SOURCE TO DISTORTION RATIO - PIANO TRIO -

SNRMethod
−5dB 0dB 10dB 20dB ave

NMF DEU 3.03 6.23 10.84 12.96 8.26

NMF DKL 3.97 7.14 12.56 16.07 9.94

NMF DIS 3.50 5.41 9.77 13.00 7.92

NMF DLOG 3.23 4.91 8.77 11.85 7.19

TABLE III
CEPSTRAL DITORTION - PIANO TRIO -

SNRMethod
−5dB 0dB 10dB 20dB ave

NMF DEU 20.93 19.03 15.19 11.42 16.64

NMF DKL 20.16 18.21 14.37 10.91 15.91

NMF DIS 19.80 17.81 13.93 10.66 15.55

NMF DLOG 20.07 18.07 14.07 10.70 15.73

VI. CONCLUSIONS

In this paper, as a music removal method for speech recog-

nition in mixed sound, we introduced the Euclidean distance of

the logarithm spectrum, compared it with other cost functions

using six types of acoustic models, and evaluated them by an

isolated word recognition experiment with 200 words .

Although NMF using the Euclidean distance of the loga-

rithm spectrum obtained improvement from the no processing

of all the SNRs and outperformed the Kullback-Leibler di-

vergence based NMF, it did not outperform the Itakura-Saito

divergence based NMF.

The recognition rate was improved by a training model that

was trained by adding mixed sound and/or estimated speech.

As future works, we plan to do online learning of basis

vectors by semi-supervised NMF so that it can deal with

various music sounds, and voice activity detection under

music and extensions to large vocabulary continuous speech

recognition.
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