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Abstract—This paper proposes an audio watermarking scheme
based on singular-spectrum analysis (SSA) and differential evolu-
tion. In our framework, a watermark is embedded into an audio
signal by modifying the amplitude of some oscillatory components
which are decomposed by SSA, and a parameter set for the
modification is determined by differential evolution. Test results
showed that, although there is a trade-off between inaudibility
and robustness, the sound quality of watermarked signal could be
improved considerably while the bit error rate could be satisfied.
Our proposed scheme is inaudible and robust. Furthermore,
based on analyzing the second derivative of singular spectrum,
it was found that our proposed scheme can be completely blind.

I. INTRODUCTION

The popularity and convenience of multimedia transfer via
the Internet recently raise public concerns about authentica-
tion, copyright management, copy control, and the like. Be-
sides encryption techniques, another potential solution solving
the problems is to use watermarking, which is a technique of
making information unnoticeable [1]. The media interested in
this work is audio. To deal with such concerns we propose
a novel and effective audio-watermarking scheme based on
singular-spectrum analysis (SSA) and differential evolution.

In general, there are five requirements for an audio-
watermarking scheme [2]. (1) Inaudibility: human auditory
system should not be able to detect a watermark. (2) Ro-
bustness: it is an ability to protect a watermark when attacks
are applied to a watermarked signal. (3) Blindness: it is a
property of extracting hidden information from a watermarked
signal without the original signal in extraction processes. (4)
Confidentiality: it is a property of concealment of hidden data.
(5) Capacity: quantity of information embedded in the original
signal. Naturally, these requirements conflict each other’s. The
high capacity, for example, implies low robustness [2]. Based
on our survey, most published results showed trade-offs of
these requirements.

There have been several audio watermarking techniques pro-
posed by researchers, and different techniques were proposed
with different objectives. For example, Fallahpour and Megias
[2] focused the work on large capacity while keeping inaudi-
bility in an acceptable range. Unoki and Hamada [3] proposed
an audio watermarking scheme based on cochlear delay char-
acteristic of human ears. The concept of this proposed scheme
is that human auditory system cannot distinguish between a
normal sound and the sound that is almost the same except
some of its low frequency components are delayed. It is in-
audibility and robust, however, it is non-blind. We can classify
all published audio watermarking techniques into two groups:
the first one based on human perceptual model, e.g. [2]-[5],
and another based solely on mathematical manipulation, e.g.
[6]-[21]. This research investigated the latter, especially the
techniques relying on singular value decomposition (SVD),
i.e. a mathematical method of extracting algebraic features
called singular value. It was shown experimentally that SVD-
based audio watermarking has a lot of advantages [6]-[21]. The
advantages are basically derived from properties of singular
values, such as invariance of singular values under common
signal processing, i.e. if small modification occurs in the
original signal represented by a matrix, its singular values
will vary very slightly [8]. When the hidden information is
embedded into the singular values, therefore, this property
of singular values makes the SVD-based techniques robust
against common signal processing attacks.

Based on our survey, all SVD-based watermarking tech-
niques [6]-[22] embed information by making small changes
to singular values according to a watermark bit and embedding
rules. Some techniques modify only the largest singular value
[12][13][18]. Some techniques modify all singular values
[14][16][20]. Robustness of the latter is a bit better than that
of the former. Also, there is the technique that modifies a
group of small singular values [21]. This technique is said
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to be fragile audio watermarking for application such as
tempering detection. Most SVD-based techniques are non-
blind [6][12][17], a few are blind [10][14][20]. Lamarche et al.
had pointed out that the robustness of some non-blind methods
is subject to high false positive rate [22]. To avoid such a
problem, we focused our work on the blind technique.

Recently, we proposed an audio watermarking scheme based
on singular-spectrum analysis (SSA) [23], which is one of
the SVD-based watermarking techniques, and demonstrated
benefits of deploying SSA over SVD. Our embedding rule
was very simple. We force an interval of singular values flat,
and there are two levels of flatness according to a watermark
bit as shown in Fig. 1. Since it is core technique of this work,
it is described briefly in Section II.

The test results showed that the proposed scheme satisfied
imperceptibility criterion and was robust against many attacks,
such as MP3 and MP4 compression, band-pass filtering,
and re-sampling. The objective evaluation of sound quality
of watermarked signal from our previous method was very
good, however, when subjective tests were used to evaluate,
some clips had quite low subjective difference grade (SDG).
We analyzed the singular spectrum of the poor-SDG clips
and discovered that a singular-value gap between modified
and unmodified singular values of those clips, during the
embedding process, is larger than some threshold value as
illustrated in Fig. 2. This large gap is the cause of perceptual
distortion. According to the singular-value-modification rule
of our previous work, singular values are modified based
on a predetermined set of parameters. Since the singular
spectrum varies from clip to clip, it is reasonable to justify
that the parameter set depends upon the clip as well. Therefore,
adaptive parameters are needed in order to reduce the sound
distortion of watermarked signal due to embedding.

There are three approaches to achieve this adaptive param-
eters. First, analyzing the singular-spectrum pattern. From our
exploratory investigation, the pattern of singular spectrum of
an audio frame itself could be used to adjust the parameter set.
Second, combining a psychoacoustic model to the scheme. To
follow this approach, it is necessary that physical meaning
of singular value is known so as to establish a complete
link between singular value and the model. In SSA-based
framework, as discussed in [23], singular values could be
interpreted their physical meanings. Last, optimal parameters
are obtained by using an artificial intelligence approach. In this
work, the third approach is focused and explored to improve
the performance of SSA-based audio watermarking scheme.

II. PREVIOUS FRAMEWORK

Our previous framework consists of two main processes:
embedding and extracting, which are detailed as follows.

A. Embedding Process

The embedding process is shown in Fig. 3 (left). Our method
used singular-spectrum analysis as the main tool in hiding
information. Singular-spectrum analysis (SSA) is a powerful
technique of identifying and extracting useful information,

e.g. oscillatory components, seasonality components, or trends,
from a signal [24], and it can be used for solving various prob-
lems such as finding trends of different resolution, extraction
of periodicities with varying amplitudes, and finding structure
in short time series [25]. There are many types of SSA. Our
proposed scheme is based on the basic SSA. The embedding
process consists of four following steps.

1) Segmentation and Trajectory Matrix Formation: First, an
audio signal is segmented into several non-overlapping frames.
Then, trajectory matrices X of size L×K representing each
frame X = (f0, f1, ..., fN−1)

T of length N are created.

X =


f0 f1 f2 · · · fK−1

f1 f2 f3 · · · fK
f2 f3 f4 · · · fK+1

...
...

...
. . .

...
fL−1 fL fL+1 · · · fN−1

 (1)

Each column vector of X is called lagged vector, and a
lagged vector Xi is defined as Xi = (fi−1, fi, ..., fi+L−2)

T ,
where i = 1, 2, ...,K, and L is a window length with 2 ≤
L ≤ N . Therefore, the matrix X consists of K lagged vectors,
[X1X2...XK ]. Since the lagged vector Xi is constructed by
a one-sample lag of Xi−1, the element xi,j is equal to the
element xi−1,j+1, where xi,j is an element at ith row and jth
column of X. From this property, we say that the trajectory
matrix X is a Hankel matrix.

2) Singular Value Decomposition: After obtaining the tra-
jectory matrix X, we perform SVD to it. SVD is used to
decompose a matrix X into a product of three matrices U,
D, and V with the following relationship.

X = UDVT , (2)

where U and V are orthogonal matrices, and D is a diagonal
matrix whose element is called singular value.

Let {
√
λ1,
√
λ2, ...,

√
λd} denote a set of singular values of

the matrix X in descending order, called singular spectrum of
X, where λi for i = 1, 2, ..., d is the eigenvalue of XXT (or
XTX) and d = argmaxi(λi > 0). The trajectory matrix X can
be rewritten as

X = X1 + X2 + ...+ Xd, (3)

where Xi=
√
λiUiV

T
i . Note that the expansion (3) is uniquely

defined if and only if all eigenvalues are distinct. Each Xi
represents a simple oscillatory component of the signal X .
Therefore, the singular value can be interpreted as a scaling
factor of each simple oscillatory component [23].

3) Singular Value Modification: To hide information, one
bit of a watermark will be embedded into one frame by
modifying singular values according to certain rule, i.e., physi-
cally, the amplitude of some oscillatory components connected
with those singular values will be changed. Given a singular
spectrum of X, the rule can be summarized as follows.

If the watermark bit is “0”, then
√
λu+1,

√
λu+2, ..., and√

λl−1 are replaced with
√
λl + ε · (

√
λu −

√
λl), and if the
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Fig. 1: (a) Singular spectrum, (b) its modification after embedding “1”, and (c) its modification after embedding “0”.

Fig. 2: Singular spectrum of a poor-SDG, watermarked frame.

Fig. 3: The embedding (left) and extracting (right) processes.

watermark bit is “1”, then
√
λu+1,

√
λu+2, ..., and

√
λl−1

are replaced with
√
λl + (1 − ε) · (

√
λu −

√
λl) given that ε

is a real positive number ∈ [0, 0.5], and
√
λu is greater than√

λl, or, in other words, u < l.

In our experiments, we set u = 20, l = 50, and ε = 0.1.

4) Hankelization and Segment Reconstruction: After mod-
ifying singular values with regard to the rule, the modified
matrix is transformed into a new series of length N by
reversing SVD or hankelization operation.

The hankelization of matrix Y of size L×K to a series
Y = (g0, g1, ..., gN−1)

T is defined as follows.

gk =



1
k+1

k+1∑
m=1

y∗m,k−m+2 0 ≤ k < L∗ − 1

1
L∗

L∗∑
m=1

y∗m,k−m+2 L∗ − 1 ≤ k < K∗

1
N−k

N−K∗+1∑
m=k−K∗+2

y∗m,k−m+2 K∗ ≤ k < N,

(4)

where L∗ =min(L,K), K∗ =max(L,K), y∗ij = yij if L <
K, and y∗ij = yji if L ≥ K. In our proposed method, Y is
a watermarked matrix, which is a trajectory matrix after its
singular values are modified with respect to a watermark bit.
The series Y is a watermarked frame. Finally, the watermarked
signal is obtained by combining those frames.

B. Extracting Process

The extracting process is shown in Fig. 3 (right). As in the
embedding process, the watermarked signal is segmented into
several non-overlapping frames. Then, each frame is mapped
to a trajectory matrix. To extract singular values, SVD is used.

Then, the watermark bit is decoded by determin-
ing the value of

√
λm, where

√
λm is the median of

{
√
λu+1,

√
λu+2, ...,

√
λl−1}. If

√
λm is closer to

√
λu than

to
√
λl, the watermark bit is “1”. Otherwise, the watermark

bit is “0”.

III. IMPROVED FRAMEWORK

The main structure of improved framework is the same
as the previous framework. However, there are two major
differences which involve singular-value modification and the
extracting rule. As mentioned in Section II, the embedding rule
obviously has three important parameters (u, l, and ε) which
affect sound quality of watermark signal and robustness of
the scheme. To improve inaudibility and robustness simulta-
neously, we deploy differential evolution to find the optimal
parameters. The details are as follows.

A. Differential Evolution-based Singular Value Modification

Differential evolution is a parallel direct search method
that optimizes a problem by iteratively improving candidate
solutions with regard to an objective function and some
constraints. It is a member of evolutionary algorithm which is
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a subset of evolutionary computation in artificial intelligence.
It proved to be the fastest search method in this family [26].

Differential evolution utilizes NP D-dimensional parameter
vectors xi,G, called target vector, where i = 1, 2, ...,NP as
a population for generation G. The algorithm consists of
four processes as illustrated in Fig. 4. First, the initial vector
population {xi,1} is generated randomly, and it should cover
entire parameter space. In the case that a priori knowledge
(or a preliminary solution) is available, members of the first
population might be generated by adding normally distributed
noise to the preliminary solution. In our experiment, we used
the parameter set from [23] as the preliminary solution.

Second, for each target vector xi,G, a mutant vector vi,G+1

is created by the following formula.

vi,G+1 = xr1,G + F · (xr2,G − xr3,G), (5)

where r1, r2, and r3 are randomly chosen from {1, 2, ...,NP}
and mutually different, and they must be different from the
index i as well. This condition makes the minimum number
of members of population is four. F is a user-defined factor
ranging from 0 to 2. It controls the convergence by scaling the
difference of two vectors. Note that NP in the differential evo-
lution is constant, it does not change during the evolutionary
process.

Third, a trial vector ui,G+1 is generated by using a pair of
the target vector xi,G and its mutant vector vi,G+1.

ui,G+1 = (u1i,G+1, u2i,G+1, ..., uDi,G+1) (6)

uji,G+1 =

{
vji,G+1 if (randb(j) ≤ CR) or j = rnbr(i)
xji,G otherwise,

(7)
where randb(j) is the jth evaluation of a uniform random
number generator with result ∈ [0, 1]. CR is the user-defined
crossover constant ∈ [0, 1]. A large CR speeds convergence.
rnbr(i) is chosen randomly from {1, 2, ..., D} which ensures
that the trial vector ui,G+1 will get at least one parameter from
the mutant vector vi,G+1.

The fourth process in differential evolution cycle is selec-
tion. The trial vector ui,G+1 is compared to the target vector
xi,G by using a greedy criterion to decide which vector will be
a member for next generation G+1. If a cost value of ui,G+1

is smaller than that of xi,G, then xi,G+1 is set to ui,G+1;
otherwise, xi,G+1 retains the same vector xi,G. Differential
evolution strategy, therefore, has NP competitions in one
generation. After all NP members for generation G+1 are
obtained, mutant vectors of members of this generation will
be generated by the mutation process again. The evolutionary
cycle of mutation, crossover and selection iteratively continues
until a stopping criterion is reached, and the solution is the
vector from the last generation that yields the lowest cost.

The optimization deployed in our proposed scheme is shown
in Fig. 5. The cost function is defined as follows.

Cost Value =

√
α
(

LSD +
(
1− Sig (SER)

))2
+ βBER

2
,

(8)
where LSD, Sig(SER) and BER are the log-spectral distance
(LSD), the sigmoid function of signal-to-error ratio (SER) and
the average bit-error rate (BER), respectively.

LSD is defined as the following formula given P (ω) and
P̂ (ω) are power spectra of original and watermarked signals
respectively.

LSD =

√√√√√ 1

2π

π∫
−π

[
10 log

P (ω)

P̂ (ω)

]2
dω (9)

Based on our previous work, we conducted listening tests
with 30 normal-hearing subjects. The SDG scores are shown in
Table I. We found that, in our work, the relationship between
SDG and LSD is stronger than that between SDG and the
objective difference grade (ODG). Specifically, we can predict
the perceptually-annoying-SDG if LSD is greater than 0.35
dB. Based on this finding, we decide to use LSD instead of
ODG in (8).

SER is the power ratio between a signal and the error. Given
amplitudes Aorg(n) and Awmk(n) of original and watermarked
signals respectively, SER is defined as follows.

SER = 10 log

∑
n

[Aorg(n)]
2

∑
n

[Aorg(n)−Awmk(n)]
2

(10)

The equations (9) and (10) imply that the lower LSD, the
power spetrum of a watermarked signal is more similar to that
of an original, and the higher SER, the lower error. It is clear
that we want to minimize LSD and to maximize SER. From
our previous results [23], SER was greater than 0. Therefore,
we presume that (1−Sig(SER)) is positive. In short, the term
LSD + (1− Sig(SER)) in (8) represents inaudibility.
BER is the average of BER, the number of error bits divided

by the total number of embedded bits. Thus, it represents
robustness of the scheme.

Two user-defined constants α and β are weighting factors
with α+β = 1 which control balance between inaudibility
and robustness. The ideal cost value is zero, and the zero-cost
value is our stopping criterion. In our experiment, there was
three parameters that we want to optimize, hence the number
of dimension of parameter vector, D, was 3. We set the other
parameters for differential evolution as follows: α = β = 0.5,
NP = 10D = 30 (as suggested in [26]), F = 0.8, CR = 0.7,
and the maximum iteration was 20. That is, if we cannot reach
zero cost, the evolution cycle will stop after 20th iteration.

B. New Extracting Rule

In the previous work, we used only one singular value,
which is the median of modified singular values, to decode an
embedded bit. In this work, we used all information of singular
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TABLE I: Comparing LSD, ODG, and SDG of watermarked signals from our previous method. (The numbers in the first row
show the track number of twelve host signals used in the experiment.)

#01 #07 #13 #28 #37 #49 #54 #57 #64 #85 #91 #100

LSD 0.21 0.22 0.11 0.45 0.23 0.41 0.27 0.46 0.23 0.53 0.35 0.37

ODG 0.20 0.19 0.20 0.18 0.19 0.18 0.19 0.18 0.20 0.04 0.19 0.18

SDG -1.00 -0.72 -1.10 -2.27 -1.05 -1.30 -0.85 -1.83 -1.39 -1.25 -2.22 -2.93

Fig. 4: Differential evolution processes.

Fig. 5: Differential evolution optimization.

values on [u+1, l−1] to predict the watermark bit hoping
to get a better result. We discover that when we reconstruct
a watermarked frame and analyze its singular spectrum, the
flatness resulting from rounding up or down of a sequence
of singular values, according to the embedding rule, becomes
distorted as shown in Fig. 6. However, the distortion shows
patterns, as illustrated in Fig. 7. That is, if singular values
on such a range is rounded down toward the lower bound, a
convex upward curve is obtained; or else, a concave downward
curve. Therefore, in this improved framework, we proposed
to use concavity and convexity of singular spectrum on such
interval to predict the watermark bit by the following scheme.

All singular values on [u+1, l−1] are fitted on a degree-
two polynomial, y(x) = ax2 + bx + c where y is singular
value and x is index of the singular value. The coefficient a
of this quadratic formula has played an important role as it
indicates the rate of change of the singular values. Thus, a
sign of coefficient a of the polynomial can be used to predict
the watermark bit. That is, a minus sign indicates concavity

Fig. 6: Example of singular spectra in embedding and detec-
tion processes in proposed method: (a) when embedding “1”
and (b) when embedding “0” in the embedding process, (c)
singular spectrum of the frame embedded “1” and (d) singular
spectrum of the frame embedded “0” in the extracting process.

or bit “1”, and a plus sign indicates convexity or bit “0”. An
example of polynomial fitting is shown in Fig. 8, where the
watermark bit “1” is embedded into a frame by forcing the
singular values on [18, 32] toward the upper bound, the 17th
singular value.

In this work, we assume to know u and l because, at this
stage, our goal is to improve the sound quality. However, as we
will discuss in Section V, this set could be extracted blindly
and automatically from singular spectrum.

IV. EVALUATIONS

Twelve host signals from RWC music-genre database (Track
No. 01, 07, 13, 28, 37, 49, 54, 57, 64, 85, 91, and 100)
were used in our experiments. These tracks were used in 2012
IHC audio watermarking competition. All has a sampling rate
of 44.1 kHz, 16-bit quantization, and two channels. Ninety-
bit payloads per 15 seconds are embedded into the host. We
compare our proposed approach with our previous work [23]
and the conventional SVD-based approach [8]. We chose [8]
as our reference for two reasons. One, it is one of a few
blind SVD-based techniques, and, second, the result from [8]
is promising.

The perceptual evaluation of audio quality (PEAQ) and
LSD were used to measure the objective sound quality of
watermarked signal. PEAQ measures the degradation of the
watermarked signal being evaluated comparing with the orig-
inal and covers a scale from −4 (worst) to 0 (best). LSD is a
distance measure between two spectra, as defined in (9).

For robustness evaluation, six attacks were applied to water-
marked signals: Gaussian-noise addition with average SNR of
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Fig. 7: (a) On the interval [u+1, l−1], the singular spectrum
curve is concave downward if bit “1” is embedded. (b)
The singular spectrum curve is convex upward if bit “0” is
embedded. In this example, u and l are 17 and 33 respectively.

Fig. 8: The singular values on [18, 32] are fitted on a quadratic
equation y(x) = ax2 + bx+ c, where a=−0.0146, b=0.598,
and c=3.853. Since the value of a is negative, the graph is
concave. Therefore, the watermark bit is “1”.

36 dB, re-sampling with 16 and 22.05 kHz, band-pass filtering
with 100-6000 Hz and −12 dB/Oct, ±4% pitch shifting, MP3
compression with 128 kbps joint stereo, and MP4 compression
with 96 kbps. We represent extraction precision in term of bit
error rate (BER), and the BER should be lower than 10%.

A. Sound-quality Tests

The PEAQ and LSD of watermarked signal comparing
between our current and previous methods are shown in Fig. 9
and Fig. 10 respectively. The results show that there is not
much difference in ODG. However, LSD drops considerably,
i.e. the sound quality of watermarked signal improves in a
sense. Moreover, as shown in Table I, the correlation between
LSD and SDG is stronger than that between ODG and SDG.

Besides, the results from listening tests with 35 normal-

Fig. 9: ODGs comparison of proposed, previous and conven-
tional methods.

Fig. 10: LSDs comparison of proposed, previous and conven-
tional methods.

hearing subjects indicate that the sound quality of clips no.
28, 49, 57, 85, 91 and 100 improves greatly, i.e. from average
SDG of −1.49 to −0.67, as shown in Table II.

B. Robustness Tests

The results of robustness tests are shown in Fig. 11-17.
The BERs from the current and previous methods are com-
pared. The BERs from conventional SVD-based method [8]
are included as well. Our proposed and previous methods
outperform the conventional SVD-based method in robustness
when MP3, band-pass filtering, and pitch shifting are applied.
However, when there is no attack, or MP4 or re-sampling
attacks are applied, the conventional method is more robust
than the proposed ones. Nevertheless, our average BER is
under 10% and is smaller than that of the conventional method,
as summarized in Table III. Therefore, we consider that our
proposed schemes are more robust against various attacks than
the conventional method.

As discussed in [8], the robustness of these schemes are due
to the characteristics of singular values. That is, the singular
spectrum resists change. In other words, the singular spectrum
tries to return to its original shape after signal processing
is applied. An example of this phenomenon is shown in
Fig. 18. This figure shows singular spectra of one frame from
our experiment. The singular spectrum of the original signal
is represented by the dot line. The watermark bit “1” is
embedded by modifying singular values on [18, 32], where
ε = 0.025. Thus, we can see the concavity of the singular
spectrum, marked by “◦”, of the watermarked frame on that
range. When MP3 compression is applied to this frame, the
singular values changes slightly as represented by “×”. But
the shape of the singular spectrum remains the same. Thus,
this can be accounted for the robustness of SSA-based scheme.

The average BER of current and previous schemes are
4.40% and 2.84%, respectively. Even though the robustness
drops, we can consider this result as a trade-off between
inaudibility and robustness. However, it is not a linear trade.
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TABLE II: SDGs comparison of proposed, previous, and conventional methods.

#01 #07 #13 #28 #37 #49 #54 #57 #64 #85 #91 #100

Prop. -0.88 -0.36 -0.78 -0.45 -0.53 -0.94 -0.84 -0.49 -0.72 -0.35 -0.86 -0.77

Prev. -1.00 -0.72 -1.10 -2.27 -1.05 -1.30 -0.85 -1.83 -1.39 -1.25 -2.22 -2.93

Conv. -2.37 -0.97 -1.30 -0.48 -0.43 -0.58 -0.90 -1.38 -1.00 -1.78 -0.88 -1.70

TABLE III: Comparing average BERs (%) from our proposed,
previous, and conventional methods.

Prev. Prop. Conv.
No attack 1.31 1.24 0.00
MP3 attack 4.16 6.24 59.00
MP4 attack 2.98 6.52 1.20
Gaussian noise addition 1.36 1.24 0.00
Re-sampling 2.70 3.71 2.70
Band-pass filtering 6.04 10.62 38.10
Pitch shifting 1.31 1.24 7.20
Average 2.84 4.40 15.46
Standard deviation 1.77 3.58 23.53

Fig. 11: BERs comparison of proposed, previous, and conven-
tional methods when there is no attack.

Fig. 12: BERs comparison of proposed, previous, and conven-
tional methods when MP3 attack is applied.

Fig. 13: BERs comparison of proposed, previous, and conven-
tional methods when MP4 attack is applied.

Because while the robustness drops very little, the inaudibility
improves considerably.

V. DISCUSSION

There are two points we would like to discuss here. First,
we found that the parameter set obtained from differential
evolution is good at some specific tasks which included in
differential evolution optimization model. For example, when
MP3 attack is removed from the model illustrated in Fig. 5, the

Fig. 14: BERs comparison of proposed, previous, and conven-
tional methods when Gaussian noise is added.

Fig. 15: BERs comparison of proposed, previous, and conven-
tional methods when re-sampling is applied.

Fig. 16: BERs comparison of proposed, previous, and conven-
tional methods when band-pass filtering is applied.

Fig. 17: BERs comparison of proposed, previous, and conven-
tional methods when pitch shifting is applied.

watermarked clip will be fragile to MP3 compression. Thus,
the practical model should include as many attacks as possible
in order to find the best parameter set.

Second, in the extraction process, we assumed to know
{u, l}. However, this set can be extracted automatically from
singular spectrum. We discovered that, when no information
is embedded, the second derivative of singular spectrum looks
like an underdamped harmonic oscillator. If a watermark bit is
embedded, it causes one or two, depending on the watermark
bit and {u, l}, abrupt changes in slope of singular spectrum.
Therefore, a spike, which is caused by the abrupt change in
slope of singular spectrum, presents in the second derivative
as shown in Fig. 19. By detecting the spike (labeled “l”)
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Fig. 18: (a) Singular spectra of an original signal, watermarked signals when no attack and MP3 compression are applied, (b)
their closeup, in order to investigate singular values.

Fig. 19: Second derivative of a singular spectrum given the
watermark bit is 1.

and calculating the distance between the spike and the point
at which the oscillation stops (labeled “u”), we can have
the set {u, l}. Analyzing the second derivative of singular
spectrum can also help us to avoid false positive detection.
Because it is highly likely that when there is no spike, there
is no information hidden in a frame. However, there is some
difficulty due to the distortion of flatness. In other words, if
the coefficient a of polynomial fitted by singular values on
[u+1, l−1] is very close to 0, it is not easy to detect the spike.
This issue will be investigated further.

VI. CONCLUSIONS

This paper presented the improvement in inaudibility prop-
erty of our proposed watermarking scheme based on automatic
parameterized SSA using differential evolution. Differential
evolution was used to search for the best parameter set suitable
for embedding a watermark into a clip. We successfully
showed that utilizing differential evolution could enhance the
sound quality of watermarked signal and maintain the robust-
ness of the scheme at the same time. We also showed that, by
analyzing the singular spectrum and its second derivative, it is
possible to extract the embedding parameter set and, hence, a

watermark bit from a watermarked frame blindly. In addition,
the same strategy can be used to avoid false positive detection.
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