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Abstract—In spite of being a compact directional sound device,
the parametric array loudspeaker (PAL) has often been criticized
for its severe nonlinear distortion. In some preliminary studies,
the nonlinear distortion is able to be reduced by using the
linearization system based on Volterra filter identification, which
models the nonlinear sound process of the PAL. However, the
nonlinearity of the PAL changes with the input amplitude.
When the input amplitude is high enough, there is strong high–
order nonlinearity and the 2nd–order Volterra kernel cannot
be accurately identified. Therefore, an improved identification
method of the 2nd–order Volterra kernel is proposed to exclude
the interference from the 4th–order nonlinearity.

I. INTRODUCTION

For daily sounds, such as voices, musics, and noises, the lin-
ear acoustic model generally holds in air and is easy to apply.
However, when a large amplitude ultrasound is propagating,
the nonlinear acoustic effect becomes noticeable. Such a large
amplitude sound wave is often referred to as a finite amplitude
wave in literature [1], [2]. When two finite amplitude waves at
close frequencies coincide, intermodulation frequencies, such
as the sum and difference frequencies, are generated because
of the nonlinear acoustic effects. It is of interest to note that
the sum and difference frequencies travel in a similarly narrow
beam as the finite amplitude waves [3].

Making use of the nonlinear acoustic effect, the PAL was
invented as shown in Fig. 1 [4]. The input is necessarily modu-
lated on an ultrasonic carrier. The sideband provides one finite
amplitude wave and the ultrasonic carrier provides another
finite amplitude wave. Therefore, the difference frequency
recover the input with some distortion. This self-demodulation
process is described by the Berktay’s far-field solution [5].

The modulated input p1(t) is written as

p1(t) = E(t)sinωct, (1)

where E(t) is the envelope function, also known as the prepro-
cessed input; and ωc is the angular frequency of the ultrasonic
carrier. When the ultrasonic pressure is below the threshold for
shock formation, the Berktay’s equation is reasonably accurate
and provides the self-demodulated level as

p2(t) = const× ∂2

∂t2
E2(t), (2)

where the const is determined by the medium and carrier fre-
quency. However, when shock formation occurs, the Berktay’s
equation has to be modified to the form of

p2(t) = const× ∂2

∂t2
|E(t)|, (3)
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Fig. 1. Block diagram of the PAL.

where the square operation has been replaced by the absolute
value [6].

Both the square operation and absolute value are nonlin-
ear functions. They introduce undesired nonlinear distortion.
Previous works are mostly developed based on the Berktay’s
equation in the form of (2). Since 1983, Yoneyama et al.
proposed to use the double sideband amplitude modulation
(DSBAM) in the PAL, where the envelope function was given
by E(t) = 1+mg(t) [4]. m and g(t) denoted the modulation
index and the input, respectively. In 1984, Kamakura et al.
proposed the square root amplitude modulation (SRAM), of
which the envelop function became E(t) =

√
1 +mg(t) [7].

In the next year, Kamakura et al. also proposed to carry out
the single sideband amplitude modulation (SSBAM) [8]. The
SSBAM led to the encouraging low harmonic distortion. In
2013, Ikefuji et al. attempted to combine the DSBAM and
SSBAM in order that the harmonic distortion at the high
frequency band could be reduced and the sound pressure level
at the low frequency band could be improved [9]. Furthermore,
Shi et al. adopted the psychoacoustic approach to retain some
harmonic distortion for reproducing the perceptual bass by the
missing fundamental effect [10].

However, when (3) becomes the acoustic equation instead
of (2), the aforementioned preprocessing methods may not
be so effective as when they were proposed. For this reason,
the linearization system based on Volterra filter identification
is more favorable [11]–[17]. The Volterra filter identification
that models the self-demodulation process of the PAL is able
to adapt to different environments. In general, there are two
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identification approaches. They are the adaptive Volterra filter
and the frequency response method. For example, Ji et al.
used the normalized least mean squares (NLMS) algorithm
to identify the 2nd–order Volterra kernel [12], and Shi et
al. applied the sparse NLMS algorithm in the ultrasound-to-
ultrasound Volterra filter [13], [14].

On the other hand, using the frequency response method,
we have demonstrated the effectiveness of the linearization
system to compensate for both the 2nd–order harmonic and
intermodulation distortion [15]. The implementation of the
Volterra filter requires high computational power. Hence, Mu
et al. introduced the one-dimension Volterra filter that had very
low computational complexity, but the effectiveness for the
intermodulation distortion was likely to be limited [16]. Re-
cently, the parallel cascade structure of the 2nd–order Volterra
kernel was examined by the authors. Reduced computational
complexity and competitive performance were achieved at the
same time [17].

However, the nonlinearity of the PAL changes with the input
amplitude. In our previous experiments, when the input ampli-
tude is high, high–order nonlinearity becomes strong [18]. Par-
ticularly, the 4th–order nonlinearity can introduce significant
errors in the identified 2nd–order Volterra kernel. These errors
in turn degrade the performance of the linearization system.
In this paper, an improved identification method of the 2nd–
order Volterra kernel is proposed to exclude the interference
from the 4th–order nonlinearity.

II. LINEARIZATION SYSTEM BASED ON
VOLTERRA FILTER IDENTIFICATION

The Volterra series is an effective mathematical tool to
model the nonlinear behavior of an unknown system. In signal
processing, the use of the Volterra series is also known as the
Volterra filter [19]. When the Volterra filter is used to model
the self-demodulation process of the PAL, it is often truncated
at the 2nd–order and adopts a finite memory length. Hence,
the nonlinear response of the PAL is written as

y(n) =
N−1∑
k1=0

h1(k1)x(n− k1)

+
N−1∑
k1=0

N−1∑
k2=0

h2(k1, k2)x(n− k1)x(n− k2), (4)

where N is the memory length; x(n) and y(n) are the discrete
input and output signals in the audible frequency range; h1 and
h2 are the coefficients of the 1st–order and 2nd–order Volterra
kernels, respectively.

Figure 2 shows the linearization system of the PAL based
on Volterra filter identification. In Fig. 2, Ĥ2(z1, z2) is the
identified 2nd–order Volterra kernel and H−1

1 (z) is the inverse
filter of the identified 1st–order Volterra kernel. The overall
response of the linearization system and the PAL is thus

x(n)
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Fig. 2. Block diagram of the linearization system based on Volterra filter
identification.

written as[
z−∆ − Ĥ2(z1, z2)H

−1
1 (z)

][
H1(z) +H2(z1, z2)

]
(5)

=z−∆H1(z) (1st–order component)

+z−∆H2(z1, z2)− Ĥ2(z1, z2)H
−1
1 (z)H1(z)

(2nd–order component)

−Ĥ2(z1, z2)H
−1
1 (z)H2(z1, z2). (residual component)

The 2nd–order component of the overall response is further
written as

z−∆H2(z1, z2)− Ĥ2(z1, z2)H
−1
1 (z)H1(z)

= z−∆H2(z1, z2)− Ĥ2(z1, z2)z
−∆

= z−∆{H2(z1, z2)− Ĥ2(z1, z2)}. (6)

When the nonlinear response of the PAL contains only
the 2nd–order nonlinearity, there is no discrepancy between
the 2nd–order nonlinearity of the PAL and the 2nd–order
Volterra kernel identified by the frequency response method,
i.e. Ĥ2(z1, z2) = H2(z1, z2). In this case, the 2nd–order
nonlinear distortion of the PAL can be completely removed
by the linearization system, as implied by (6). However,
when the identified 2nd–order Volterra kernel incurs errors,
the performance of the linearization system is expected to be
degraded.

III. NONLINEAR SYSTEM IDENTIFICATION

A. Frequency Response Method

The frequency response method computes the coefficients
of Volterra kernels from the inverse Fourier transform of the
respective frequency responses [20]. The frequency response
of the 1st–order Volterra kernel is obtained from the ratio of
the output spectrum Y (ω) and the input spectrum X(ω), which
is written as

Ĥ1(ω) =
Y (ω)

X(ω)
. (7)

Subsequently, two sine sweep signals are applied to the PAL
to measure the frequency response of the 2nd–order Volterra
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kernel. The output spectrum Y (ω1 + ω2) is divided by the
input spectra X(ω1) and X(ω2), which is expressed by

Ĥ2(ω1, ω2) =
Y (ω1 + ω2)

X(ω1)X(ω2)

N

α2
, (8)

where α2 denotes the number of symmetries in the frequency
response of the 2nd–order Volterra kernel.

B. Proposed Method
When the input amplitude of the PAL is large enough,

the nonlinear response of the PAL contains more than 2nd–
order nonlinearity. During the identification of the 2nd–
order Volterra kernel, intermodulation frequencies resultant
from high–order nonlinearity overlap in the output spectrum
Y (ω1+ω2). This introduces errors in the identified 2nd–order
Volterra kernel.

For instance, the 4th–order Volterra kernel is written as

H4(ω1, ω2, ω3, ω4) =
Y (ω1 + ω2 + ω3 + ω4)

X (ω1)X (ω2)X (ω3)X (ω4)

N3

α4
,

(9)
where Y (ω1 +ω2 +ω3 +ω4) is the output spectrum; X (ω1),
X (ω2), X (ω3), and X (ω4) are the input spectra; and α4

denotes the number of symmetries in the frequency response
of the 4th–order Volterra kernel.

When the four input spectra are provided by the same sinu-
soid wave, a part of the 4th–order intermodulation distortion
is mistaken as the 2nd–order harmonic distortion, i.e.

Y (ω+ω+ω−ω) = α4H4 (ω, ω, ω,−ω)X (ω)
3
X (−ω) /N3,

(10)
where ω denotes the frequency of the sinusoid wave; and
α4 = 4 in this specific case. Hence, the output spectra of the
2nd–order harmonic distortion Y (ω + ω) and the 4th–order
intermodulation distortion Y (ω + ω + ω − ω) are overlapped
as

Y (2ω) = H2 (ω, ω)X (ω)
2
/N

+ 4H4 (ω, ω, ω,−ω)X (ω)X (ω)X (ω)X (−ω) /N3.
(11)

An improved identification method is proposed to separate
the 2nd–order harmonic distortion and the 4th–order intermod-
ulation distortion. It is assumed that when there is perturbation
in the input amplitude, the change in the nonlinearity of
the PAL is negligible. It is validated in the later experiment
results that this assumption holds when the input amplitude is
relatively large.

Two sine sweep signals with different amplitudes are input
to the PAL in sequence. Based on (11), two simultaneous
equations are obtained as[

X(ω)2/N 4X(ω)3X(−ω)/N3

X ′(ω)2/N 4X ′(ω)3X ′(−ω)/N3

] [
H2 (ω, ω)

H4 (ω, ω, ω,−ω)

]
=

[
Y (2ω)
Y ′(2ω)

]
, (12)

where X(ω) and X ′(ω) are the input spectra with different
power; Y (2ω) and Y ′(2ω) are the corresponding output spec-
tra. The solution to the simultaneous equations in (12) leads

 Microphone

   PAL

Sound Card

   Sound proof room

   Power Amplifier

Microphone Amplifier
   (a) Picture of the PAL.

AT9912

AT-MA2

AT-HA2

Audio-technica

Audio-technica

Audio-technica

Fireface UC

RME

Fig. 3. Experiment setup.

to the separation between the 2nd–order harmonic distortion
and the 4th–order intermodulation distortion. Moreover, the
amplitude difference between the two sine sweep signals needs
to be selected carefully. It has to be sufficiently large to ensure
(12) a nonsingular problem and sufficiently small to keep the
aforementioned perturbation assumption valid.

IV. EXPERIMENT RESULTS

Experiments were carried out to examine the performance of
the linearization system based on Volterra filter identification
upon varying input amplitudes. The input voltages of the PAL
ranged from 0.05 V to 0.25 V with an interval of 0.05 V.
The experiment setup was shown in Fig. 3. The PAL was
placed 3.0 m from the microphone. The sampling frequency
was chosen at 16000 Hz. The sine sweeps were generated
from 31.25 to 2000 Hz to identify the Volterra kernels. Both
the 1st–order and 2nd–order Volterra kernels were obtained
by the conventional frequency response method in the first
place. Then, the proposed method was carried out to refine the
2nd–order Volterra kernel. The tap length of 1st–order Volterra
kernel was 512 and the dimension of the 2nd–order Volterra
kernel was 512 × 512.

Identification accuracies of the frequency response method
and the proposed method are compared by the performance of
the linearization system. The compensation amounts for the
2nd–order harmonic distortion are plotted in Fig. 4. By using
the frequency response method for Volterra filter identification,
the performance of the linearization system degrades when the
input amplitude becomes large, as shown in Fig. 4(f). This is
because that the large input amplitude leads to strong high–
order nonlinearity and yields the identified 2nd–order Volterra
kernel with noticeable errors. However, when the input am-
plitude is small, the perturbation in the input amplitude may
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(a) Input voltage = 0.05 V
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(b) Input voltage = 0.10 V
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(c) Input voltage = 0.15 V
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Fig. 4. Experiment results of the linearization system upon different input amplitudes.

change the nonlinearity of the PAL. Therefore, the proposed
method cannot lead to better performance of the linearization
system when the input voltage is 0.05 V.

Moreover, Figs. 5 and 6 show the total harmonic distortion
(THD) and second harmonic ratio (SHR) curves before and
after compensation. The THD level and SHR are defined as

THD =

√
T 2
2 + T 2

3 + T 2
4

T 2
1

× 100 [%] (13)

and
SHR =

T2

T1
× 100 [%], (14)

where Ti represents the amplitude of the ith–order harmonic
component. The THD level is approximated by calculating up
to the 4th–order harmonic component in this paper.

In Fig. 5, the THD level before compensation increases with
the input amplitude. This is similar to the observation when
the modulation index increases [21]. The proposed method
is able to reduce the THD level by 10% more than the
frequency response method, when the input voltage is higher
than 0.05 V. But when the input amplitude is very low, the
proposed method is relatively not effective. In Fig. 6, the SHR
before compensation increases slower with respect to the input
amplitude, as compared to the THD level before compensation
in Fig. 5. This validates the existence of more than 2nd–
order nonlinearity in the PAL when the input amplitude is

large. The proposed method helps the linearization system
based on Volterra filter identification to reduce the 2nd–order
harmonic distortion of the PAL effectively, when the high–
order nonlinearity is not negligible.

V. CONCLUSION

In this paper, the 2nd–order harmonic distortion of the
PAL were compensated for by the linearization system based
on Volterra filter identification. When the input amplitude
of the PAL was relatively large, the Volterra filter identified
by the frequency response method incurred errors. This was
explained by the existence of high-order nonlinearity that
overlapped the 4th–order intermodulation distortion into the
identified 2nd–order Volterra kernel. An improved method was
therefore proposed. Experiment results demonstrated that the
proposed method was very effective to deal with large input
amplitudes of the PAL. It is known that large input amplitudes
result in large output sound pressure levels. If the nonlinear
distortion can be well controlled by the proposed method,
a breakthrough of the PAL is expected to make loud sound
output while still achieve good sound quality.
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