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Abstract—In this paper, we investigate the use of the proposed
non-parametric exemplar-based acoustic modeling for the NIST
Open Keyword Search 2015 Evaluation. Specifically, kernel-
density model is used to replace GMM in HMM/GMM (Hid-
den Markov Model / Gaussian Mixture Model) or DNN in
HMM/DNN (Hidden Markov Model / Deep Neural Network)
acoustic model to predict the emission probability of HMM states.
To get further improvement, likelihood score generated by the
kernel-density model is discriminatively tuned by the score tuning
module realized by a neural network. Various configurations for
score tuning module have been examined to show that simple
neural network with 1 hidden layer is sufficient to fine tune the
likelihood score generated by the kernel-density model. With this
architecture, our exemplar-based model outperforms the 9-layer-
DNN acoustic model significantly for both the speech recognition
and keyword search tasks. In addition, our proposed exemplar-
based system provides complementary information to other
systems and we can further benefit from system combination.

I. INTRODUCTION

Among the several thousands of spoken languages used
today, few of them are studied by the speech recognition
community [1]. One of the major hurdles of ASR (Automatic
Speech Recognition) system deployment in new languages is
that ASR system relies on a large amount of training data for
acoustic modeling. This makes a full fledged acoustic model-
ing process impractical for under-resourced languages. Popular
approaches are to transfer well-trained acoustic models to
under-resourced languages such as universal phone set [2,
3], tandem approach [4–6], subspace GMMs (SGMMs) [7, 8],
Kullback-Leibler divergence HMM (KL-HMM) [9, 10], cross-
lingual phone mapping [11–13] and its extension, context-
dependent phone mapping [14–16, 19].

Note that all above methods use a parametric way such
as GMM or SGMM to model input feature distribution.
Exemplar-based methods are non-parametric techniques that
use the training samples directly. Unlike parametric methods,
exemplar-based methods, such as k-nearest neighbors (k-NN)
[20] for classification and kernel density (or Parzen window)
[20] for density estimation, do not assume a parametric form
for the discriminant or density functions. This makes them
attractive when the distribution of the parameters or their
decision boundary is unknown or difficult to estimate.

Recently, several studies apply exemplar-based methods for
acoustic modelling [22–25]. In our recent study [33], we

successfully applied the exemplar-based method for cross-
lingual speech recognition even with few minutes of target
language training data. This promising result motivates us
to apply the proposed exemplar-based system in [33] to the
NIST Open Keyword Search 2015 Evaluation (OpenKWS15)1

where only 3 hours of speech data can be used to build
the speech recognition system. In this paper, various config-
urations for exemplar-based acoustic model are investigated
and experimental results show that our exemplar-based system
outperforms DNN and other acoustic models significantly for
both the speech recognition and keyword search tasks.

The rest of this paper is organized as follows: Section
II describes the exemplar-based acoustic model. Section III
presents the experimental procedures and results. Finally, we
conclude in Section IV.

II. MULTILINGUAL EXEMPLAR-BASED SYSTEM

A. System overview
Fig. 1 illustrates the proposed multilingual exemplar-based

system for speech recognition. There are six steps to build the
system.

1) Generate the multilingual bottleneck features (MBNF)
xt. The MBNF extracting network (BN-DNN) is well
trained from resource rich source languages.

2) Build a target language triphone-based HMM/GMM
acoustic model with MBNF. Generate frame level state
label for training data using forced alignment.

3) Generate fMLLR (feature space Maximum Likelihood
Linear Regression) feature ot from MBNF ot to reduce
the speaker effect.

4) Use kernel density estimation and fMLLR feature to
estimate HMM state emission probability p̂(ot|sj).

5) Apply discriminative score tuning to refine the likeli-
hood scores in step 4.

6) Plug in the state emission probability to a standard
decoder for decoding.

There are three key components in the multilingual
exemplar-based acoustic model, i.e. the kernel density estima-
tion, multilingual bottleneck network, and discriminative score
tuning. In the following subsections, these components will be
presented in detail.

1http://www.nist.gov/itl/iad/mig/openkws15.cfm
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Fig. 1. Multilingual exemplar-based system.

B. Kernel density estimation for speech classes

We use kernel density estimation similar to the one used
in [22, 33] to model the feature distribution of a triphone tied
states. Specifically, the likelihood of a feature vector for a
speech class (i.e. a tied state) is estimated as follows:

p̂(ot|sj) =
1

ZNj

Nj∑
i=1

exp
(
− ||ot − eij ||2

σ

)
(1)

where ot is the feature vector at frame t, eij is the ith exemplar
of class j, Nj is the number of exemplars in class j, and Z is
a normalization term to make (1) a valid distribution. In this
study, the Euclidean distance between the test feature vector
and the exemplars is used. The Euclidean distance has been
proved to work well with bottleneck feature [33, 35].

From (1), the likelihood function is mathematically similar
to a GMM with shared scalar variance for all dimensions and
Gaussians. As our final target is speech recognition rather than
density estimation, the term we are interested in is actually
the class posteriors. Hence, the normalization term Z will
never need to be computed as it is the same for all classes
due to the use of single σ in all classes. The parameter σ
is used to control the scale of the Gaussians and hence the
smoothness of the resulting distribution. If σ is too big, the
resulting distribution will be very smooth and vice versa [29].
In this study, σ is simply set to 1 for all classes.

C. Multilingual bottleneck features

In the OpenKWS15, only 3 hours of target language data are
provided. To improve performance, we borrow acoustic infor-
mation from resource rich languages. Specifically, multilingual
bottleneck network [16, 17, 26–28] is well trained from several
well-resourced languages then used as the feature extractor
of the resource limited language. The detailed our bottleneck
network can be found in [17].
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Fig. 2. Comparation of the proposed exemplar-based and DNN acoustic
models.

D. Discriminative score tuning

In the previous section, the kernel density estimation for
acoustic modeling is presented. This acoustic model can be
considered as a generative model since the state likelihood
p̂(ot|sj) is estimated for each state sj independently. It is
well known that using discriminative models e.g., multilayer
perceptron (MLP), deep neural network (DNN) [36, 37] or
discriminative training criteria [38] can significantly improve
performance of speech recognition. To achieve a further gain
from the kernel density estimation, in [33], we proposed
a technique called discriminative score tuning method. The
basic idea of this approach is to use a neural network to
discriminatively tune the likelihood scores generated by the
kernel density model.

As shown in Fig. 2, in the conventional DNN acoustic
model, DNN is used to directly map from input feature space
such as MFCC or bottleneck features to HMM states and hence
DNN with many layers is used. In our exemplar-based model,
score tuning neural network is just used to tune the scores
in a discriminative way and hence a very simple network
architecture can be used. In [33], we demonstrated that even
with 2-layer-neural network i.e. no hidden layer, score tuning
can work well and enable the exemplar system to outperform
the DNN acoustic model with many layers.

III. EXPERIMENTS

A. Experimental procedures

To promote keyword search study, the National Institute
of Standards and Technology, USA (NIST) has organized the
KWS evaluation since 2013. Participants are given a surprise
language that is unknown until the evaluation date. The sur-
prise language is Swahili in 2015. In the OpenKWS15, NIST
focuses on the keyword search ability for under-resourced
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languages. In this evaluation, NIST has formulated a very
limited language pack (VLLP) condition, in which only about
3 hours of transcribed speech can be used to build the ASR
system together with 10 hours of development data. The
acoustic data are collected from various real noisy scenes and
telephony conditions. No manual lexicon is available. Text data
for language modeling is provided by the organizer. The data
is collected from various public available websites. The text
data contains 84M words altogether. It is used to establish the
lexicon of 350K size, and to build trigram language models.
Since Swahili is an agglutinative language, new words and
long words are common, leading to large OOV (Out-Of-
Vocabulary) rate for a given vocabulary. For instance, even
with the 350K vocabulary lexicon, the OOV rate on the dev
data is still 7.4%. Besides, the pronunciation of each word is
represented as a grapheme string. This is because no lexicon
expertise knowledge is available.

System performance is evaluated in both two metrics i.e.
WER (Word Error Rate) for speech recognition and ATWV
(Actual Term-Weighted Value) [34] for keyword search per-
formance. NIST also provided two sets of keyword lists (KW
list). One is the development set (Dev KW list), and the other
is the evaluation set (Eval KW list). Both these keyword lists
will be used to evaluate our system.

For acoustic modeling, DNN with 7 hidden layers with 1024
hidden units in each layer. To train DNN, the whole training
set is splitted into two subsets i.e. training set to train the
network parameters and cross-validation set to examine the
training process. The sequential training criterion is applied to
train the DNN.

B. Baseline acoustic models

The first row of Table 1 presents performance of monolin-
gual HMM/DNN system. In this case, PLP+pitch feature is
used as the input for a 9-layer-DNN acoustic model. We can
see that the monolingual system achieves a poor performance
with 67.9% WER. We note that there are only 3 hours of
training data for the DNN training.

To improve performance, multilingual approaches are ap-
plied [17]. In the first multilingual approach, DNN is first
initialized with multilingual DNN [17] which is trained with
6 Babel languages which include Cantonese, Pashto, Tamil,
Tagalog, Turkish, Vietnamese and then limited training data
of the target language is used to tune the DNN. As shown in
the second row of Table 1, performance of the multilingual
model is significantly improved over the monolingual system
in both speech recognition and keyword search.

Another multilingual approach is to use MBNF (Multilin-
gual BottleNeck Feature) [17]. In this case, a BN-DNN is
well-trained with 6 Babel languages and then adapted to the
target language. MBNF is then used to train the target language
DNN acoustic model. Performance of this approach is listed
in the third row of Table 1. Similar to our observation in [17],
this approach achieves better performance than multilingual
HMM/DNN approach in the second row.
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Fig. 3. Frame accuracy on the training and cross validation sets for different
discriminative score tuning architectures.

C. Exemplar-based acoustic model

In our exemplar-based system, state likelihood generated by
the kernel density model is fine tuned using the discriminative
score tuning module. This module is realized by a neural
network. We now investigate different configurations for score
tuning module.

1) Different architectures for discriminative score tuning:
In [33], we showed that under very limited training data
conditions e.g. several minutes using a 2-layer neural network
placed on the top of the kernel density model can tune
the likelihood scores. In this paper, we examine whether
we can benefit from using more complicated neural network
architectures for score tuning.

Fig. 3 shows frame accuracy on the training and cross
validation sets for different score tuning architectures. The
number of neural network layers increases from 2 to 7. From
Fig. 3, we can see that for score tuning module, 3-layer-neural
network is sufficient to achieve a good performance since it
only slightly tunes the state scores in a discriminative way
[33]. This observation is different from the conventional hybrid
HMM/DNN model where very deep architectures are normally
used to achieve the good performance [36, 37].

2) Context expansion: Recently, using multiple frames as
the input for DNN has demonstrated significant improvement
for speech recognition. In this experiment, we simply concate-
nate several likelihood score frames generated by the kernel
density model as in input of the score tuning neural network.
Surprisingly, as shown in Fig. 4, using more than 1 frame
as the input for the score tuning does not achieve any im-
provement. It can be explained that the multilingual bottleneck
feature used for the kernel density model is generated by a
multilingual bottleneck DNN which already uses a 31-frame-
input. Hence, there is no further benefit to use more frames as
the input for the score tuning network. In addition, since input
frame of the score tuning network is the high dimensional
likelihood score (1,000 dimensions), concatenating multiple
frames can lead to over-fitting in the case of limited training
data. This phenomenon is observed in Fig. 4, when the number
of input frames increases from 1 to 5, the frame accuracy in the
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TABLE I
WORD ERROR RATE (WER) AND ACTUAL - TERM WEIGHTED VALUE (ATWV) FOR DIFFERENT ACOUSTIC MODELS

No System WER (%) ATWV
Dev KW list Eval KW list

1 Monolingual HMM/DNN acoustic model 67.9 0.2517 0.2917
2 Multilingual HMM/DNN acoustic model 59.7 0.3333 0.3820
3 Multilingual bottleneck feature with HMM/DNN acoustic model 56.5 0.3703 0.4136
4 Multilingual bottleneck feature with examplar-based acoustic model 54.9 0.3800 0.4205
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Fig. 4. Frame accuracy on the training and cross validation sets for different
input context sizes of the score tuning network.

cross-validation reduces as the frame accuracy in the training
set increases.

With above analysis, our final score tuning is 3-layer-neural
network with only 1 likelihood frame is used to form the input
of the neural network. Performance of our final exemplar-
based system for speech recognition and key work search is
shown in the last row of Table 1. We can see that our exemplar-
based system significantly outperforms other systems in term
of both WER and ATWV although we use only 3-layer
neural network for the score tuning module while the DNN
acoustic models in row 1, 2, 3 have the 9-layer architecture. In
addition to achieving better performance than other acoustic
models, the exemplar-based system provides complementary
information which is suitable to our system combination [34].

IV. CONCLUSION

This paper presented our proposed exemplar-based acoustic
model for the NIST Open Keyword Search 2015 Evaluation.
In our system, kernel-density model is used to estimate the
emission probability of HMM states. To improve performance,
a score tuning module with different architectures was ex-
amined. The experimental results revealed that the exemplar-
based model significantly outperforms the 9-layer-DNN acous-
tic model for both the speech recognition and keyword search
tasks.
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