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Abstract—This paper develops an Audio-Visual Speech Recog-
nition (AVSR) method, by (1) exploring high-performance visual
features, (2) applying audio and visual deep bottleneck features
to improve AVSR performance, and (3) investigating effectiveness
of voice activity detection in a visual modality. In our approach,
many kinds of visual features are incorporated, subsequently
converted into bottleneck features by deep learning technology.
By using proposed features, we successfully achieved 73.66%
lipreading accuracy in speaker-independent open condition, and
about 90% AVSR accuracy on average in noisy environments.
In addition, we extracted speech segments from visual features,
resulting 77.80% lipreading accuracy. It is found VAD is useful
in both audio and visual modalities, for better lipreading and
AVSR.

I. INTRODUCTION

Automatic Speech Recognition (ASR) has been widely
spread, and today, many devices have speech interfaces using
ASR technology. However, a crucial problem still remains that
recognition performance severely degrades in noisy or real en-
vironments. As one of methods to compensate the degradation,
Audio-Visual Speech Recognition (AVSR), namely bimodal or
multi-modal speech recognition, has been studied for a couple
of decades. Since a lip image sequence is not basically affected
by acoustic noise, visual information is expected to help a
recognizer so as to achieve better performance.

Meanwhile, Deep Learning (DL) has attracted a lot of
attentions of researchers in many pattern recognition fields
including computer vision and speech recognition. There are
two basic strategies to apply DL to ASR systems: a hybrid
approach [1] and a tandem approach [2]. In the former
approach, Deep Neural Networks (DNNs) are built to estimate
posteriori probabilities on Hidden Markov Model (HMM)
states for test data. This strategy is called DNN-HMM. On the
other hand, in the latter approach, DNNs are used to generate
new features from input ones. Here HMMs having Gaussian
Mixture Models (GMMs), named GMM-HMM, are usually
adopted for recognition. For conventional ASR, many studies
have been done, showing that both strategies are effective to
improve ASR accuracy [3], [4], [5].

There are several works using DL technology in AVSR. For
instance, a bimodal deep audoencoder was proposed to obtain
multi-modal feature vectors [6]. A deep brief network was
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also utilized performing middle-level feature combination [7].
In terms of recognition model, multi-stream HMMs, that is
often employed in AVSR, were built using features obtained
by deep denoising autoencoder [8]. We also developed an
AVSR method using Deep BottleNeck Features (DBNFs)
based on the tandem approach, and tested our method in noisy
environments [9]. As a result, we could improve an AVSR
performance method using audio and visual DBNFs compared
not only to audio-only ASR but also to a conventional audio-
visual baseline system.

In order to further improve the performance, however,
visual speech recognition (lipreading) must be still investi-
gated. In noisy conditions, AVSR performance depends on
visual recognition ability, however, visual-only recognition
accuracy is quite insufficient: 39.3% word accuracy for a digit
recognition task when only using visual DBNFs derived from
Principal Component Analysis (PCA) features [9]. It is also
reported that the performance is roughly 27-59% in speaker-
independent condition [10]. Such the performance is roughly
equivalent to those obtained in SNR 5-15dB acoustically noisy
environments for conventional ASR [11]. Therefore, finding
effective visual features is one of key issues to improve not
only lipreading but AVSR performance.

Many researchers have proposed and investigated various
features for lipreading or audio-visual ASR; PCA also known
as “eigenlip” [12], 2D Discrete Cosine Transform (DCT) and
Linear Discriminant Analysis (LDA) e.g. [13], have been
often employed. Because lip movements are much effective
to identify visual units (visemes) and to detect visual ac-
tivities, optical flow is sometimes used [14], [15]. All the
above features are appearance-based, on the other hand, some
shape-based features are also considered. For instance, width
and height of one’s lip are basic shape-based parameters,
and lip contour information is sometimes utilized. An active
appearance model or any other face model is often chosen to
extract shape parameters for lipreading, e.g. [16], [17].

In this paper, we aim at improving AVSR performance
by investigating the following aspects: (1) combining basic
visual features and subsequently applying our DBNF method
to obtain high-performance features for visual speech recog-
nition, (2) using the new visual features and audio DBNFs
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to achieve a better AVSR system, and (3) performing visual
Voice Activity Detection (VAD) to avoid recognition errors
in silence periods for lipreading. Novelties of this paper thus
lies in effectiveness of incorporating several basic features and
applying DBNF techniques to the combined features, further
improvement of AVSR from our previous work [9] by using
our new visual DBNFs in addition to audio DBNFs, and
importance of VAD not only for an audio modality but a visual
modality.

The rest of this paper is organized as follows. Section
IT briefly describes DL-based AVSR. Several kinds of basic
visual features for visual DBNF are introduced in Section III.
Section IV shows database, experimental setup, result, and
discussion. Finally Section V concludes this paper.

II. AUDIO-VISUAL SPEECH RECOGNITION WITH DEEP
LEARNING

In our AVSR scheme, we employ multi-stream HMMs
that can control contributions of audio and visual modalities
according to recognition environments. We also compute audio
and visual features using the tandem approach. Both methods
are briefly introduced in this section. In the following descrip-
tion, let us denote audio DBNF and visual DBNF by DBAF
(Deep Bottleneck Audio Feature) and DBVF (Deep Bottleneck
Visual Feature), respectively.

A. Multi-stream HMM

In most successful AVSR systems, firstly audio and visual
features are separately extracted from audio signals and facial
region of interests in visual image sequences, respectively.
Both features are secondly concatenated into audio-visual
features. Then, multi-stream HMMs are applied to audio-
visual features. A conventional multi-stream HMM in AVSR
has two streams, an audio stream and a visual stream, in
addition to corresponding stream weight factors, A, and \,.
For an audio-visual feature f,,, at time ¢, a log likelihood
bav (F 4t) is computed by Eq.(1):

bav(favt) = )\aba(fat) + )\vbv(.fm&) (1)

where b,(f,;) and b,(f,,) are audio and visual log like-
lihoods for an audio feature f,, and a visual feature f,,
respectively, and f,,; = (fu: For ) . In most schemes,
stream weight factors are subject to:

Aat Ay =1,0< A, A <1 2)

Stream weights should be determined according to noise
environments and visual conditions, using some criteria, e.g.
[18], [19], or empirically predefined.

B. Deep Bottleneck feature

Today DNN has been rapidly employed contributing to
great success in many kinds of pattern recognition tasks.
In this paper, we employ a DNN as a feature extractor.
Figure 1 depicts a DNN used in this work. An input layer
corresponds to an input vector. A current feature vector f,
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Fig. 1. A DNN for bottleneck feature extraction.

in addition to previous and incoming several feature vec-
tors fy, 4, , fi_1, fiy1, -+ » fiop are concatenated to one
vector as the input vector. An output layer is designed to match
the input feature, otherwise, assigned to classification results.
In our case, the output layer corresponds to all HMM states
appeared in a recognition model. In our tandem approach there
is a bottleneck hidden layer, having few units compared to the
other hidden layers. A feature vector is then composed from
outputs obtained from all the units in the bottleneck layer.
DNN training consists of two stages: pre-training and fine-
tuning; unsupervised pre-training is conducted in a layer-wise
manner [20], before all the parameters are fine-tuned [21].

In this work, an audio DNN and a visual DNN are respec-
tively built. For audio feature extraction, we firstly prepared
conventional Mel-Frequency Cepstral Coefficients (MFCCs).
An audio GMM-HMM is secondly trained using training
features. Frame-level state alignments for the training data are
thirdly obtained. An audio DNN for DBAF is then built using
audio features each which has MFCC vectors in consecutive
frames. A visual DNN for DBVF is also obtained as well,
except that basic visual features are used instead of MFCCs.
To obtain high-performance DBVFs, it is crucially important
to employ good basic visual features.

III. VISUAL FEATURES

In this section, we introduce four appearance-based features
(PCA, DCT, LDA and GIF) and one shape-based feature
(COORD) as well as concatenated features for DBVF. In the
following description, let us denote an N-dimensional input
image vector at frame ¢t by v; = (v, ,) having intensity values
of every pixels v, , in an image, and the dimension of output
feature vectors by M. In some discriminative schemes, the
number of classes we should classify is indicated as C.

A. PCA

PCA is one of most common methods in the pattern
recognition domain. A covariance matrix of training feature
vectors is decomposed to orthogonal vectors (eigenvectors)
with corresponding variances (eigenvalues). A transformation
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matrix A, is then obtained by choosing M eigenvectors that
have larger eigenvalues. Now we compute an M -dimensional
feature vector ngCA) from an input feature in Eq.(3):

FEeN — 4, v, 3)
B. DCT

DCT is also well known in various signal processing and
pattern recognition fields, since DCT provides efficiently com-
pressed representations. Like JPEG that is a famous image
format, 2D DCT is conducted to an image. After resizing an
image to S x S, a DCT coefficient d; ; is computed in the
following Eq.(4).

5 8 , ,
d;j = c;ic; Z sz,y cos { W(%;; Di } cos { 7r(2y2; DY }

r=1y=1
“4)

L oifi=0
= va ! 5
“ { 1 otherwise )

(DCT)
t

where

A feature vector f is hereby generated by picking up
low-dimensional components in a zigzag manner.

C. LDA

LDA is also a famous method in pattern recognition,
which provides discriminative transformation. To conduct
LDA, training data and corresponding transcription labels are
prepared beforehand. According to the labels, at first we
calculate a covariance matrix S; for an i-th class, as well as a
global covariance matrix S¢i. Secondly, within- and between-
class scatter matrices (Sy and Sp respectively) are obtained
as Eq.(6):

C
Sw =) Si, Sp=Sc—Sw (©)

i=1

Thirdly, PCA is applied to S’;VI Sp so as to get a transformation
matrix A;. Finally, a feature vector is appeared in Eq.(7):

(DAY — 4, v, 7
D. GIF

Some of authors have proposed a feature extraction method,
called GA-based Informative Feature (GIF), in which transfor-
mation matrices are generated using a genetic algorithm [22],
[23]. Similar to LDA, GIF requires a training data set and its
label. In GIF, an input vector is converted to a C-dimensional
intermediate vector as:

Yy, =G (v, 1)7 (8)

In Eq.(8), G; is a C' x (IN+1) matrix, such that a j-th row
vector performs a binary classifier; a positive value should be
observed if the input vector belongs to the j-th class, otherwise
a negative value must appear. Next, a feature vector z; is
computed in Eq.(9):

ze =Gy - Y, 9
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Fig. 2. An example of lip images (mouth detection results) with lip feature
points.

where Gy is an M x C matrix (M < (), performing
orthogonalization and dimension reduction. These matrices
are determined and optimized using a genetic algorithm and
training data. Note that based on preliminary experiments,
the first transformation is only applied in this paper; a visual
feature vector fEGIF) is now obtained as Eq.(10):

G — Gy (v, T )T (10)

E. COORD - Shaped-based feature

To extract a mouth region from a frontal-face image and to
employ shape-based features for lipreading, automatic mouth
detection and lip feature point estimation are conducted in this
paper. Our method includes face tracking and model fitting
techniques [24]; here, the scheme is briefly introduced. In
the face tracking, a Constrained Local Model (CLM) [25],
[26], that is a 3D face model having eyes, nose and mouth, is
firstly fitted to a 2D image. Next, 3D face pose and location
are estimated, especially mouth information is utilized for
the following process. Of lip contours, 18 feature points are
detected using a linear regression function based on Haar-like
features, while mouth model fitting is performed in which a
3D statistical mouth model is associated with a 2D image
applying a CLM-based scheme. Figure 2 illustrates an example
of mouth detection and lip feature point extraction results.

After obtaining the mouth feature points, a center-of-gravity
point (z¢,4¢) is computed as Eq.(11):

1 18 1 18
C _ % Cc _ i

where (2%, y}) is an i-th feature point (i=1,2,- - -,18). Relative
coordinates of all the feature points are simply concatenated
as a 36-dimensional shape-based vector:

(1)

T
141 42 42 /18 418
st:(xt7yt7xtayt7"'7xt 7yt) (12)
where
Iz i C 1 i C
Ty =Ty —T¢ 5 Yy =Y — Yy (13)

We further tried to apply either of PCA, LDA and GIF to sy,
in order to achieve better performance. As a result, GIF is
adopted to obtain a feature vector fgCOORD).
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Fig. 3. An example of frontal-face images used in this paper.

FE. Concatenated features

In this work, two visual features are prepared, having the
above basic visual ones: PCA, DCT, LDA, GIF and COORD.
At first, the former four appearance-based features were con-
catenated into a new feature vector fEPDLG) as Eq.(14).

T
PDLG PCA DCT LDA GIF

(14)
Similarly, all the vectors were combined to compose a feature
vector ngDLGC) as Eq.(15).
T T
(PDLGO) _ (fEPDLG) FCOORD) ) (15)

IV. EXPERIMENT

In order to evaluate visual features and AVSR performance,
we conducted two recognition experiments: (1) visual speech
recognition (lipreading) using either of visual features de-
scribed in Section III or DBVF, and (2) audio-visual speech
recognition using enhanced DBVFs introduced in this paper,
in addition to DBAFs. Furthermore, we examined another
aspect: (3) lipreading excluding non-speech segments, in order
to investigate importance of VAD for the visual modality.

A. Database

A Japanese audio-visual corpus CENSREC-1-AV was used
[27]. CENSREC-1-AV is designed to evaluate audio-visual
speech recognition but is still available and suitable for
lipreading, providing audio-visual data as well as a baseline
system. In total, 93 subjects spoke connected-digit utterances,
making a 42-subject 3,234-utterance training set and a 51-
subject 1,963-utterance test set.

Mouth images were included in CENSREC-1-AV, however,
we employed their original frontal-face images (720x480)
in order to apply the mouth detection and lip feature point
extraction methods mentioned in Section III-E. A sample of
original frontal-face images is shown in Figure 3. We manually
annotated feature points in hundreds of training images to
build our feature point extraction model. The size of lip
images was fixed as 140x100, of which central point just
corresponded to (¢, y¢). Note that any preprocessing such
as scaling and rotation normalization was not conducted.
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TABLE 1
TRAINING AND TEST DATA SETS.
Training set Test set I
clean, clean,

cityroad (5 SNRs),
expressway (5 SNRs),

cityroad (6 SNRs),
expressway (6 SNRs),

Audio i (5 SNRs) music (6 SNRs),
music+cityroad (6 SNRs),
music+expressway (6 SNRs)

Visual clean clean

1 5 SNRs = 20dB, 15dB, 10dB, 5dB and 0dB
1 6 SNRs = 20dB, 15dB, 10dB, 5dB, 0dB and -5dB

Frontal-face image
720x480

(Figure 3)
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Fig. 4. Visual feature extraction.

B. Features

As mentioned, MFCCs were used to obtain DBAFs. To
train an audio DNN and a multi-stream GMM-HMM, and to
evaluate AVSR in different noise conditions, not only clean
data but noisy data were prepared. Interior car noises recorded
on city roads and expressways were added to clean speech
data at several SNR levels (20dB, 15dB, 10dB, 5dB, 0dB and
-5dB). Assuming a situation using a car-stereo system, we also
prepared musical waveforms as another noise. We generated
six music-overlapped speech data having different SNR levels
as well. In addition, two kinds of noisy speech data, in which
not only musical sounds but city-road or expressway noises
existed, were similarly added to clean data. As a result, clean
speech data and 30 kinds of noisy speech data were prepared.
A training data set consisted of clean speech data as well as
city-road, expressway, and music-overlapped noisy speeches,
excluding -5dB data. Consequently, the training data set had
16 kinds of speech data. A test data set included all the speech
data. Both data sets are summarized in Table I.

Visual feature extraction is depicted in Figure 4 and its
conditions are shown in Table II. At first, we extracted
five visual features (PCA, DCT, LDA, GIF and COORD)
respectively. Viseme-based transcriptions were prepared for
LDA, GIF and COORD. We adopted 13 visemes (a, i, u,
e, 0, p, I, sy, t, s, y, vf, and sil) that appear in Japanese
digit pronunciation [28], [29], thus we set C' =13. Two
concatenated feature vectors PDLG and PDLGC were then
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TABLE II
EXPERIMENTAL SETUP OF VISUAL FEATURE EXTRACTION.
Dimension

Feature Static  +A, AA Remarks
PCA 13 39  image=35x25, c.c..=90%
DCT 15 45  image=50x50
LDA 10 30  image=35x25, c.c..>99%
GIF 13 39  image=35x25
COORD 13 39
PDLG (51) 153
PDLGC (64) 192

DBVE-PDLGC 40 120
c.c.r.=Cumulative Contribution Ratio.

TABLE III
EXPERIMENTAL SETUP OF DNN.

DNN config is in Table IIIL.

# of units Input Hidden Bottleneck Output
DBAF 429 2,048 40 179
DBVF-PDLGC 2,112 2,048 40 179

Pre-training  Fine-tuning
# of epochs 10 50

Minibatch size 256 256
Learning ratio 0.004 0.006
Momentum 0.9 0.0

obtained. Finally a visual DNN was built to compute DBVFs.
In order to evaluate DBVFs from PDLGC proposed in this
paper, conventional DBVFs from PCA in our previous work
[9] were also prepared. To distinguish both DBVFs, we call
the former DBVF (proposed one) DBVF-PDLGC, and the
latter DBVF (conventional one) DBVF-PCA. Note that when
computing DBVF-PCA, pictures in CENSREC-1-AV were
used. All the visual features had first- and second-order time
derivatives (A and AA) in addition to static parameters.

C. Baseline and proposed methods

Model training and recognition were basically the same as
CENSREC-1-AV. A left-to-right GMM-HMM was prepared
for each word (digit) and silence. A digit HMM consisted of 16
states, while a silence HMM had 3 states. Each state in a digit
HMM contained 20 Gaussian components, while there were
36 components on each state in a silence HMM. Because there
were 11 digit HMMs (one, two, - - -, nine, zero and oh), the
total number of HMM states was 179. The following training
and recognition were conducted using HMM Tool Kit (HTK)
[30].

For comparison, a baseline audio-only ASR was pre-
pared which is provided in CENSREC-1-AV; GMM-HMMs
were trained using 39-dimensional MFCC features. Unimodal
speech recognition systems using GMM-HMMs and DBNFs
were also used as baseline methods. Table III shows DNN
setup. In order to obtain accurate time-aligned transcriptions
that were used for visual model training, audio HMMs were
trained prior to visual HMMs applying embedded training and
using MFCCs. The time-aligned transcription labels were then
obtained using the audio HMMs and the training speech data.
Next, visual HMMs were built applying bootstrap training
and using basic visual features PCA with the labels. After
building HMMs, audio and visual DNNs were trained. As
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TABLE IV
DIGIT RECOGNITION ACCURACY USING EVERY VISUAL FEATURES.

Insertion penalty

Feature
w/o w/
PCA 13.67 42.52
DCT 11.76 33.06
LDA 31.99 41.70
GIF 13.02 39.76
COORD 14.82 39.78
PDLG 38.41 50.05
PDLGC 41.65 53.65
DBVE-PDLGC 69.44 73.66

input features, MFCC features were used for an audio DNN,
while either of PCA or PDLGC features were chosen for
a visual DNN. We adopted five previous and five incoming
features in addition to a current feature vector, thus we set
T'=5. An output layer corresponded to audio or visual HMM
states, as mentioned, using state-level frame alignments. There
were 40 units in a bottleneck layer in all the cases, therefore,
40-dimensional DBAF and DBVF were obtained. Here, audio
and visual HMMs were rebuilt using DBAFs and DBVFs,
respectively. Finally, multi-stream HMMs for AVSR were
generated from the audio and visual HMMs.

Recognition for test data was conducted, performing
speaker-independent open-condition evaluation. Stream weight
factors in AVSR were empirically optimized in this work.

D. Experiment (1) - Comparison of visual features

At first, we compared and evaluated visual features by
carrying out visual speech recognition experiments. Table IV
indicates lipreading performance using every visual features.
In Table IV, results with and without insertion penalty opti-
mization are indicated. Recognition accuracy in our previous
work [9], using DBVF-PCA, was 39.3% without insertion
penalty adjustment.

Among appearance-based features with optimizing the
penalty factor, PCA achieved the best performance followed
by LDA and GIF, but the differences were not so large.
Recognition performance of shape-based feature was almost
the same as GIF. The combined feature PDLG having the
four appearance features could improve recognition accuracy
to 50.05%. Furthermore, another combined feature PDLGC
including PDLG and COORD achieved much better perfor-
mance 53.65%. It is also observed when using PDLG or
PDLGC, the performances without manual hyper-parameter
optimization became better compared to basic visual features.
These indicate effectiveness of combining different kinds of
visual features. Finally, a DNN-based feature DBVF-PDLGC
which was derived from PDLGC could accomplish more than
70% recognition accuracy. Compared to previous researches
including our past work, we believe our approach has signifi-
cantly succeeded.

We analyzed lipreading performance of appearance- and
shape-based features as well as their combinations for each
person. Figure 5 represents recognition accuracy for every
testing subjects (26 females and 25 males); results in Figure 5
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Fig. 5. Lipreading accuracy for each speaker in the test set.

TABLE V
AVERAGE DIGIT RECOGNITION ACCURACY FOR AUDIO-ONLY,
VISUAL-ONLY AND AUDIO-VISUAL ASR SYSTEMS OVER ALL THE

CONDITIONS.

Feature Accuracy [%]
Audio-only (DBAF) 61.73
Visual-only (DBVF-PDLGC) 66.97
AVSR 89.87

correspond to Table IV. It is observed that which appearance-
based or shape-based feature was the best strongly depended
on a subject. On the other hand, combined features PDLG
and PDLGC were successful in most cases. This indicates
using different kinds of visual features simultaneously can deal
with speaker differences, causing stable and better recognition
performance.

E. Experiment (2) - AVSR using DBNF's

Second, we conducted AVSR experiments using DBAFs and
DBVFs derived from PDLGC. Figure 6 represents average
recognition accuracy at each SNR level, for audio-only speech
recognition using MFCC and DBAF, lipreading using DBVF-
PDLGC and audio-visual speech recognition. Table V summa-
rizes average performance over all the 31 conditions for each
method. Note that our previous results in [9] were equivalent
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Fig. 6. Average digit recognition accuracy at each SNR level for audio-only,
visual-only and audio-visual ASR methods.

to 39.7% for ASR using MFCC, 39.3% for lipreading using
DBVF-PCA, and 81.1% for AVSR using DBAF and DBVF-
PCA. We did not apply insertion penalty optimization, and
stream weights were set as A\, =0.6 and )\, =0.4.

The proposed AVSR system using DBAF and DBVF-
PDLGC outperformed not only the audio-only baseline but
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TABLE VI
DIGIT RECOGNITION ACCURACY USING VISUAL FEATURES ONLY HAVING
SPEECH SEGMENTS.

Insertion penalty

Feature
w/o w/
PCA 39.99 53.32
DCT 33.56 45.44
LDA 45.80 50.98
GIF 41.92 52.47
COORD 45.33 52.19
PDLG 55.63 60.91
PDLGC 62.89 64.10
DBVE-PDLGC 76.42 77.80

also the AVSR method using DBAF and DBVF-PCA, achiev-
ing 83.2% and 46.4% relative error reduction, respectively.
In particular, our proposed method could improve recog-
nition performance in heavily noisy environments keeping
the advantage in noiseless conditions, due to increase of
visual recognition ability by DBVF-PDLGC. In conclusion,
our new AVSR approach significantly improves recognition
performance in noisy conditions by employing new visual
DNN-based features.

FE. Experiment (3) - Importance of VAD in lipreading

As shown in Section IV-D, visual features have been
drastically improved by incorporating several kinds of ba-
sic features and applying a DNN-based tandem approach.
Meanwhile, in conventional ASR, it is much effective to
detect and extract speech segments, i.e. to perform VAD,
for improving recognition performance and reducing noise
influence. On the other hand, it is unclear that VAD is useful
for visual speech recognition when using DBVFs. Therefore,
we conducted additional experiments for lipreading excluding
non-speech segments. A image sequence in CENSREC-1-AV
is designed to include 800msec silence periods before and after
an utterance. We removed these silence periods from visual
features.

Table VI shows experimental results using visual features
that only contain speech segments. It is obvious that lipreading
performance was drastically improved; 15.7-22.6% relative
error reduction was observed compared to the results in Table
IV, and the best accuracy was 77.80% when using DBVF-
PDLGC. Such the improvement comes mainly from reducing
recognition errors within or near silence periods.

We further investigated how removing silence periods af-
fects the performance. Since our recognizer could accept not
only digits but beginning and ending silence parts, ideally
we can find approximately 800msec beginning and 800msec
ending silence segments in recognition results. In other words,
if any recognition errors related with silence periods occurred,
time duration of the silence periods should vary shorter or
longer. Consequently, statistically checking beginning and
ending silence duration enables us to find the importance
of visual VAD. Figure 7 illustrates histograms of silence
duration in recognition results (corresponding to Table IV)
for clean audio and some visual features. When using the
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audio feature, most silence periods had 700-800msec duration
properly. On the other hand, when using the visual features
without applying DNN, there were a lot of detection failures;
many silence periods had shorter duration making insertion
errors, and several periods had longer duration causing dele-
tion errors. Compared to these visual features, DBVF-PDLGC
had less errors. From these results, if we apply VAD and could
correctly detect speech periods, recognition errors in lipreading
must incredibly decrease. To conclude, it is important to detect
visual speech activities to avoid recognition errors in silence
periods, which improves lipreading and AVSR performance.

V. CONCLUSION

This paper proposes two techniques to improve audio-
visual speech recognition: (1) enhanced visual features DBVF-
PDLGC using DNN architectures, and (2) high-performance
AVSR using new visual features DBVF-PDLGC and DBAF.
For visual feature extraction, four appearance-based and one
shape-based features are extracted from an image. After
incorporating them, a tandem approach using DNN is ap-
plied to obtain our visual features. For a digit recognition
task, experimental results show our visual speech recognition
method could achieve 73.66% recognition accuracy in the
speaker-independent open condition. Furthermore, in AVSR
experiments, we obtained 89.87% average recognition ac-
curacy over clean and noisy conditions. In both cases, we
can achieve significant improvement. In addition, we also
investigate (3) effectiveness of VAD in the visual modality.
Through recognition experiments excluding silence periods
from visual features, we finally obtained 77.80% lipreading
accuracy. This means VAD is essential not only for audio
but also visual modalities. In conclusion, we could obtain
better AVSR performance thanks to robust visual features,
deep learning techniques, and visual VAD.

With respect to our future works, we would like to further
investigate visual features, in particular shape-based ones, to
build a better recognition scheme. Although our new DBVF
has successfully achieved, there are some speakers whose
performance was quite low (roughly 30-40%). To overcome
this issue, we have a plan to introduce model adaptation to
lipreading [29]. Incorporating our AVSR scheme with audio-
visual VAD [31], [32] is also included in our future works.

VI. ACKNOWLEDGMENTS

We greatly appreciate Mr. Shinichi KOJIMA (Toyota Cen-
tral R&D Labs., Inc.), for his support in mouth detection and
lip feature point estimation. A part of this work was supported
by JSPS KAKENHI Grant Number 25730109.

REFERENCES

[1] A. Mohamed et al., “Acoustic modeling using deep belief networks,”
IEEE trans. on Audio, Speech, and Language Processing, vol.20, no.1,
pp-23-29 (2012).

[2] D. Yu et al., “Improved bottleneck features using pretrained deep neural
networks,” Proc. INTERSPEECH2011, pp.237-240 (2011).

[3] F. Seide et al., “Conversational speech transcription using context-
dependent deep neural networks,” Proc. INTERSPEECH2011, pp.437-
440 (2011).

APSIPA ASC 2015



Proceedings of APSIPA Annual Summit and Conference 2015 16-19 December 2015

1800
Audio mm—
1600 DBNF _zeess E
1400 |-¥hot found 2000+ —»
2 1200
g
& 1000
2
800 5 800
2 PCA kS
S 600 GIF 4 = 600
© PDLG oy
S 400 PDLGC s E 400
=
3 200 <—notfoud - @ Fﬁ. 2000+ —» 200
** 0 !i i: ; l! Il IEIIH&I 30 TINE Nee | 1 1 1 1 1 1 1o 0 1 1 1 1Lt B @I II@II@I ml R 1 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Duration [msec] Duration [msec]
(a) beginning silence period
1800
Audio mm—
1600 DBNF s .
1400 |-*hot found 2000+ —»
2 1200
2
@ 1000
2
800 S 800
2 PCA °
2 600 GIF 3 # 600
o PDLG moeess
& 400 f PDLGC e | 400
> | " R
2 200 H<—not found ! I 2000+ — 200
** O il Il il IHHImlln%Iml ol | L 1 1 1 1 1 0 al 1 1 1 1 gl EI 1 1 1 al Rl ki 1 1 1 1 1 1 1 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000
Duration [msec] Duration [msec]

(b) ending silence period

Fig. 7. Histograms of beginning and ending silence duration detected using every features.

[4] J. Gehring et al., “Extracting deep bottleneck features using stacked  [20] Y. Bengio et al., “Greedy layer-wise training of deep networks,” Proc.

auto-encoders,” Proc. ICASSP2013, pp. 3377-3381 (2013). NIPS’06, pp.153-160 (2007)
[5] T. Hayashi et al., “Investigation of robustness of deep bottleneck features ~ [21] G. Hinton et al., “A fast learning algorithm for deep belief nets,” Neural
for speakers of a variety of ages in speech recognition,” Proc. Forum Computation, vol.18, no.7, pp.1527-1554 (2006).
Acusricum 2014 (2014). [22] S. Tamura et al., “GIF-SP: GA-based informative feature for noisy
[6] J. Ngiam et al., “Multimodal deep learning,” Proc. ICML2011 (2011). speech recognition”, Proc. APSIPA ASC 2012 (2012).
[7] J. Huang et al., “Audio-visual deep learning for noise robust speech  [23] N. Ukai et al., “GIF-LR: GA-based informative feature for lipreading,”
recognition,” Proc. ICASSP2013, pp.7596-7599 (2013). Proc. APSIPA ASC 2012 (2012).
[8] K. Noda et al., “Audio-visual speech recognition using deep learning,”  [24] S. Kojima, “Statistical face shape model separating inter-individual vari-
Applied Intelligence, Springer, vol.42, no.4, pp.722-737 (2015). ation from intra-individual variation,” IEICE technical report (IBISML),
[9] H. Ninomiya et al., “Integration of deep bottleneck features for audio- vol.113, no.197, pp.13-18 (2013, in Japanese).
visual speech recognition,” Proc. INTERSPEECH2015 (2015, accepted).  [25] D. Cristinacce et al., “Feature detection and tracking with constrained
[10] Y. Lan et al, “Comparing visual features for lipreading,” Proc. local models,” Proc. British Machine Vision Conference, vol.3, pp.929-
AVSP2009, pp.102-106 (2009). 938 (2006).
[11] S. Nakamura et al., “Data collection and evaluation of AURORA-2  [26] Y. Wang et al., “Enforcing convexity for improved alignment with
Japanese corpus,” Proc. ASRU2003, pp.619-623 (2003). constrained local models,” Proc. CVPR2008 (2008).
[12] C. Bregler et al., ““Eigenlips” for robust speech recognition,” Proc.  [27] S. Tamura et.al., “CENSREC-1-AV: An audio-visual corpus for noisy
ICASSP’94, pp.669-672 (1994). bimodal speech recognition,” Proc. AVSP2010, pp.85-88 (2010).
[13] G. Potamianos et al., “Stream confidence estimation for audio-visual ~ [28] Y. Fukuda et al., “Characteristics of the mouth shape in the production
speech recognition,” Proc. ICSLP2000, vol.3, pp.746-749 (2000). of Japanese - Stroboscopic observation”, Journal of Acoustical Society
[14] K. Mase et al., “Automatic lipreading by optical-flow analysis,” Systems of Japan, vol.3, no.2, pp.75-91 (1982).
and Computers in Japan, vol.22, no.6, pp.67-75 (1991). [29] T. Seko et al., “Improvement of lipreading performance using discrim-
[15] K. Iwano et al., “Bimodal speech recognition using lip movement inative feature and speaker adaptation,” Proc. AVSP2013, pp.221-226
measured by optical-flow analysis.” Proc. HSC2001, pp.187-190 (2001). (2013).

[16] C. Miyamoto et al., “Multimodal speech recognition of a person with ~ [30] http://htk.eng.cam.ac.uk/
articulation disorders using AAM and MAF,” Proc. MMSP2010, pp.517-  [31] S. Takeuchi et al., “Voice activity detection based on fusion of audio

520 (2010). and visual information,” Proc. AVSP2009, pp.151-154 (2009).
[17] T. Saitoh, “Efficient face model for lip reading” Proc. AVSP2013, [32] C.Ishi et al., “Real-time audio-visual voice activity detection for speech
pp.227-232 (2013). recognition in noisy environments,” Proc. AVSP2010, pp.81-84 (2010).

[18] A.H. Abdelaziz, et al., “A new EM estimationof dynamic stream weights
for coupled-HMM-based audio-visual ASR,” Proc. ICASSP2014,
pp.1527-1531 (2014).

[19] V. Estellers et al., “On dynamic stream weighting for audio-visual
speech recognition,” IEEE Transaction on Audio, Speech, and Language
Processing, vol.20, no.4, pp.1145-1157 (2011).

978-988-14768-0-702015 APSIPA 582 APSIPA ASC 2015


lenovo
Typewritten Text




